/*      $NetBSD: if_bge.c,v 1.398 2025/05/26 08:27:04 bouyer Exp $      */

/*
* Copyright (c) 2001 Wind River Systems
* Copyright (c) 1997, 1998, 1999, 2001
*      Bill Paul <[email protected]>.  All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Bill Paul.
* 4. Neither the name of the author nor the names of any co-contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
* $FreeBSD: if_bge.c,v 1.13 2002/04/04 06:01:31 wpaul Exp $
*/

/*
* Broadcom BCM570x family gigabit ethernet driver for NetBSD.
*
* NetBSD version by:
*
*      Frank van der Linden <[email protected]>
*      Jason Thorpe <[email protected]>
*      Jonathan Stone <[email protected]>
*
* Originally written for FreeBSD by Bill Paul <[email protected]>
* Senior Engineer, Wind River Systems
*/

/*
* The Broadcom BCM5700 is based on technology originally developed by
* Alteon Networks as part of the Tigon I and Tigon II gigabit ethernet
* MAC chips. The BCM5700, sometimes referred to as the Tigon III, has
* two on-board MIPS R4000 CPUs and can have as much as 16MB of external
* SSRAM. The BCM5700 supports TCP, UDP and IP checksum offload, jumbo
* frames, highly configurable RX filtering, and 16 RX and TX queues
* (which, along with RX filter rules, can be used for QOS applications).
* Other features, such as TCP segmentation, may be available as part
* of value-added firmware updates. Unlike the Tigon I and Tigon II,
* firmware images can be stored in hardware and need not be compiled
* into the driver.
*
* The BCM5700 supports the PCI v2.2 and PCI-X v1.0 standards, and will
* function in a 32-bit/64-bit 33/66MHz bus, or a 64-bit/133MHz bus.
*
* The BCM5701 is a single-chip solution incorporating both the BCM5700
* MAC and a BCM5401 10/100/1000 PHY. Unlike the BCM5700, the BCM5701
* does not support external SSRAM.
*
* Broadcom also produces a variation of the BCM5700 under the "Altima"
* brand name, which is functionally similar but lacks PCI-X support.
*
* Without external SSRAM, you can only have at most 4 TX rings,
* and the use of the mini RX ring is disabled. This seems to imply
* that these features are simply not available on the BCM5701. As a
* result, this driver does not implement any support for the mini RX
* ring.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_bge.c,v 1.398 2025/05/26 08:27:04 bouyer Exp $");

#include <sys/param.h>
#include <sys/types.h>

#include <sys/callout.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mbuf.h>
#include <sys/rndsource.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/systm.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>

/* Headers for TCP Segmentation Offload (TSO) */
#include <netinet/in_systm.h>           /* n_time for <netinet/ip.h>... */
#include <netinet/in.h>                 /* ip_{src,dst}, for <netinet/ip.h> */
#include <netinet/ip.h>                 /* for struct ip */
#include <netinet/tcp.h>                /* for struct tcphdr */

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>
#include <dev/mii/brgphyreg.h>

#include <dev/pci/if_bgereg.h>
#include <dev/pci/if_bgevar.h>

#include <prop/proplib.h>

#define ETHER_MIN_NOPAD (ETHER_MIN_LEN - ETHER_CRC_LEN) /* i.e., 60 */


/*
* Tunable thresholds for rx-side bge interrupt mitigation.
*/

/*
* The pairs of values below were obtained from empirical measurement
* on bcm5700 rev B2; they ar designed to give roughly 1 receive
* interrupt for every N packets received, where N is, approximately,
* the second value (rx_max_bds) in each pair.  The values are chosen
* such that moving from one pair to the succeeding pair was observed
* to roughly halve interrupt rate under sustained input packet load.
* The values were empirically chosen to avoid overflowing internal
* limits on the  bcm5700: increasing rx_ticks much beyond 600
* results in internal wrapping and higher interrupt rates.
* The limit of 46 frames was chosen to match NFS workloads.
*
* These values also work well on bcm5701, bcm5704C, and (less
* tested) bcm5703.  On other chipsets, (including the Altima chip
* family), the larger values may overflow internal chip limits,
* leading to increasing interrupt rates rather than lower interrupt
* rates.
*
* Applications using heavy interrupt mitigation (interrupting every
* 32 or 46 frames) in both directions may need to increase the TCP
* windowsize to above 131072 bytes (e.g., to 199608 bytes) to sustain
* full link bandwidth, due to ACKs and window updates lingering
* in the RX queue during the 30-to-40-frame interrupt-mitigation window.
*/
static const struct bge_load_rx_thresh {
       int rx_ticks;
       int rx_max_bds; }
bge_rx_threshes[] = {
       { 16,   1 },    /* rx_max_bds = 1 disables interrupt mitigation */
       { 32,   2 },
       { 50,   4 },
       { 100,  8 },
       { 192, 16 },
       { 416, 32 },
       { 598, 46 }
};
#define NBGE_RX_THRESH (sizeof(bge_rx_threshes) / sizeof(bge_rx_threshes[0]))

/* XXX patchable; should be sysctl'able */
static int bge_auto_thresh = 1;
static int bge_rx_thresh_lvl;

static int bge_rxthresh_nodenum;

typedef int (*bge_eaddr_fcn_t)(struct bge_softc *, uint8_t[]);

static uint32_t bge_chipid(const struct pci_attach_args *);
static int bge_can_use_msi(struct bge_softc *);
static int bge_probe(device_t, cfdata_t, void *);
static void bge_attach(device_t, device_t, void *);
static int bge_detach(device_t, int);
static void bge_release_resources(struct bge_softc *);

static int bge_get_eaddr_fw(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_mem(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_nvram(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr_eeprom(struct bge_softc *, uint8_t[]);
static int bge_get_eaddr(struct bge_softc *, uint8_t[]);

static void bge_txeof(struct bge_softc *);
static void bge_rxcsum(struct bge_softc *, struct bge_rx_bd *, struct mbuf *);
static void bge_rxeof(struct bge_softc *);

static void bge_asf_driver_up (struct bge_softc *);
static void bge_tick(void *);
static void bge_stats_update(struct bge_softc *);
static void bge_stats_update_regs(struct bge_softc *);
static int bge_encap(struct bge_softc *, struct mbuf *, uint32_t *);

static int bge_intr(void *);
static void bge_start(struct ifnet *);
static void bge_start_locked(struct ifnet *);
static int bge_ifflags_cb(struct ethercom *);
static int bge_ioctl(struct ifnet *, u_long, void *);
static int bge_init(struct ifnet *);
static void bge_stop(struct ifnet *, int);
static bool bge_watchdog_tick(struct ifnet *);
static int bge_ifmedia_upd(struct ifnet *);
static void bge_ifmedia_sts(struct ifnet *, struct ifmediareq *);
static void bge_handle_reset_work(struct work *, void *);

static uint8_t bge_nvram_getbyte(struct bge_softc *, int, uint8_t *);
static int bge_read_nvram(struct bge_softc *, uint8_t *, int, int);

static uint8_t bge_eeprom_getbyte(struct bge_softc *, int, uint8_t *);
static int bge_read_eeprom(struct bge_softc *, void *, int, int);
static void bge_setmulti(struct bge_softc *);

static void bge_handle_events(struct bge_softc *);
static int bge_alloc_jumbo_mem(struct bge_softc *);
static void bge_free_jumbo_mem(struct bge_softc *);
static void *bge_jalloc(struct bge_softc *);
static void bge_jfree(struct mbuf *, void *, size_t, void *);
static int bge_newbuf_jumbo(struct bge_softc *, int, struct mbuf *);
static int bge_init_rx_ring_jumbo(struct bge_softc *);
static void bge_free_rx_ring_jumbo(struct bge_softc *);

static int bge_newbuf_std(struct bge_softc *, int);
static int bge_init_rx_ring_std(struct bge_softc *);
static void bge_fill_rx_ring_std(struct bge_softc *);
static void bge_free_rx_ring_std(struct bge_softc *m);

static void bge_free_tx_ring(struct bge_softc *m, bool);
static int bge_init_tx_ring(struct bge_softc *);

static int bge_chipinit(struct bge_softc *);
static int bge_blockinit(struct bge_softc *);
static int bge_phy_addr(struct bge_softc *);
static uint32_t bge_readmem_ind(struct bge_softc *, int);
static void bge_writemem_ind(struct bge_softc *, int, int);
static void bge_writembx(struct bge_softc *, int, int);
static void bge_writembx_flush(struct bge_softc *, int, int);
static void bge_writemem_direct(struct bge_softc *, int, int);
static void bge_writereg_ind(struct bge_softc *, int, int);
static void bge_set_max_readrq(struct bge_softc *);

static int bge_miibus_readreg(device_t, int, int, uint16_t *);
static int bge_miibus_writereg(device_t, int, int, uint16_t);
static void bge_miibus_statchg(struct ifnet *);

#define BGE_RESET_SHUTDOWN      0
#define BGE_RESET_START         1
#define BGE_RESET_SUSPEND       2
static void bge_sig_post_reset(struct bge_softc *, int);
static void bge_sig_legacy(struct bge_softc *, int);
static void bge_sig_pre_reset(struct bge_softc *, int);
static void bge_wait_for_event_ack(struct bge_softc *);
static void bge_stop_fw(struct bge_softc *);
static int bge_reset(struct bge_softc *);
static void bge_link_upd(struct bge_softc *);
static void bge_sysctl_init(struct bge_softc *);
static int bge_sysctl_verify(SYSCTLFN_PROTO);

static void bge_ape_lock_init(struct bge_softc *);
static void bge_ape_read_fw_ver(struct bge_softc *);
static int bge_ape_lock(struct bge_softc *, int);
static void bge_ape_unlock(struct bge_softc *, int);
static void bge_ape_send_event(struct bge_softc *, uint32_t);
static void bge_ape_driver_state_change(struct bge_softc *, int);

#ifdef BGE_DEBUG
#define DPRINTF(x)      if (bgedebug) printf x
#define DPRINTFN(n, x)  if (bgedebug >= (n)) printf x
#define BGE_TSO_PRINTF(x)  do { if (bge_tso_debug) printf x ;} while (0)
int     bgedebug = 0;
int     bge_tso_debug = 0;
void    bge_debug_info(struct bge_softc *);
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#define BGE_TSO_PRINTF(x)
#endif

#ifdef BGE_EVENT_COUNTERS
#define BGE_EVCNT_INCR(ev)      (ev).ev_count++
#define BGE_EVCNT_ADD(ev, val)  (ev).ev_count += (val)
#define BGE_EVCNT_UPD(ev, val)  (ev).ev_count = (val)
#else
#define BGE_EVCNT_INCR(ev)      /* nothing */
#define BGE_EVCNT_ADD(ev, val)  /* nothing */
#define BGE_EVCNT_UPD(ev, val)  /* nothing */
#endif

#define VIDDID(a, b) PCI_VENDOR_ ## a, PCI_PRODUCT_ ## a ## _ ## b
/*
* The BCM5700 documentation seems to indicate that the hardware still has the
* Alteon vendor ID burned into it, though it should always be overridden by
* the value in the EEPROM.  We'll check for it anyway.
*/
static const struct bge_product {
       pci_vendor_id_t         bp_vendor;
       pci_product_id_t        bp_product;
       const char              *bp_name;
} bge_products[] = {
       { VIDDID(ALTEON,   BCM5700),    "Broadcom BCM5700 Gigabit" },
       { VIDDID(ALTEON,   BCM5701),    "Broadcom BCM5701 Gigabit" },
       { VIDDID(ALTIMA,   AC1000),     "Altima AC1000 Gigabit" },
       { VIDDID(ALTIMA,   AC1001),     "Altima AC1001 Gigabit" },
       { VIDDID(ALTIMA,   AC1003),     "Altima AC1003 Gigabit" },
       { VIDDID(ALTIMA,   AC9100),     "Altima AC9100 Gigabit" },
       { VIDDID(APPLE,    BCM5701),    "APPLE BCM5701 Gigabit" },
       { VIDDID(BROADCOM, BCM5700),    "Broadcom BCM5700 Gigabit" },
       { VIDDID(BROADCOM, BCM5701),    "Broadcom BCM5701 Gigabit" },
       { VIDDID(BROADCOM, BCM5702),    "Broadcom BCM5702 Gigabit" },
       { VIDDID(BROADCOM, BCM5702FE),  "Broadcom BCM5702FE Fast" },
       { VIDDID(BROADCOM, BCM5702X),   "Broadcom BCM5702X Gigabit" },
       { VIDDID(BROADCOM, BCM5703),    "Broadcom BCM5703 Gigabit" },
       { VIDDID(BROADCOM, BCM5703X),   "Broadcom BCM5703X Gigabit" },
       { VIDDID(BROADCOM, BCM5703_ALT),"Broadcom BCM5703 Gigabit" },
       { VIDDID(BROADCOM, BCM5704C),   "Broadcom BCM5704C Dual Gigabit" },
       { VIDDID(BROADCOM, BCM5704S),   "Broadcom BCM5704S Dual Gigabit" },
       { VIDDID(BROADCOM, BCM5704S_ALT),"Broadcom BCM5704S Dual Gigabit" },
       { VIDDID(BROADCOM, BCM5705),    "Broadcom BCM5705 Gigabit" },
       { VIDDID(BROADCOM, BCM5705F),   "Broadcom BCM5705F Gigabit" },
       { VIDDID(BROADCOM, BCM5705K),   "Broadcom BCM5705K Gigabit" },
       { VIDDID(BROADCOM, BCM5705M),   "Broadcom BCM5705M Gigabit" },
       { VIDDID(BROADCOM, BCM5705M_ALT),"Broadcom BCM5705M Gigabit" },
       { VIDDID(BROADCOM, BCM5714),    "Broadcom BCM5714 Gigabit" },
       { VIDDID(BROADCOM, BCM5714S),   "Broadcom BCM5714S Gigabit" },
       { VIDDID(BROADCOM, BCM5715),    "Broadcom BCM5715 Gigabit" },
       { VIDDID(BROADCOM, BCM5715S),   "Broadcom BCM5715S Gigabit" },
       { VIDDID(BROADCOM, BCM5717),    "Broadcom BCM5717 Gigabit" },
       { VIDDID(BROADCOM, BCM5717C),   "Broadcom BCM5717 Gigabit" },
       { VIDDID(BROADCOM, BCM5718),    "Broadcom BCM5718 Gigabit" },
       { VIDDID(BROADCOM, BCM5719),    "Broadcom BCM5719 Gigabit" },
       { VIDDID(BROADCOM, BCM5720),    "Broadcom BCM5720 Gigabit" },
       { VIDDID(BROADCOM, BCM5721),    "Broadcom BCM5721 Gigabit" },
       { VIDDID(BROADCOM, BCM5722),    "Broadcom BCM5722 Gigabit" },
       { VIDDID(BROADCOM, BCM5723),    "Broadcom BCM5723 Gigabit" },
       { VIDDID(BROADCOM, BCM5725),    "Broadcom BCM5725 Gigabit" },
       { VIDDID(BROADCOM, BCM5727),    "Broadcom BCM5727 Gigabit" },
       { VIDDID(BROADCOM, BCM5750),    "Broadcom BCM5750 Gigabit" },
       { VIDDID(BROADCOM, BCM5751),    "Broadcom BCM5751 Gigabit" },
       { VIDDID(BROADCOM, BCM5751F),   "Broadcom BCM5751F Gigabit" },
       { VIDDID(BROADCOM, BCM5751M),   "Broadcom BCM5751M Gigabit" },
       { VIDDID(BROADCOM, BCM5752),    "Broadcom BCM5752 Gigabit" },
       { VIDDID(BROADCOM, BCM5752M),   "Broadcom BCM5752M Gigabit" },
       { VIDDID(BROADCOM, BCM5753),    "Broadcom BCM5753 Gigabit" },
       { VIDDID(BROADCOM, BCM5753F),   "Broadcom BCM5753F Gigabit" },
       { VIDDID(BROADCOM, BCM5753M),   "Broadcom BCM5753M Gigabit" },
       { VIDDID(BROADCOM, BCM5754),    "Broadcom BCM5754 Gigabit" },
       { VIDDID(BROADCOM, BCM5754M),   "Broadcom BCM5754M Gigabit" },
       { VIDDID(BROADCOM, BCM5755),    "Broadcom BCM5755 Gigabit" },
       { VIDDID(BROADCOM, BCM5755M),   "Broadcom BCM5755M Gigabit" },
       { VIDDID(BROADCOM, BCM5756),    "Broadcom BCM5756 Gigabit" },
       { VIDDID(BROADCOM, BCM5761),    "Broadcom BCM5761 Gigabit" },
       { VIDDID(BROADCOM, BCM5761E),   "Broadcom BCM5761E Gigabit" },
       { VIDDID(BROADCOM, BCM5761S),   "Broadcom BCM5761S Gigabit" },
       { VIDDID(BROADCOM, BCM5761SE),  "Broadcom BCM5761SE Gigabit" },
       { VIDDID(BROADCOM, BCM5762),    "Broadcom BCM5762 Gigabit" },
       { VIDDID(BROADCOM, BCM5764),    "Broadcom BCM5764 Gigabit" },
       { VIDDID(BROADCOM, BCM5780),    "Broadcom BCM5780 Gigabit" },
       { VIDDID(BROADCOM, BCM5780S),   "Broadcom BCM5780S Gigabit" },
       { VIDDID(BROADCOM, BCM5781),    "Broadcom BCM5781 Gigabit" },
       { VIDDID(BROADCOM, BCM5782),    "Broadcom BCM5782 Gigabit" },
       { VIDDID(BROADCOM, BCM5784M),   "BCM5784M NetLink 1000baseT" },
       { VIDDID(BROADCOM, BCM5785F),   "BCM5785F NetLink 10/100" },
       { VIDDID(BROADCOM, BCM5785G),   "BCM5785G NetLink 1000baseT" },
       { VIDDID(BROADCOM, BCM5786),    "Broadcom BCM5786 Gigabit" },
       { VIDDID(BROADCOM, BCM5787),    "Broadcom BCM5787 Gigabit" },
       { VIDDID(BROADCOM, BCM5787F),   "Broadcom BCM5787F 10/100" },
       { VIDDID(BROADCOM, BCM5787M),   "Broadcom BCM5787M Gigabit" },
       { VIDDID(BROADCOM, BCM5788),    "Broadcom BCM5788 Gigabit" },
       { VIDDID(BROADCOM, BCM5789),    "Broadcom BCM5789 Gigabit" },
       { VIDDID(BROADCOM, BCM5901),    "Broadcom BCM5901 Fast" },
       { VIDDID(BROADCOM, BCM5901A2),  "Broadcom BCM5901A2 Fast" },
       { VIDDID(BROADCOM, BCM5903M),   "Broadcom BCM5903M Fast" },
       { VIDDID(BROADCOM, BCM5906),    "Broadcom BCM5906 Fast" },
       { VIDDID(BROADCOM, BCM5906M),   "Broadcom BCM5906M Fast" },
       { VIDDID(BROADCOM, BCM57760),   "Broadcom BCM57760 Gigabit" },
       { VIDDID(BROADCOM, BCM57761),   "Broadcom BCM57761 Gigabit" },
       { VIDDID(BROADCOM, BCM57762),   "Broadcom BCM57762 Gigabit" },
       { VIDDID(BROADCOM, BCM57764),   "Broadcom BCM57764 Gigabit" },
       { VIDDID(BROADCOM, BCM57765),   "Broadcom BCM57765 Gigabit" },
       { VIDDID(BROADCOM, BCM57766),   "Broadcom BCM57766 Gigabit" },
       { VIDDID(BROADCOM, BCM57767),   "Broadcom BCM57767 Gigabit" },
       { VIDDID(BROADCOM, BCM57780),   "Broadcom BCM57780 Gigabit" },
       { VIDDID(BROADCOM, BCM57781),   "Broadcom BCM57781 Gigabit" },
       { VIDDID(BROADCOM, BCM57782),   "Broadcom BCM57782 Gigabit" },
       { VIDDID(BROADCOM, BCM57785),   "Broadcom BCM57785 Gigabit" },
       { VIDDID(BROADCOM, BCM57786),   "Broadcom BCM57786 Gigabit" },
       { VIDDID(BROADCOM, BCM57787),   "Broadcom BCM57787 Gigabit" },
       { VIDDID(BROADCOM, BCM57788),   "Broadcom BCM57788 Gigabit" },
       { VIDDID(BROADCOM, BCM57790),   "Broadcom BCM57790 Gigabit" },
       { VIDDID(BROADCOM, BCM57791),   "Broadcom BCM57791 Gigabit" },
       { VIDDID(BROADCOM, BCM57795),   "Broadcom BCM57795 Gigabit" },
       { VIDDID(SCHNEIDERKOCH, SK_9DX1),"SysKonnect SK-9Dx1 Gigabit" },
       { VIDDID(SCHNEIDERKOCH, SK_9MXX),"SysKonnect SK-9Mxx Gigabit" },
       { VIDDID(3COM, 3C996),          "3Com 3c996 Gigabit" },
       { VIDDID(FUJITSU4, PW008GE4),   "Fujitsu PW008GE4 Gigabit" },
       { VIDDID(FUJITSU4, PW008GE5),   "Fujitsu PW008GE5 Gigabit" },
       { VIDDID(FUJITSU4, PP250_450_LAN),"Fujitsu Primepower 250/450 Gigabit" },
       { 0, 0, NULL },
};

#define BGE_IS_JUMBO_CAPABLE(sc)        ((sc)->bge_flags & BGEF_JUMBO_CAPABLE)
#define BGE_IS_5700_FAMILY(sc)          ((sc)->bge_flags & BGEF_5700_FAMILY)
#define BGE_IS_5705_PLUS(sc)            ((sc)->bge_flags & BGEF_5705_PLUS)
#define BGE_IS_5714_FAMILY(sc)          ((sc)->bge_flags & BGEF_5714_FAMILY)
#define BGE_IS_575X_PLUS(sc)            ((sc)->bge_flags & BGEF_575X_PLUS)
#define BGE_IS_5755_PLUS(sc)            ((sc)->bge_flags & BGEF_5755_PLUS)
#define BGE_IS_57765_FAMILY(sc)         ((sc)->bge_flags & BGEF_57765_FAMILY)
#define BGE_IS_57765_PLUS(sc)           ((sc)->bge_flags & BGEF_57765_PLUS)
#define BGE_IS_5717_PLUS(sc)            ((sc)->bge_flags & BGEF_5717_PLUS)

static const struct bge_revision {
       uint32_t                br_chipid;
       const char              *br_name;
} bge_revisions[] = {
       { BGE_CHIPID_BCM5700_A0, "BCM5700 A0" },
       { BGE_CHIPID_BCM5700_A1, "BCM5700 A1" },
       { BGE_CHIPID_BCM5700_B0, "BCM5700 B0" },
       { BGE_CHIPID_BCM5700_B1, "BCM5700 B1" },
       { BGE_CHIPID_BCM5700_B2, "BCM5700 B2" },
       { BGE_CHIPID_BCM5700_B3, "BCM5700 B3" },
       { BGE_CHIPID_BCM5700_ALTIMA, "BCM5700 Altima" },
       { BGE_CHIPID_BCM5700_C0, "BCM5700 C0" },
       { BGE_CHIPID_BCM5701_A0, "BCM5701 A0" },
       { BGE_CHIPID_BCM5701_B0, "BCM5701 B0" },
       { BGE_CHIPID_BCM5701_B2, "BCM5701 B2" },
       { BGE_CHIPID_BCM5701_B5, "BCM5701 B5" },
       { BGE_CHIPID_BCM5703_A0, "BCM5702/5703 A0" },
       { BGE_CHIPID_BCM5703_A1, "BCM5702/5703 A1" },
       { BGE_CHIPID_BCM5703_A2, "BCM5702/5703 A2" },
       { BGE_CHIPID_BCM5703_A3, "BCM5702/5703 A3" },
       { BGE_CHIPID_BCM5703_B0, "BCM5702/5703 B0" },
       { BGE_CHIPID_BCM5704_A0, "BCM5704 A0" },
       { BGE_CHIPID_BCM5704_A1, "BCM5704 A1" },
       { BGE_CHIPID_BCM5704_A2, "BCM5704 A2" },
       { BGE_CHIPID_BCM5704_A3, "BCM5704 A3" },
       { BGE_CHIPID_BCM5704_B0, "BCM5704 B0" },
       { BGE_CHIPID_BCM5705_A0, "BCM5705 A0" },
       { BGE_CHIPID_BCM5705_A1, "BCM5705 A1" },
       { BGE_CHIPID_BCM5705_A2, "BCM5705 A2" },
       { BGE_CHIPID_BCM5705_A3, "BCM5705 A3" },
       { BGE_CHIPID_BCM5750_A0, "BCM5750 A0" },
       { BGE_CHIPID_BCM5750_A1, "BCM5750 A1" },
       { BGE_CHIPID_BCM5750_A3, "BCM5750 A3" },
       { BGE_CHIPID_BCM5750_B0, "BCM5750 B0" },
       { BGE_CHIPID_BCM5750_B1, "BCM5750 B1" },
       { BGE_CHIPID_BCM5750_C0, "BCM5750 C0" },
       { BGE_CHIPID_BCM5750_C1, "BCM5750 C1" },
       { BGE_CHIPID_BCM5750_C2, "BCM5750 C2" },
       { BGE_CHIPID_BCM5752_A0, "BCM5752 A0" },
       { BGE_CHIPID_BCM5752_A1, "BCM5752 A1" },
       { BGE_CHIPID_BCM5752_A2, "BCM5752 A2" },
       { BGE_CHIPID_BCM5714_A0, "BCM5714 A0" },
       { BGE_CHIPID_BCM5714_B0, "BCM5714 B0" },
       { BGE_CHIPID_BCM5714_B3, "BCM5714 B3" },
       { BGE_CHIPID_BCM5715_A0, "BCM5715 A0" },
       { BGE_CHIPID_BCM5715_A1, "BCM5715 A1" },
       { BGE_CHIPID_BCM5715_A3, "BCM5715 A3" },
       { BGE_CHIPID_BCM5717_A0, "BCM5717 A0" },
       { BGE_CHIPID_BCM5717_B0, "BCM5717 B0" },
       { BGE_CHIPID_BCM5719_A0, "BCM5719 A0" },
       { BGE_CHIPID_BCM5720_A0, "BCM5720 A0" },
       { BGE_CHIPID_BCM5755_A0, "BCM5755 A0" },
       { BGE_CHIPID_BCM5755_A1, "BCM5755 A1" },
       { BGE_CHIPID_BCM5755_A2, "BCM5755 A2" },
       { BGE_CHIPID_BCM5755_C0, "BCM5755 C0" },
       { BGE_CHIPID_BCM5761_A0, "BCM5761 A0" },
       { BGE_CHIPID_BCM5761_A1, "BCM5761 A1" },
       { BGE_CHIPID_BCM5762_A0, "BCM5762 A0" },
       { BGE_CHIPID_BCM5762_B0, "BCM5762 B0" },
       { BGE_CHIPID_BCM5784_A0, "BCM5784 A0" },
       { BGE_CHIPID_BCM5784_A1, "BCM5784 A1" },
       { BGE_CHIPID_BCM5784_B0, "BCM5784 B0" },
       /* 5754 and 5787 share the same ASIC ID */
       { BGE_CHIPID_BCM5787_A0, "BCM5754/5787 A0" },
       { BGE_CHIPID_BCM5787_A1, "BCM5754/5787 A1" },
       { BGE_CHIPID_BCM5787_A2, "BCM5754/5787 A2" },
       { BGE_CHIPID_BCM5906_A0, "BCM5906 A0" },
       { BGE_CHIPID_BCM5906_A1, "BCM5906 A1" },
       { BGE_CHIPID_BCM5906_A2, "BCM5906 A2" },
       { BGE_CHIPID_BCM57765_A0, "BCM57765 A0" },
       { BGE_CHIPID_BCM57765_B0, "BCM57765 B0" },
       { BGE_CHIPID_BCM57766_A0, "BCM57766 A0" },
       { BGE_CHIPID_BCM57780_A0, "BCM57780 A0" },
       { BGE_CHIPID_BCM57780_A1, "BCM57780 A1" },

       { 0, NULL }
};

/*
* Some defaults for major revisions, so that newer steppings
* that we don't know about have a shot at working.
*/
static const struct bge_revision bge_majorrevs[] = {
       { BGE_ASICREV_BCM5700, "unknown BCM5700" },
       { BGE_ASICREV_BCM5701, "unknown BCM5701" },
       { BGE_ASICREV_BCM5703, "unknown BCM5703" },
       { BGE_ASICREV_BCM5704, "unknown BCM5704" },
       { BGE_ASICREV_BCM5705, "unknown BCM5705" },
       { BGE_ASICREV_BCM5750, "unknown BCM5750" },
       { BGE_ASICREV_BCM5714, "unknown BCM5714" },
       { BGE_ASICREV_BCM5714_A0, "unknown BCM5714" },
       { BGE_ASICREV_BCM5752, "unknown BCM5752" },
       { BGE_ASICREV_BCM5780, "unknown BCM5780" },
       { BGE_ASICREV_BCM5755, "unknown BCM5755" },
       { BGE_ASICREV_BCM5761, "unknown BCM5761" },
       { BGE_ASICREV_BCM5784, "unknown BCM5784" },
       { BGE_ASICREV_BCM5785, "unknown BCM5785" },
       /* 5754 and 5787 share the same ASIC ID */
       { BGE_ASICREV_BCM5787, "unknown BCM5754/5787" },
       { BGE_ASICREV_BCM5906, "unknown BCM5906" },
       { BGE_ASICREV_BCM57765, "unknown BCM57765" },
       { BGE_ASICREV_BCM57766, "unknown BCM57766" },
       { BGE_ASICREV_BCM57780, "unknown BCM57780" },
       { BGE_ASICREV_BCM5717, "unknown BCM5717" },
       { BGE_ASICREV_BCM5719, "unknown BCM5719" },
       { BGE_ASICREV_BCM5720, "unknown BCM5720" },
       { BGE_ASICREV_BCM5762, "unknown BCM5762" },

       { 0, NULL }
};

static int bge_allow_asf = 1;

#ifndef BGE_WATCHDOG_TIMEOUT
#define BGE_WATCHDOG_TIMEOUT 5
#endif
static int bge_watchdog_timeout = BGE_WATCHDOG_TIMEOUT;


CFATTACH_DECL3_NEW(bge, sizeof(struct bge_softc),
   bge_probe, bge_attach, bge_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);

static uint32_t
bge_readmem_ind(struct bge_softc *sc, int off)
{
       pcireg_t val;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
           off >= BGE_STATS_BLOCK && off < BGE_SEND_RING_1_TO_4)
               return 0;

       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
       val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA);
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
       return val;
}

static void
bge_writemem_ind(struct bge_softc *sc, int off, int val)
{

       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, off);
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_DATA, val);
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);
}

/*
* PCI Express only
*/
static void
bge_set_max_readrq(struct bge_softc *sc)
{
       pcireg_t val;

       val = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
           + PCIE_DCSR);
       val &= ~PCIE_DCSR_MAX_READ_REQ;
       switch (sc->bge_expmrq) {
       case 2048:
               val |= BGE_PCIE_DEVCTL_MAX_READRQ_2048;
               break;
       case 4096:
               val |= BGE_PCIE_DEVCTL_MAX_READRQ_4096;
               break;
       default:
               panic("incorrect expmrq value(%d)", sc->bge_expmrq);
               break;
       }
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pciecap
           + PCIE_DCSR, val);
}

#ifdef notdef
static uint32_t
bge_readreg_ind(struct bge_softc *sc, int off)
{
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
       return pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA);
}
#endif

static void
bge_writereg_ind(struct bge_softc *sc, int off, int val)
{
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_BASEADDR, off);
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_REG_DATA, val);
}

static void
bge_writemem_direct(struct bge_softc *sc, int off, int val)
{
       CSR_WRITE_4(sc, off, val);
}

static void
bge_writembx(struct bge_softc *sc, int off, int val)
{
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
               off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;

       CSR_WRITE_4(sc, off, val);
}

static void
bge_writembx_flush(struct bge_softc *sc, int off, int val)
{
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
               off += BGE_LPMBX_IRQ0_HI - BGE_MBX_IRQ0_HI;

       CSR_WRITE_4_FLUSH(sc, off, val);
}

/*
* Clear all stale locks and select the lock for this driver instance.
*/
void
bge_ape_lock_init(struct bge_softc *sc)
{
       struct pci_attach_args *pa = &(sc->bge_pa);
       uint32_t bit, regbase;
       int i;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
               regbase = BGE_APE_LOCK_GRANT;
       else
               regbase = BGE_APE_PER_LOCK_GRANT;

       /* Clear any stale locks. */
       for (i = BGE_APE_LOCK_PHY0; i <= BGE_APE_LOCK_GPIO; i++) {
               switch (i) {
               case BGE_APE_LOCK_PHY0:
               case BGE_APE_LOCK_PHY1:
               case BGE_APE_LOCK_PHY2:
               case BGE_APE_LOCK_PHY3:
                       bit = BGE_APE_LOCK_GRANT_DRIVER0;
                       break;
               default:
                       if (pa->pa_function == 0)
                               bit = BGE_APE_LOCK_GRANT_DRIVER0;
                       else
                               bit = (1 << pa->pa_function);
               }
               APE_WRITE_4(sc, regbase + 4 * i, bit);
       }

       /* Select the PHY lock based on the device's function number. */
       switch (pa->pa_function) {
       case 0:
               sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY0;
               break;
       case 1:
               sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY1;
               break;
       case 2:
               sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY2;
               break;
       case 3:
               sc->bge_phy_ape_lock = BGE_APE_LOCK_PHY3;
               break;
       default:
               printf("%s: PHY lock not supported on function\n",
                   device_xname(sc->bge_dev));
               break;
       }
}

/*
* Check for APE firmware, set flags, and print version info.
*/
void
bge_ape_read_fw_ver(struct bge_softc *sc)
{
       const char *fwtype;
       uint32_t apedata, features;

       /* Check for a valid APE signature in shared memory. */
       apedata = APE_READ_4(sc, BGE_APE_SEG_SIG);
       if (apedata != BGE_APE_SEG_SIG_MAGIC) {
               sc->bge_mfw_flags &= ~ BGE_MFW_ON_APE;
               return;
       }

       /* Check if APE firmware is running. */
       apedata = APE_READ_4(sc, BGE_APE_FW_STATUS);
       if ((apedata & BGE_APE_FW_STATUS_READY) == 0) {
               printf("%s: APE signature found but FW status not ready! "
                   "0x%08x\n", device_xname(sc->bge_dev), apedata);
               return;
       }

       sc->bge_mfw_flags |= BGE_MFW_ON_APE;

       /* Fetch the APE firmware type and version. */
       apedata = APE_READ_4(sc, BGE_APE_FW_VERSION);
       features = APE_READ_4(sc, BGE_APE_FW_FEATURES);
       if ((features & BGE_APE_FW_FEATURE_NCSI) != 0) {
               sc->bge_mfw_flags |= BGE_MFW_TYPE_NCSI;
               fwtype = "NCSI";
       } else if ((features & BGE_APE_FW_FEATURE_DASH) != 0) {
               sc->bge_mfw_flags |= BGE_MFW_TYPE_DASH;
               fwtype = "DASH";
       } else
               fwtype = "UNKN";

       /* Print the APE firmware version. */
       aprint_normal_dev(sc->bge_dev, "APE firmware %s %d.%d.%d.%d\n", fwtype,
           (apedata & BGE_APE_FW_VERSION_MAJMSK) >> BGE_APE_FW_VERSION_MAJSFT,
           (apedata & BGE_APE_FW_VERSION_MINMSK) >> BGE_APE_FW_VERSION_MINSFT,
           (apedata & BGE_APE_FW_VERSION_REVMSK) >> BGE_APE_FW_VERSION_REVSFT,
           (apedata & BGE_APE_FW_VERSION_BLDMSK));
}

int
bge_ape_lock(struct bge_softc *sc, int locknum)
{
       struct pci_attach_args *pa = &(sc->bge_pa);
       uint32_t bit, gnt, req, status;
       int i, off;

       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
               return 0;

       /* Lock request/grant registers have different bases. */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761) {
               req = BGE_APE_LOCK_REQ;
               gnt = BGE_APE_LOCK_GRANT;
       } else {
               req = BGE_APE_PER_LOCK_REQ;
               gnt = BGE_APE_PER_LOCK_GRANT;
       }

       off = 4 * locknum;

       switch (locknum) {
       case BGE_APE_LOCK_GPIO:
               /* Lock required when using GPIO. */
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
                       return 0;
               if (pa->pa_function == 0)
                       bit = BGE_APE_LOCK_REQ_DRIVER0;
               else
                       bit = (1 << pa->pa_function);
               break;
       case BGE_APE_LOCK_GRC:
               /* Lock required to reset the device. */
               if (pa->pa_function == 0)
                       bit = BGE_APE_LOCK_REQ_DRIVER0;
               else
                       bit = (1 << pa->pa_function);
               break;
       case BGE_APE_LOCK_MEM:
               /* Lock required when accessing certain APE memory. */
               if (pa->pa_function == 0)
                       bit = BGE_APE_LOCK_REQ_DRIVER0;
               else
                       bit = (1 << pa->pa_function);
               break;
       case BGE_APE_LOCK_PHY0:
       case BGE_APE_LOCK_PHY1:
       case BGE_APE_LOCK_PHY2:
       case BGE_APE_LOCK_PHY3:
               /* Lock required when accessing PHYs. */
               bit = BGE_APE_LOCK_REQ_DRIVER0;
               break;
       default:
               return EINVAL;
       }

       /* Request a lock. */
       APE_WRITE_4_FLUSH(sc, req + off, bit);

       /* Wait up to 1 second to acquire lock. */
       for (i = 0; i < 20000; i++) {
               status = APE_READ_4(sc, gnt + off);
               if (status == bit)
                       break;
               DELAY(50);
       }

       /* Handle any errors. */
       if (status != bit) {
               printf("%s: APE lock %d request failed! "
                   "request = 0x%04x[0x%04x], status = 0x%04x[0x%04x]\n",
                   device_xname(sc->bge_dev),
                   locknum, req + off, bit & 0xFFFF, gnt + off,
                   status & 0xFFFF);
               /* Revoke the lock request. */
               APE_WRITE_4(sc, gnt + off, bit);
               return EBUSY;
       }

       return 0;
}

void
bge_ape_unlock(struct bge_softc *sc, int locknum)
{
       struct pci_attach_args *pa = &(sc->bge_pa);
       uint32_t bit, gnt;
       int off;

       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
               return;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
               gnt = BGE_APE_LOCK_GRANT;
       else
               gnt = BGE_APE_PER_LOCK_GRANT;

       off = 4 * locknum;

       switch (locknum) {
       case BGE_APE_LOCK_GPIO:
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
                       return;
               if (pa->pa_function == 0)
                       bit = BGE_APE_LOCK_GRANT_DRIVER0;
               else
                       bit = (1 << pa->pa_function);
               break;
       case BGE_APE_LOCK_GRC:
               if (pa->pa_function == 0)
                       bit = BGE_APE_LOCK_GRANT_DRIVER0;
               else
                       bit = (1 << pa->pa_function);
               break;
       case BGE_APE_LOCK_MEM:
               if (pa->pa_function == 0)
                       bit = BGE_APE_LOCK_GRANT_DRIVER0;
               else
                       bit = (1 << pa->pa_function);
               break;
       case BGE_APE_LOCK_PHY0:
       case BGE_APE_LOCK_PHY1:
       case BGE_APE_LOCK_PHY2:
       case BGE_APE_LOCK_PHY3:
               bit = BGE_APE_LOCK_GRANT_DRIVER0;
               break;
       default:
               return;
       }

       /* Write and flush for consecutive bge_ape_lock() */
       APE_WRITE_4_FLUSH(sc, gnt + off, bit);
}

/*
* Send an event to the APE firmware.
*/
void
bge_ape_send_event(struct bge_softc *sc, uint32_t event)
{
       uint32_t apedata;
       int i;

       /* NCSI does not support APE events. */
       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
               return;

       /* Wait up to 1ms for APE to service previous event. */
       for (i = 10; i > 0; i--) {
               if (bge_ape_lock(sc, BGE_APE_LOCK_MEM) != 0)
                       break;
               apedata = APE_READ_4(sc, BGE_APE_EVENT_STATUS);
               if ((apedata & BGE_APE_EVENT_STATUS_EVENT_PENDING) == 0) {
                       APE_WRITE_4(sc, BGE_APE_EVENT_STATUS, event |
                           BGE_APE_EVENT_STATUS_EVENT_PENDING);
                       bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
                       APE_WRITE_4(sc, BGE_APE_EVENT, BGE_APE_EVENT_1);
                       break;
               }
               bge_ape_unlock(sc, BGE_APE_LOCK_MEM);
               DELAY(100);
       }
       if (i == 0) {
               printf("%s: APE event 0x%08x send timed out\n",
                   device_xname(sc->bge_dev), event);
       }
}

void
bge_ape_driver_state_change(struct bge_softc *sc, int kind)
{
       uint32_t apedata, event;

       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) == 0)
               return;

       switch (kind) {
       case BGE_RESET_START:
               /* If this is the first load, clear the load counter. */
               apedata = APE_READ_4(sc, BGE_APE_HOST_SEG_SIG);
               if (apedata != BGE_APE_HOST_SEG_SIG_MAGIC)
                       APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, 0);
               else {
                       apedata = APE_READ_4(sc, BGE_APE_HOST_INIT_COUNT);
                       APE_WRITE_4(sc, BGE_APE_HOST_INIT_COUNT, ++apedata);
               }
               APE_WRITE_4(sc, BGE_APE_HOST_SEG_SIG,
                   BGE_APE_HOST_SEG_SIG_MAGIC);
               APE_WRITE_4(sc, BGE_APE_HOST_SEG_LEN,
                   BGE_APE_HOST_SEG_LEN_MAGIC);

               /* Add some version info if bge(4) supports it. */
               APE_WRITE_4(sc, BGE_APE_HOST_DRIVER_ID,
                   BGE_APE_HOST_DRIVER_ID_MAGIC(1, 0));
               APE_WRITE_4(sc, BGE_APE_HOST_BEHAVIOR,
                   BGE_APE_HOST_BEHAV_NO_PHYLOCK);
               APE_WRITE_4(sc, BGE_APE_HOST_HEARTBEAT_INT_MS,
                   BGE_APE_HOST_HEARTBEAT_INT_DISABLE);
               APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
                   BGE_APE_HOST_DRVR_STATE_START);
               event = BGE_APE_EVENT_STATUS_STATE_START;
               break;
       case BGE_RESET_SHUTDOWN:
               APE_WRITE_4(sc, BGE_APE_HOST_DRVR_STATE,
                   BGE_APE_HOST_DRVR_STATE_UNLOAD);
               event = BGE_APE_EVENT_STATUS_STATE_UNLOAD;
               break;
       case BGE_RESET_SUSPEND:
               event = BGE_APE_EVENT_STATUS_STATE_SUSPEND;
               break;
       default:
               return;
       }

       bge_ape_send_event(sc, event | BGE_APE_EVENT_STATUS_DRIVER_EVNT |
           BGE_APE_EVENT_STATUS_STATE_CHNGE);
}

static uint8_t
bge_nvram_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
{
       uint32_t access, byte = 0;
       int i;

       /* Lock. */
       CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
       for (i = 0; i < 8000; i++) {
               if (CSR_READ_4(sc, BGE_NVRAM_SWARB) & BGE_NVRAMSWARB_GNT1)
                       break;
               DELAY(20);
       }
       if (i == 8000)
               return 1;

       /* Enable access. */
       access = CSR_READ_4(sc, BGE_NVRAM_ACCESS);
       CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access | BGE_NVRAMACC_ENABLE);

       CSR_WRITE_4(sc, BGE_NVRAM_ADDR, addr & 0xfffffffc);
       CSR_WRITE_4(sc, BGE_NVRAM_CMD, BGE_NVRAM_READCMD);
       for (i = 0; i < BGE_TIMEOUT * 10; i++) {
               DELAY(10);
               if (CSR_READ_4(sc, BGE_NVRAM_CMD) & BGE_NVRAMCMD_DONE) {
                       DELAY(10);
                       break;
               }
       }

       if (i == BGE_TIMEOUT * 10) {
               aprint_error_dev(sc->bge_dev, "nvram read timed out\n");
               return 1;
       }

       /* Get result. */
       byte = CSR_READ_4(sc, BGE_NVRAM_RDDATA);

       *dest = (bswap32(byte) >> ((addr % 4) * 8)) & 0xFF;

       /* Disable access. */
       CSR_WRITE_4(sc, BGE_NVRAM_ACCESS, access);

       /* Unlock. */
       CSR_WRITE_4_FLUSH(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_CLR1);

       return 0;
}

/*
* Read a sequence of bytes from NVRAM.
*/
static int
bge_read_nvram(struct bge_softc *sc, uint8_t *dest, int off, int cnt)
{
       int error = 0, i;
       uint8_t byte = 0;

       if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)
               return 1;

       for (i = 0; i < cnt; i++) {
               error = bge_nvram_getbyte(sc, off + i, &byte);
               if (error)
                       break;
               *(dest + i) = byte;
       }

       return error ? 1 : 0;
}

/*
* Read a byte of data stored in the EEPROM at address 'addr.' The
* BCM570x supports both the traditional bitbang interface and an
* auto access interface for reading the EEPROM. We use the auto
* access method.
*/
static uint8_t
bge_eeprom_getbyte(struct bge_softc *sc, int addr, uint8_t *dest)
{
       int i;
       uint32_t byte = 0;

       /*
        * Enable use of auto EEPROM access so we can avoid
        * having to use the bitbang method.
        */
       BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);

       /* Reset the EEPROM, load the clock period. */
       CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
           BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
       DELAY(20);

       /* Issue the read EEPROM command. */
       CSR_WRITE_4(sc, BGE_EE_ADDR, BGE_EE_READCMD | addr);

       /* Wait for completion */
       for (i = 0; i < BGE_TIMEOUT * 10; i++) {
               DELAY(10);
               if (CSR_READ_4(sc, BGE_EE_ADDR) & BGE_EEADDR_DONE)
                       break;
       }

       if (i == BGE_TIMEOUT * 10) {
               aprint_error_dev(sc->bge_dev, "eeprom read timed out\n");
               return 1;
       }

       /* Get result. */
       byte = CSR_READ_4(sc, BGE_EE_DATA);

       *dest = (byte >> ((addr % 4) * 8)) & 0xFF;

       return 0;
}

/*
* Read a sequence of bytes from the EEPROM.
*/
static int
bge_read_eeprom(struct bge_softc *sc, void *destv, int off, int cnt)
{
       int error = 0, i;
       uint8_t byte = 0;
       char *dest = destv;

       for (i = 0; i < cnt; i++) {
               error = bge_eeprom_getbyte(sc, off + i, &byte);
               if (error)
                       break;
               *(dest + i) = byte;
       }

       return error ? 1 : 0;
}

static int
bge_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
       struct bge_softc * const sc = device_private(dev);
       uint32_t data;
       uint32_t autopoll;
       int rv = 0;
       int i;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
               return -1;

       /* Reading with autopolling on may trigger PCI errors */
       autopoll = CSR_READ_4(sc, BGE_MI_MODE);
       if (autopoll & BGE_MIMODE_AUTOPOLL) {
               BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
               BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
               DELAY(80);
       }

       CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_READ | BGE_MICOMM_BUSY |
           BGE_MIPHY(phy) | BGE_MIREG(reg));

       for (i = 0; i < BGE_TIMEOUT; i++) {
               delay(10);
               data = CSR_READ_4(sc, BGE_MI_COMM);
               if (!(data & BGE_MICOMM_BUSY)) {
                       DELAY(5);
                       data = CSR_READ_4(sc, BGE_MI_COMM);
                       break;
               }
       }

       if (i == BGE_TIMEOUT) {
               aprint_error_dev(sc->bge_dev, "PHY read timed out\n");
               rv = ETIMEDOUT;
       } else if ((data & BGE_MICOMM_READFAIL) != 0) {
               /* XXX This error occurs on some devices while attaching. */
               aprint_debug_dev(sc->bge_dev, "PHY read I/O error\n");
               rv = EIO;
       } else
               *val = data & BGE_MICOMM_DATA;

       if (autopoll & BGE_MIMODE_AUTOPOLL) {
               BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
               BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
               DELAY(80);
       }

       bge_ape_unlock(sc, sc->bge_phy_ape_lock);

       return rv;
}

static int
bge_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
       struct bge_softc * const sc = device_private(dev);
       uint32_t data, autopoll;
       int rv = 0;
       int i;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906 &&
           (reg == MII_GTCR || reg == BRGPHY_MII_AUXCTL))
               return 0;

       if (bge_ape_lock(sc, sc->bge_phy_ape_lock) != 0)
               return -1;

       /* Reading with autopolling on may trigger PCI errors */
       autopoll = CSR_READ_4(sc, BGE_MI_MODE);
       if (autopoll & BGE_MIMODE_AUTOPOLL) {
               BGE_STS_CLRBIT(sc, BGE_STS_AUTOPOLL);
               BGE_CLRBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
               DELAY(80);
       }

       CSR_WRITE_4_FLUSH(sc, BGE_MI_COMM, BGE_MICMD_WRITE | BGE_MICOMM_BUSY |
           BGE_MIPHY(phy) | BGE_MIREG(reg) | val);

       for (i = 0; i < BGE_TIMEOUT; i++) {
               delay(10);
               data = CSR_READ_4(sc, BGE_MI_COMM);
               if (!(data & BGE_MICOMM_BUSY)) {
                       delay(5);
                       data = CSR_READ_4(sc, BGE_MI_COMM);
                       break;
               }
       }

       if (i == BGE_TIMEOUT) {
               aprint_error_dev(sc->bge_dev, "PHY write timed out\n");
               rv = ETIMEDOUT;
       } else if ((data & BGE_MICOMM_READFAIL) != 0) {
               aprint_error_dev(sc->bge_dev, "PHY write I/O error\n");
               rv = EIO;
       }

       if (autopoll & BGE_MIMODE_AUTOPOLL) {
               BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
               BGE_SETBIT_FLUSH(sc, BGE_MI_MODE, BGE_MIMODE_AUTOPOLL);
               delay(80);
       }

       bge_ape_unlock(sc, sc->bge_phy_ape_lock);

       return rv;
}

static void
bge_miibus_statchg(struct ifnet *ifp)
{
       struct bge_softc * const sc = ifp->if_softc;
       struct mii_data *mii = &sc->bge_mii;
       uint32_t mac_mode, rx_mode, tx_mode;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       /*
        * Get flow control negotiation result.
        */
       if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
           (mii->mii_media_active & IFM_ETH_FMASK) != sc->bge_flowflags)
               sc->bge_flowflags = mii->mii_media_active & IFM_ETH_FMASK;

       if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
           mii->mii_media_status & IFM_ACTIVE &&
           IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
               BGE_STS_SETBIT(sc, BGE_STS_LINK);
       else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
           (!(mii->mii_media_status & IFM_ACTIVE) ||
           IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
               BGE_STS_CLRBIT(sc, BGE_STS_LINK);

       if (!BGE_STS_BIT(sc, BGE_STS_LINK))
               return;

       /* Set the port mode (MII/GMII) to match the link speed. */
       mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) &
           ~(BGE_MACMODE_PORTMODE | BGE_MACMODE_HALF_DUPLEX);
       tx_mode = CSR_READ_4(sc, BGE_TX_MODE);
       rx_mode = CSR_READ_4(sc, BGE_RX_MODE);
       if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
           IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
               mac_mode |= BGE_PORTMODE_GMII;
       else
               mac_mode |= BGE_PORTMODE_MII;

       tx_mode &= ~BGE_TXMODE_FLOWCTL_ENABLE;
       rx_mode &= ~BGE_RXMODE_FLOWCTL_ENABLE;
       if ((mii->mii_media_active & IFM_FDX) != 0) {
               if (sc->bge_flowflags & IFM_ETH_TXPAUSE)
                       tx_mode |= BGE_TXMODE_FLOWCTL_ENABLE;
               if (sc->bge_flowflags & IFM_ETH_RXPAUSE)
                       rx_mode |= BGE_RXMODE_FLOWCTL_ENABLE;
       } else
               mac_mode |= BGE_MACMODE_HALF_DUPLEX;

       CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, mac_mode);
       DELAY(40);
       CSR_WRITE_4(sc, BGE_TX_MODE, tx_mode);
       CSR_WRITE_4(sc, BGE_RX_MODE, rx_mode);
}

/*
* Update rx threshold levels to values in a particular slot
* of the interrupt-mitigation table bge_rx_threshes.
*/
static void
bge_set_thresh(struct ifnet *ifp, int lvl)
{
       struct bge_softc * const sc = ifp->if_softc;

       /*
        * For now, just save the new Rx-intr thresholds and record
        * that a threshold update is pending.  Updating the hardware
        * registers here (even at splhigh()) is observed to
        * occasionally cause glitches where Rx-interrupts are not
        * honoured for up to 10 seconds. [email protected], 2003-04-05
        */
       mutex_enter(sc->sc_intr_lock);
       sc->bge_rx_coal_ticks = bge_rx_threshes[lvl].rx_ticks;
       sc->bge_rx_max_coal_bds = bge_rx_threshes[lvl].rx_max_bds;
       sc->bge_pending_rxintr_change = true;
       mutex_exit(sc->sc_intr_lock);
}


/*
* Update Rx thresholds of all bge devices
*/
static void
bge_update_all_threshes(int lvl)
{
       const char * const namebuf = "bge";
       const size_t namelen = strlen(namebuf);
       struct ifnet *ifp;

       if (lvl < 0)
               lvl = 0;
       else if (lvl >= NBGE_RX_THRESH)
               lvl = NBGE_RX_THRESH - 1;

       /*
        * Now search all the interfaces for this name/number
        */
       int s = pserialize_read_enter();
       IFNET_READER_FOREACH(ifp) {
               if (strncmp(ifp->if_xname, namebuf, namelen) != 0)
                       continue;
               /* We got a match: update if doing auto-threshold-tuning */
               if (bge_auto_thresh)
                       bge_set_thresh(ifp, lvl);
       }
       pserialize_read_exit(s);
}

/*
* Handle events that have triggered interrupts.
*/
static void
bge_handle_events(struct bge_softc *sc)
{

       return;
}

/*
* Memory management for jumbo frames.
*/

static int
bge_alloc_jumbo_mem(struct bge_softc *sc)
{
       char *ptr, *kva;
       int i, rseg, state, error;
       struct bge_jpool_entry *entry;

       state = error = 0;

       /* Grab a big chunk o' storage. */
       if (bus_dmamem_alloc(sc->bge_dmatag, BGE_JMEM, PAGE_SIZE, 0,
           &sc->bge_cdata.bge_rx_jumbo_seg, 1, &rseg, BUS_DMA_WAITOK)) {
               aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
               return ENOBUFS;
       }

       state = 1;
       if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg,
           rseg, BGE_JMEM, (void **)&kva, BUS_DMA_WAITOK)) {
               aprint_error_dev(sc->bge_dev,
                   "can't map DMA buffers (%d bytes)\n", (int)BGE_JMEM);
               error = ENOBUFS;
               goto out;
       }

       state = 2;
       if (bus_dmamap_create(sc->bge_dmatag, BGE_JMEM, 1, BGE_JMEM, 0,
           BUS_DMA_WAITOK, &sc->bge_cdata.bge_rx_jumbo_map)) {
               aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
               error = ENOBUFS;
               goto out;
       }

       state = 3;
       if (bus_dmamap_load(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
           kva, BGE_JMEM, NULL, BUS_DMA_WAITOK)) {
               aprint_error_dev(sc->bge_dev, "can't load DMA map\n");
               error = ENOBUFS;
               goto out;
       }

       state = 4;
       sc->bge_cdata.bge_jumbo_buf = (void *)kva;
       DPRINTFN(1,("bge_jumbo_buf = %p\n", sc->bge_cdata.bge_jumbo_buf));

       SLIST_INIT(&sc->bge_jfree_listhead);
       SLIST_INIT(&sc->bge_jinuse_listhead);

       /*
        * Now divide it up into 9K pieces and save the addresses
        * in an array.
        */
       ptr = sc->bge_cdata.bge_jumbo_buf;
       for (i = 0; i < BGE_JSLOTS; i++) {
               sc->bge_cdata.bge_jslots[i] = ptr;
               ptr += BGE_JLEN;
               entry = kmem_alloc(sizeof(*entry), KM_SLEEP);
               entry->slot = i;
               SLIST_INSERT_HEAD(&sc->bge_jfree_listhead,
                                entry, jpool_entries);
       }
out:
       if (error != 0) {
               switch (state) {
               case 4:
                       bus_dmamap_unload(sc->bge_dmatag,
                           sc->bge_cdata.bge_rx_jumbo_map);
                       /* FALLTHROUGH */
               case 3:
                       bus_dmamap_destroy(sc->bge_dmatag,
                           sc->bge_cdata.bge_rx_jumbo_map);
                       /* FALLTHROUGH */
               case 2:
                       bus_dmamem_unmap(sc->bge_dmatag, kva, BGE_JMEM);
                       /* FALLTHROUGH */
               case 1:
                       bus_dmamem_free(sc->bge_dmatag,
                           &sc->bge_cdata.bge_rx_jumbo_seg, rseg);
                       break;
               default:
                       break;
               }
       }

       return error;
}

static void
bge_free_jumbo_mem(struct bge_softc *sc)
{
       struct bge_jpool_entry *entry, *tmp;

       KASSERT(SLIST_EMPTY(&sc->bge_jinuse_listhead));

       SLIST_FOREACH_SAFE(entry, &sc->bge_jfree_listhead, jpool_entries, tmp) {
               kmem_free(entry, sizeof(*entry));
       }

       bus_dmamap_unload(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);

       bus_dmamap_destroy(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map);

       bus_dmamem_unmap(sc->bge_dmatag, sc->bge_cdata.bge_jumbo_buf, BGE_JMEM);

       bus_dmamem_free(sc->bge_dmatag, &sc->bge_cdata.bge_rx_jumbo_seg, 1);
}

/*
* Allocate a jumbo buffer.
*/
static void *
bge_jalloc(struct bge_softc *sc)
{
       struct bge_jpool_entry   *entry;

       entry = SLIST_FIRST(&sc->bge_jfree_listhead);

       if (entry == NULL) {
               aprint_error_dev(sc->bge_dev, "no free jumbo buffers\n");
               return NULL;
       }

       SLIST_REMOVE_HEAD(&sc->bge_jfree_listhead, jpool_entries);
       SLIST_INSERT_HEAD(&sc->bge_jinuse_listhead, entry, jpool_entries);
       return sc->bge_cdata.bge_jslots[entry->slot];
}

/*
* Release a jumbo buffer.
*/
static void
bge_jfree(struct mbuf *m, void *buf, size_t size, void *arg)
{
       struct bge_jpool_entry *entry;
       struct bge_softc * const sc = arg;

       if (sc == NULL)
               panic("bge_jfree: can't find softc pointer!");

       /* calculate the slot this buffer belongs to */
       int i = ((char *)buf - (char *)sc->bge_cdata.bge_jumbo_buf) / BGE_JLEN;

       if (i < 0 || i >= BGE_JSLOTS)
               panic("bge_jfree: asked to free buffer that we don't manage!");

       mutex_enter(sc->sc_intr_lock);
       entry = SLIST_FIRST(&sc->bge_jinuse_listhead);
       if (entry == NULL)
               panic("bge_jfree: buffer not in use!");
       entry->slot = i;
       SLIST_REMOVE_HEAD(&sc->bge_jinuse_listhead, jpool_entries);
       SLIST_INSERT_HEAD(&sc->bge_jfree_listhead, entry, jpool_entries);
       mutex_exit(sc->sc_intr_lock);

       if (__predict_true(m != NULL))
               pool_cache_put(mb_cache, m);
}


/*
* Initialize a standard receive ring descriptor.
*/
static int
bge_newbuf_std(struct bge_softc *sc, int i)
{
       const bus_dmamap_t dmamap = sc->bge_cdata.bge_rx_std_map[i];
       struct mbuf *m;

       MGETHDR(m, M_DONTWAIT, MT_DATA);
       if (m == NULL)
               return ENOBUFS;
       MCLAIM(m, &sc->ethercom.ec_rx_mowner);

       MCLGET(m, M_DONTWAIT);
       if (!(m->m_flags & M_EXT)) {
               m_freem(m);
               return ENOBUFS;
       }
       m->m_len = m->m_pkthdr.len = MCLBYTES;

       if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
           m_adj(m, ETHER_ALIGN);
       if (bus_dmamap_load_mbuf(sc->bge_dmatag, dmamap, m,
           BUS_DMA_READ | BUS_DMA_NOWAIT)) {
               m_freem(m);
               return ENOBUFS;
       }
       bus_dmamap_sync(sc->bge_dmatag, dmamap, 0, dmamap->dm_mapsize,
           BUS_DMASYNC_PREREAD);
       sc->bge_cdata.bge_rx_std_chain[i] = m;

       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_rx_std_ring) +
               i * sizeof(struct bge_rx_bd),
           sizeof(struct bge_rx_bd),
           BUS_DMASYNC_POSTWRITE);

       struct bge_rx_bd * const r = &sc->bge_rdata->bge_rx_std_ring[i];
       BGE_HOSTADDR(r->bge_addr, dmamap->dm_segs[0].ds_addr);
       r->bge_flags = BGE_RXBDFLAG_END;
       r->bge_len = m->m_len;
       r->bge_idx = i;

       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_rx_std_ring) +
               i * sizeof(struct bge_rx_bd),
           sizeof(struct bge_rx_bd),
           BUS_DMASYNC_PREWRITE);

       sc->bge_std_cnt++;

       return 0;
}

/*
* Initialize a jumbo receive ring descriptor. This allocates
* a jumbo buffer from the pool managed internally by the driver.
*/
static int
bge_newbuf_jumbo(struct bge_softc *sc, int i, struct mbuf *m)
{
       struct mbuf *m_new = NULL;
       struct bge_rx_bd *r;
       void *buf = NULL;

       if (m == NULL) {

               /* Allocate the mbuf. */
               MGETHDR(m_new, M_DONTWAIT, MT_DATA);
               if (m_new == NULL)
                       return ENOBUFS;
               MCLAIM(m, &sc->ethercom.ec_rx_mowner);

               /* Allocate the jumbo buffer */
               buf = bge_jalloc(sc);
               if (buf == NULL) {
                       m_freem(m_new);
                       aprint_error_dev(sc->bge_dev,
                           "jumbo allocation failed -- packet dropped!\n");
                       return ENOBUFS;
               }

               /* Attach the buffer to the mbuf. */
               m_new->m_len = m_new->m_pkthdr.len = BGE_JUMBO_FRAMELEN;
               MEXTADD(m_new, buf, BGE_JUMBO_FRAMELEN, M_DEVBUF,
                   bge_jfree, sc);
               m_new->m_flags |= M_EXT_RW;
       } else {
               m_new = m;
               buf = m_new->m_data = m_new->m_ext.ext_buf;
               m_new->m_ext.ext_size = BGE_JUMBO_FRAMELEN;
       }
       if (!(sc->bge_flags & BGEF_RX_ALIGNBUG))
           m_adj(m_new, ETHER_ALIGN);
       bus_dmamap_sync(sc->bge_dmatag, sc->bge_cdata.bge_rx_jumbo_map,
           mtod(m_new, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
           BGE_JLEN, BUS_DMASYNC_PREREAD);

       /* Set up the descriptor. */
       r = &sc->bge_rdata->bge_rx_jumbo_ring[i];
       sc->bge_cdata.bge_rx_jumbo_chain[i] = m_new;
       BGE_HOSTADDR(r->bge_addr, BGE_JUMBO_DMA_ADDR(sc, m_new));
       r->bge_flags = BGE_RXBDFLAG_END | BGE_RXBDFLAG_JUMBO_RING;
       r->bge_len = m_new->m_len;
       r->bge_idx = i;

       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_rx_jumbo_ring) +
               i * sizeof(struct bge_rx_bd),
           sizeof(struct bge_rx_bd),
           BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);

       return 0;
}

static int
bge_init_rx_ring_std(struct bge_softc *sc)
{
       bus_dmamap_t dmamap;
       int error = 0;
       u_int i;

       if (sc->bge_flags & BGEF_RXRING_VALID)
               return 0;

       for (i = 0; i < BGE_STD_RX_RING_CNT; i++) {
               error = bus_dmamap_create(sc->bge_dmatag, MCLBYTES, 1,
                   MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &dmamap);
               if (error)
                       goto uncreate;

               sc->bge_cdata.bge_rx_std_map[i] = dmamap;
               memset(&sc->bge_rdata->bge_rx_std_ring[i], 0,
                   sizeof(struct bge_rx_bd));
       }

       sc->bge_std = i - 1;
       sc->bge_std_cnt = 0;
       bge_fill_rx_ring_std(sc);

       sc->bge_flags |= BGEF_RXRING_VALID;

       return 0;

uncreate:
       while (--i) {
               bus_dmamap_destroy(sc->bge_dmatag,
                   sc->bge_cdata.bge_rx_std_map[i]);
       }
       return error;
}

static void
bge_fill_rx_ring_std(struct bge_softc *sc)
{
       int i = sc->bge_std;
       bool post = false;

       while (sc->bge_std_cnt < BGE_STD_RX_RING_CNT) {
               BGE_INC(i, BGE_STD_RX_RING_CNT);

               if (bge_newbuf_std(sc, i) != 0)
                       break;

               sc->bge_std = i;
               post = true;
       }

       if (post)
               bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, sc->bge_std);
}


static void
bge_free_rx_ring_std(struct bge_softc *sc)
{

       if (!(sc->bge_flags & BGEF_RXRING_VALID))
               return;

       for (u_int i = 0; i < BGE_STD_RX_RING_CNT; i++) {
               const bus_dmamap_t dmap = sc->bge_cdata.bge_rx_std_map[i];
               struct mbuf * const m = sc->bge_cdata.bge_rx_std_chain[i];
               if (m != NULL) {
                       bus_dmamap_sync(sc->bge_dmatag, dmap, 0,
                           dmap->dm_mapsize, BUS_DMASYNC_POSTREAD);
                       bus_dmamap_unload(sc->bge_dmatag, dmap);
                       m_freem(m);
                       sc->bge_cdata.bge_rx_std_chain[i] = NULL;
               }
               bus_dmamap_destroy(sc->bge_dmatag,
                   sc->bge_cdata.bge_rx_std_map[i]);
               sc->bge_cdata.bge_rx_std_map[i] = NULL;
               memset((char *)&sc->bge_rdata->bge_rx_std_ring[i], 0,
                   sizeof(struct bge_rx_bd));
       }

       sc->bge_flags &= ~BGEF_RXRING_VALID;
}

static int
bge_init_rx_ring_jumbo(struct bge_softc *sc)
{
       int i;
       volatile struct bge_rcb *rcb;

       if (sc->bge_flags & BGEF_JUMBO_RXRING_VALID)
               return 0;

       for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
               if (bge_newbuf_jumbo(sc, i, NULL) == ENOBUFS)
                       return ENOBUFS;
       }

       sc->bge_jumbo = i - 1;
       sc->bge_flags |= BGEF_JUMBO_RXRING_VALID;

       rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
       rcb->bge_maxlen_flags = 0;
       CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);

       bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);

       return 0;
}

static void
bge_free_rx_ring_jumbo(struct bge_softc *sc)
{
       int i;

       if (!(sc->bge_flags & BGEF_JUMBO_RXRING_VALID))
               return;

       for (i = 0; i < BGE_JUMBO_RX_RING_CNT; i++) {
               m_freem(sc->bge_cdata.bge_rx_jumbo_chain[i]);
               sc->bge_cdata.bge_rx_jumbo_chain[i] = NULL;
               memset((char *)&sc->bge_rdata->bge_rx_jumbo_ring[i], 0,
                   sizeof(struct bge_rx_bd));
       }

       sc->bge_flags &= ~BGEF_JUMBO_RXRING_VALID;
}

static void
bge_free_tx_ring(struct bge_softc *sc, bool disable)
{
       int i;
       struct txdmamap_pool_entry *dma;

       if (!(sc->bge_flags & BGEF_TXRING_VALID))
               return;

       for (i = 0; i < BGE_TX_RING_CNT; i++) {
               if (sc->bge_cdata.bge_tx_chain[i] != NULL) {
                       m_freem(sc->bge_cdata.bge_tx_chain[i]);
                       sc->bge_cdata.bge_tx_chain[i] = NULL;
                       SLIST_INSERT_HEAD(&sc->txdma_list, sc->txdma[i],
                                           link);
                       sc->txdma[i] = 0;
               }
               memset((char *)&sc->bge_rdata->bge_tx_ring[i], 0,
                   sizeof(struct bge_tx_bd));
       }

       if (disable) {
               while ((dma = SLIST_FIRST(&sc->txdma_list))) {
                       SLIST_REMOVE_HEAD(&sc->txdma_list, link);
                       bus_dmamap_destroy(sc->bge_dmatag, dma->dmamap);
                       if (sc->bge_dma64) {
                               bus_dmamap_destroy(sc->bge_dmatag32,
                                   dma->dmamap32);
                       }
                       kmem_free(dma, sizeof(*dma));
               }
               SLIST_INIT(&sc->txdma_list);
       }

       sc->bge_flags &= ~BGEF_TXRING_VALID;
}

static int
bge_init_tx_ring(struct bge_softc *sc)
{
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       int i;
       bus_dmamap_t dmamap, dmamap32;
       bus_size_t maxsegsz;
       struct txdmamap_pool_entry *dma;

       if (sc->bge_flags & BGEF_TXRING_VALID)
               return 0;

       sc->bge_txcnt = 0;
       sc->bge_tx_saved_considx = 0;

       /* Initialize transmit producer index for host-memory send ring. */
       sc->bge_tx_prodidx = 0;
       bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);
       /* 5700 b2 errata */
       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
               bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, sc->bge_tx_prodidx);

       /* NIC-memory send ring not used; initialize to zero. */
       bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);
       /* 5700 b2 errata */
       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
               bge_writembx(sc, BGE_MBX_TX_NIC_PROD0_LO, 0);

       /* Limit DMA segment size for some chips */
       if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) &&
           (ifp->if_mtu <= ETHERMTU))
               maxsegsz = 2048;
       else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
               maxsegsz = 4096;
       else
               maxsegsz = ETHER_MAX_LEN_JUMBO;

       if (SLIST_FIRST(&sc->txdma_list) != NULL)
               goto alloc_done;

       for (i = 0; i < BGE_TX_RING_CNT; i++) {
               if (bus_dmamap_create(sc->bge_dmatag, BGE_TXDMA_MAX,
                   BGE_NTXSEG, maxsegsz, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
                   &dmamap))
                       return ENOBUFS;
               if (dmamap == NULL)
                       panic("dmamap NULL in bge_init_tx_ring");
               if (sc->bge_dma64) {
                       if (bus_dmamap_create(sc->bge_dmatag32, BGE_TXDMA_MAX,
                           BGE_NTXSEG, maxsegsz, 0,
                           BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
                           &dmamap32)) {
                               bus_dmamap_destroy(sc->bge_dmatag, dmamap);
                               return ENOBUFS;
                       }
                       if (dmamap32 == NULL)
                               panic("dmamap32 NULL in bge_init_tx_ring");
               } else
                       dmamap32 = dmamap;
               dma = kmem_alloc(sizeof(*dma), KM_NOSLEEP);
               if (dma == NULL) {
                       aprint_error_dev(sc->bge_dev,
                           "can't alloc txdmamap_pool_entry\n");
                       bus_dmamap_destroy(sc->bge_dmatag, dmamap);
                       if (sc->bge_dma64)
                               bus_dmamap_destroy(sc->bge_dmatag32, dmamap32);
                       return ENOMEM;
               }
               dma->dmamap = dmamap;
               dma->dmamap32 = dmamap32;
               SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
       }
alloc_done:
       sc->bge_flags |= BGEF_TXRING_VALID;

       return 0;
}

static void
bge_setmulti(struct bge_softc *sc)
{
       struct ethercom * const ec = &sc->ethercom;
       struct ether_multi      *enm;
       struct ether_multistep  step;
       uint32_t                hashes[4] = { 0, 0, 0, 0 };
       uint32_t                h;
       int                     i;

       KASSERT(mutex_owned(sc->sc_mcast_lock));
       if (sc->bge_if_flags & IFF_PROMISC)
               goto allmulti;

       /* Now program new ones. */
       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                       /*
                        * We must listen to a range of multicast addresses.
                        * For now, just accept all multicasts, rather than
                        * trying to set only those filter bits needed to match
                        * the range.  (At this time, the only use of address
                        * ranges is for IP multicast routing, for which the
                        * range is big enough to require all bits set.)
                        */
                       ETHER_UNLOCK(ec);
                       goto allmulti;
               }

               h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);

               /* Just want the 7 least-significant bits. */
               h &= 0x7f;

               hashes[(h & 0x60) >> 5] |= 1U << (h & 0x1F);
               ETHER_NEXT_MULTI(step, enm);
       }
       ec->ec_flags &= ~ETHER_F_ALLMULTI;
       ETHER_UNLOCK(ec);

       goto setit;

allmulti:
       ETHER_LOCK(ec);
       ec->ec_flags |= ETHER_F_ALLMULTI;
       ETHER_UNLOCK(ec);
       hashes[0] = hashes[1] = hashes[2] = hashes[3] = 0xffffffff;

setit:
       for (i = 0; i < 4; i++)
               CSR_WRITE_4(sc, BGE_MAR0 + (i * 4), hashes[i]);
}

static void
bge_sig_pre_reset(struct bge_softc *sc, int type)
{

       /*
        * Some chips don't like this so only do this if ASF is enabled
        */
       if (sc->bge_asf_mode)
               bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);

       if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
               switch (type) {
               case BGE_RESET_START:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_START);
                       break;
               case BGE_RESET_SHUTDOWN:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_UNLOAD);
                       break;
               case BGE_RESET_SUSPEND:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_SUSPEND);
                       break;
               }
       }

       if (type == BGE_RESET_START || type == BGE_RESET_SUSPEND)
               bge_ape_driver_state_change(sc, type);
}

static void
bge_sig_post_reset(struct bge_softc *sc, int type)
{

       if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE) {
               switch (type) {
               case BGE_RESET_START:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_START_DONE);
                       /* START DONE */
                       break;
               case BGE_RESET_SHUTDOWN:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_UNLOAD_DONE);
                       break;
               }
       }

       if (type == BGE_RESET_SHUTDOWN)
               bge_ape_driver_state_change(sc, type);
}

static void
bge_sig_legacy(struct bge_softc *sc, int type)
{

       if (sc->bge_asf_mode) {
               switch (type) {
               case BGE_RESET_START:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_START);
                       break;
               case BGE_RESET_SHUTDOWN:
                       bge_writemem_ind(sc, BGE_SRAM_FW_DRV_STATE_MB,
                           BGE_FW_DRV_STATE_UNLOAD);
                       break;
               }
       }
}

static void
bge_wait_for_event_ack(struct bge_softc *sc)
{
       int i;

       /* wait up to 2500usec */
       for (i = 0; i < 250; i++) {
               if (!(CSR_READ_4(sc, BGE_RX_CPU_EVENT) &
                       BGE_RX_CPU_DRV_EVENT))
                       break;
               DELAY(10);
       }
}

static void
bge_stop_fw(struct bge_softc *sc)
{

       if (sc->bge_asf_mode) {
               bge_wait_for_event_ack(sc);

               bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB, BGE_FW_CMD_PAUSE);
               CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
                   CSR_READ_4(sc, BGE_RX_CPU_EVENT) | BGE_RX_CPU_DRV_EVENT);

               bge_wait_for_event_ack(sc);
       }
}

static int
bge_poll_fw(struct bge_softc *sc)
{
       uint32_t val;
       int i;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
               for (i = 0; i < BGE_TIMEOUT; i++) {
                       val = CSR_READ_4(sc, BGE_VCPU_STATUS);
                       if (val & BGE_VCPU_STATUS_INIT_DONE)
                               break;
                       DELAY(100);
               }
               if (i >= BGE_TIMEOUT) {
                       aprint_error_dev(sc->bge_dev, "reset timed out\n");
                       return -1;
               }
       } else {
               /*
                * Poll the value location we just wrote until
                * we see the 1's complement of the magic number.
                * This indicates that the firmware initialization
                * is complete.
                * XXX 1000ms for Flash and 10000ms for SEEPROM.
                */
               for (i = 0; i < BGE_TIMEOUT; i++) {
                       val = bge_readmem_ind(sc, BGE_SRAM_FW_MB);
                       if (val == ~BGE_SRAM_FW_MB_MAGIC)
                               break;
                       DELAY(10);
               }

               if ((i >= BGE_TIMEOUT)
                   && ((sc->bge_flags & BGEF_NO_EEPROM) == 0)) {
                       aprint_error_dev(sc->bge_dev,
                           "firmware handshake timed out, val = %x\n", val);
                       return -1;
               }
       }

       if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
               /* tg3 says we have to wait extra time */
               delay(10 * 1000);
       }

       return 0;
}

int
bge_phy_addr(struct bge_softc *sc)
{
       struct pci_attach_args *pa = &(sc->bge_pa);
       int phy_addr = 1;

       /*
        * PHY address mapping for various devices.
        *
        *          | F0 Cu | F0 Sr | F1 Cu | F1 Sr |
        * ---------+-------+-------+-------+-------+
        * BCM57XX  |   1   |   X   |   X   |   X   |
        * BCM5704  |   1   |   X   |   1   |   X   |
        * BCM5717  |   1   |   8   |   2   |   9   |
        * BCM5719  |   1   |   8   |   2   |   9   |
        * BCM5720  |   1   |   8   |   2   |   9   |
        *
        *          | F2 Cu | F2 Sr | F3 Cu | F3 Sr |
        * ---------+-------+-------+-------+-------+
        * BCM57XX  |   X   |   X   |   X   |   X   |
        * BCM5704  |   X   |   X   |   X   |   X   |
        * BCM5717  |   X   |   X   |   X   |   X   |
        * BCM5719  |   3   |   10  |   4   |   11  |
        * BCM5720  |   X   |   X   |   X   |   X   |
        *
        * Other addresses may respond but they are not
        * IEEE compliant PHYs and should be ignored.
        */
       switch (BGE_ASICREV(sc->bge_chipid)) {
       case BGE_ASICREV_BCM5717:
       case BGE_ASICREV_BCM5719:
       case BGE_ASICREV_BCM5720:
               phy_addr = pa->pa_function;
               if (sc->bge_chipid != BGE_CHIPID_BCM5717_A0) {
                       phy_addr += (CSR_READ_4(sc, BGE_SGDIG_STS) &
                           BGE_SGDIGSTS_IS_SERDES) ? 8 : 1;
               } else {
                       phy_addr += (CSR_READ_4(sc, BGE_CPMU_PHY_STRAP) &
                           BGE_CPMU_PHY_STRAP_IS_SERDES) ? 8 : 1;
               }
       }

       return phy_addr;
}

/*
* Do endian, PCI and DMA initialization. Also check the on-board ROM
* self-test results.
*/
static int
bge_chipinit(struct bge_softc *sc)
{
       uint32_t dma_rw_ctl, misc_ctl, mode_ctl, reg;
       int i;

       /* Set endianness before we access any non-PCI registers. */
       misc_ctl = BGE_INIT;
       if (sc->bge_flags & BGEF_TAGGED_STATUS)
               misc_ctl |= BGE_PCIMISCCTL_TAGGED_STATUS;
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
           misc_ctl);

       /*
        * Clear the MAC statistics block in the NIC's
        * internal memory.
        */
       for (i = BGE_STATS_BLOCK;
           i < BGE_STATS_BLOCK_END + 1; i += sizeof(uint32_t))
               BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);

       for (i = BGE_STATUS_BLOCK;
           i < BGE_STATUS_BLOCK_END + 1; i += sizeof(uint32_t))
               BGE_MEMWIN_WRITE(sc->sc_pc, sc->sc_pcitag, i, 0);

       /* 5717 workaround from tg3 */
       if (sc->bge_chipid == BGE_CHIPID_BCM5717_A0) {
               /* Save */
               mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);

               /* Temporary modify MODE_CTL to control TLP */
               reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
               CSR_WRITE_4(sc, BGE_MODE_CTL, reg | BGE_MODECTL_PCIE_TLPADDR1);

               /* Control TLP */
               reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
                   BGE_TLP_PHYCTL1);
               CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL1,
                   reg | BGE_TLP_PHYCTL1_EN_L1PLLPD);

               /* Restore */
               CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
       }

       if (BGE_IS_57765_FAMILY(sc)) {
               if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0) {
                       /* Save */
                       mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);

                       /* Temporary modify MODE_CTL to control TLP */
                       reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
                       CSR_WRITE_4(sc, BGE_MODE_CTL,
                           reg | BGE_MODECTL_PCIE_TLPADDR1);

                       /* Control TLP */
                       reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
                           BGE_TLP_PHYCTL5);
                       CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_PHYCTL5,
                           reg | BGE_TLP_PHYCTL5_DIS_L2CLKREQ);

                       /* Restore */
                       CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
               }
               if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_57765_AX) {
                       /*
                        * For the 57766 and non Ax versions of 57765, bootcode
                        * needs to setup the PCIE Fast Training Sequence (FTS)
                        * value to prevent transmit hangs.
                        */
                       reg = CSR_READ_4(sc, BGE_CPMU_PADRNG_CTL);
                       CSR_WRITE_4(sc, BGE_CPMU_PADRNG_CTL,
                           reg | BGE_CPMU_PADRNG_CTL_RDIV2);

                       /* Save */
                       mode_ctl = CSR_READ_4(sc, BGE_MODE_CTL);

                       /* Temporary modify MODE_CTL to control TLP */
                       reg = mode_ctl & ~BGE_MODECTL_PCIE_TLPADDRMASK;
                       CSR_WRITE_4(sc, BGE_MODE_CTL,
                           reg | BGE_MODECTL_PCIE_TLPADDR0);

                       /* Control TLP */
                       reg = CSR_READ_4(sc, BGE_TLP_CONTROL_REG +
                           BGE_TLP_FTSMAX);
                       reg &= ~BGE_TLP_FTSMAX_MSK;
                       CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG + BGE_TLP_FTSMAX,
                           reg | BGE_TLP_FTSMAX_VAL);

                       /* Restore */
                       CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);
               }

               reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
               reg &= ~BGE_CPMU_LSPD_10MB_MACCLK_MASK;
               reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
               CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);
       }

       /* Set up the PCI DMA control register. */
       dma_rw_ctl = BGE_PCI_READ_CMD | BGE_PCI_WRITE_CMD;
       if (sc->bge_flags & BGEF_PCIE) {
               /* Read watermark not used, 128 bytes for write. */
               DPRINTFN(4, ("(%s: PCI-Express DMA setting)\n",
                   device_xname(sc->bge_dev)));
               if (sc->bge_mps >= 256)
                       dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);
               else
                       dma_rw_ctl |= BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
       } else if (sc->bge_flags & BGEF_PCIX) {
               DPRINTFN(4, ("(:%s: PCI-X DMA setting)\n",
                   device_xname(sc->bge_dev)));
               /* PCI-X bus */
               if (BGE_IS_5714_FAMILY(sc)) {
                       /* 256 bytes for read and write. */
                       dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(2) |
                           BGE_PCIDMARWCTL_WR_WAT_SHIFT(2);

                       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5780)
                               dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;
                       else
                               dma_rw_ctl |= BGE_PCIDMARWCTL_ONEDMA_ATONCE_LOCAL;
               } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
                       /*
                        * In the BCM5703, the DMA read watermark should
                        * be set to less than or equal to the maximum
                        * memory read byte count of the PCI-X command
                        * register.
                        */
                       dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(4) |
                           BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
               } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
                       /* 1536 bytes for read, 384 bytes for write. */
                       dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
                           BGE_PCIDMARWCTL_WR_WAT_SHIFT(3);
               } else {
                       /* 384 bytes for read and write. */
                       dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(3) |
                           BGE_PCIDMARWCTL_WR_WAT_SHIFT(3) |
                           (0x0F);
               }

               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
                       uint32_t tmp;

                       /* Set ONEDMA_ATONCE for hardware workaround. */
                       tmp = CSR_READ_4(sc, BGE_PCI_CLKCTL) & 0x1f;
                       if (tmp == 6 || tmp == 7)
                               dma_rw_ctl |=
                                   BGE_PCIDMARWCTL_ONEDMA_ATONCE_GLOBAL;

                       /* Set PCI-X DMA write workaround. */
                       dma_rw_ctl |= BGE_PCIDMARWCTL_ASRT_ALL_BE;
               }
       } else {
               /* Conventional PCI bus: 256 bytes for read and write. */
               DPRINTFN(4, ("(%s: PCI 2.2 DMA setting)\n",
                   device_xname(sc->bge_dev)));
               dma_rw_ctl |= BGE_PCIDMARWCTL_RD_WAT_SHIFT(7) |
                   BGE_PCIDMARWCTL_WR_WAT_SHIFT(7);

               if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5705 &&
                   BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5750)
                       dma_rw_ctl |= 0x0F;
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701)
               dma_rw_ctl |= BGE_PCIDMARWCTL_USE_MRM |
                   BGE_PCIDMARWCTL_ASRT_ALL_BE;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
               dma_rw_ctl &= ~BGE_PCIDMARWCTL_MINDMA;

       if (BGE_IS_57765_PLUS(sc)) {
               dma_rw_ctl &= ~BGE_PCIDMARWCTL_DIS_CACHE_ALIGNMENT;
               if (sc->bge_chipid == BGE_CHIPID_BCM57765_A0)
                       dma_rw_ctl &= ~BGE_PCIDMARWCTL_CRDRDR_RDMA_MRRS_MSK;

               /*
                * Enable HW workaround for controllers that misinterpret
                * a status tag update and leave interrupts permanently
                * disabled.
                */
               if (!BGE_IS_57765_FAMILY(sc) &&
                   BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
                   BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5762)
                       dma_rw_ctl |= BGE_PCIDMARWCTL_TAGGED_STATUS_WA;
       }

       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_DMA_RW_CTL,
           dma_rw_ctl);

       /*
        * Set up general mode register.
        */
       mode_ctl = BGE_DMA_SWAP_OPTIONS;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
               /* Retain Host-2-BMC settings written by APE firmware. */
               mode_ctl |= CSR_READ_4(sc, BGE_MODE_CTL) &
                   (BGE_MODECTL_BYTESWAP_B2HRX_DATA |
                   BGE_MODECTL_WORDSWAP_B2HRX_DATA |
                   BGE_MODECTL_B2HRX_ENABLE | BGE_MODECTL_HTX2B_ENABLE);
       }
       mode_ctl |= BGE_MODECTL_MAC_ATTN_INTR | BGE_MODECTL_HOST_SEND_BDS |
           BGE_MODECTL_TX_NO_PHDR_CSUM;

       /*
        * BCM5701 B5 have a bug causing data corruption when using
        * 64-bit DMA reads, which can be terminated early and then
        * completed later as 32-bit accesses, in combination with
        * certain bridges.
        */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
           sc->bge_chipid == BGE_CHIPID_BCM5701_B5)
               mode_ctl |= BGE_MODECTL_FORCE_PCI32;

       /*
        * Tell the firmware the driver is running
        */
       if (sc->bge_asf_mode & ASF_STACKUP)
               mode_ctl |= BGE_MODECTL_STACKUP;

       CSR_WRITE_4(sc, BGE_MODE_CTL, mode_ctl);

       /*
        * Disable memory write invalidate.  Apparently it is not supported
        * properly by these devices.
        */
       PCI_CLRBIT(sc->sc_pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG,
                  PCI_COMMAND_INVALIDATE_ENABLE);

#ifdef __brokenalpha__
       /*
        * Must insure that we do not cross an 8K (bytes) boundary
        * for DMA reads.  Our highest limit is 1K bytes.  This is a
        * restriction on some ALPHA platforms with early revision
        * 21174 PCI chipsets, such as the AlphaPC 164lx
        */
       PCI_SETBIT(sc, BGE_PCI_DMA_RW_CTL, BGE_PCI_READ_BNDRY_1024, 4);
#endif

       /* Set the timer prescaler (always 66MHz) */
       CSR_WRITE_4_FLUSH(sc, BGE_MISC_CFG, BGE_32BITTIME_66MHZ);

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
               DELAY(40);      /* XXX */

               /* Put PHY into ready state */
               BGE_CLRBIT_FLUSH(sc, BGE_MISC_CFG, BGE_MISCCFG_EPHY_IDDQ);
               DELAY(40);
       }

       return 0;
}

static int
bge_blockinit(struct bge_softc *sc)
{
       volatile struct bge_rcb  *rcb;
       bus_size_t rcb_addr;
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       bge_hostaddr taddr;
       uint32_t        dmactl, rdmareg, mimode, val;
       int             i, limit;

       /*
        * Initialize the memory window pointer register so that
        * we can access the first 32K of internal NIC RAM. This will
        * allow us to set up the TX send ring RCBs and the RX return
        * ring RCBs, plus other things which live in NIC memory.
        */
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MEMWIN_BASEADDR, 0);

       if (!BGE_IS_5705_PLUS(sc)) {
               /* 57XX step 33 */
               /* Configure mbuf memory pool */
               CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_BASEADDR, BGE_BUFFPOOL_1);

               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704)
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x10000);
               else
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_LEN, 0x18000);

               /* 57XX step 34 */
               /* Configure DMA resource pool */
               CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_BASEADDR,
                   BGE_DMA_DESCRIPTORS);
               CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LEN, 0x2000);
       }

       /* 5718 step 11, 57XX step 35 */
       /*
        * Configure mbuf pool watermarks. New broadcom docs strongly
        * recommend these.
        */
       if (BGE_IS_5717_PLUS(sc)) {
               CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);
               if (ifp->if_mtu > ETHERMTU) {
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x7e);
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xea);
               } else {
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x2a);
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0xa0);
               }
       } else if (BGE_IS_5705_PLUS(sc)) {
               CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x0);

               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x04);
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x10);
               } else {
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x10);
                       CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
               }
       } else {
               CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_READDMA_LOWAT, 0x50);
               CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_MACRX_LOWAT, 0x20);
               CSR_WRITE_4(sc, BGE_BMAN_MBUFPOOL_HIWAT, 0x60);
       }

       /* 57XX step 36 */
       /* Configure DMA resource watermarks */
       CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_LOWAT, 5);
       CSR_WRITE_4(sc, BGE_BMAN_DMA_DESCPOOL_HIWAT, 10);

       /* 5718 step 13, 57XX step 38 */
       /* Enable buffer manager */
       val = BGE_BMANMODE_ENABLE | BGE_BMANMODE_ATTN;
       /*
        * Change the arbitration algorithm of TXMBUF read request to
        * round-robin instead of priority based for BCM5719.  When
        * TXFIFO is almost empty, RDMA will hold its request until
        * TXFIFO is not almost empty.
        */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
               val |= BGE_BMANMODE_NO_TX_UNDERRUN;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
               sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
               sc->bge_chipid == BGE_CHIPID_BCM5720_A0)
               val |= BGE_BMANMODE_LOMBUF_ATTN;
       CSR_WRITE_4(sc, BGE_BMAN_MODE, val);

       /* 57XX step 39 */
       /* Poll for buffer manager start indication */
       for (i = 0; i < BGE_TIMEOUT * 2; i++) {
               DELAY(10);
               if (CSR_READ_4(sc, BGE_BMAN_MODE) & BGE_BMANMODE_ENABLE)
                       break;
       }

       if (i == BGE_TIMEOUT * 2) {
               aprint_error_dev(sc->bge_dev,
                   "buffer manager failed to start\n");
               return ENXIO;
       }

       /* 57XX step 40 */
       /* Enable flow-through queues */
       CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
       CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);

       /* Wait until queue initialization is complete */
       for (i = 0; i < BGE_TIMEOUT * 2; i++) {
               if (CSR_READ_4(sc, BGE_FTQ_RESET) == 0)
                       break;
               DELAY(10);
       }

       if (i == BGE_TIMEOUT * 2) {
               aprint_error_dev(sc->bge_dev,
                   "flow-through queue init failed\n");
               return ENXIO;
       }

       /*
        * Summary of rings supported by the controller:
        *
        * Standard Receive Producer Ring
        * - This ring is used to feed receive buffers for "standard"
        *   sized frames (typically 1536 bytes) to the controller.
        *
        * Jumbo Receive Producer Ring
        * - This ring is used to feed receive buffers for jumbo sized
        *   frames (i.e. anything bigger than the "standard" frames)
        *   to the controller.
        *
        * Mini Receive Producer Ring
        * - This ring is used to feed receive buffers for "mini"
        *   sized frames to the controller.
        * - This feature required external memory for the controller
        *   but was never used in a production system.  Should always
        *   be disabled.
        *
        * Receive Return Ring
        * - After the controller has placed an incoming frame into a
        *   receive buffer that buffer is moved into a receive return
        *   ring.  The driver is then responsible to passing the
        *   buffer up to the stack.  Many versions of the controller
        *   support multiple RR rings.
        *
        * Send Ring
        * - This ring is used for outgoing frames.  Many versions of
        *   the controller support multiple send rings.
        */

       /* 5718 step 15, 57XX step 41 */
       /* Initialize the standard RX ring control block */
       rcb = &sc->bge_rdata->bge_info.bge_std_rx_rcb;
       BGE_HOSTADDR(rcb->bge_hostaddr, BGE_RING_DMA_ADDR(sc, bge_rx_std_ring));
       /* 5718 step 16 */
       if (BGE_IS_57765_PLUS(sc)) {
               /*
                * Bits 31-16: Programmable ring size (2048, 1024, 512, .., 32)
                * Bits 15-2 : Maximum RX frame size
                * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
                * Bit 0     : Reserved
                */
               rcb->bge_maxlen_flags =
                   BGE_RCB_MAXLEN_FLAGS(512, BGE_MAX_FRAMELEN << 2);
       } else if (BGE_IS_5705_PLUS(sc)) {
               /*
                * Bits 31-16: Programmable ring size (512, 256, 128, 64, 32)
                * Bits 15-2 : Reserved (should be 0)
                * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
                * Bit 0     : Reserved
                */
               rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(512, 0);
       } else {
               /*
                * Ring size is always XXX entries
                * Bits 31-16: Maximum RX frame size
                * Bits 15-2 : Reserved (should be 0)
                * Bit 1     : 1 = Ring Disabled, 0 = Ring Enabled
                * Bit 0     : Reserved
                */
               rcb->bge_maxlen_flags =
                   BGE_RCB_MAXLEN_FLAGS(BGE_MAX_FRAMELEN, 0);
       }
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
               rcb->bge_nicaddr = BGE_STD_RX_RINGS_5717;
       else
               rcb->bge_nicaddr = BGE_STD_RX_RINGS;
       /* Write the standard receive producer ring control block. */
       CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_HI, rcb->bge_hostaddr.bge_addr_hi);
       CSR_WRITE_4(sc, BGE_RX_STD_RCB_HADDR_LO, rcb->bge_hostaddr.bge_addr_lo);
       CSR_WRITE_4(sc, BGE_RX_STD_RCB_MAXLEN_FLAGS, rcb->bge_maxlen_flags);
       CSR_WRITE_4(sc, BGE_RX_STD_RCB_NICADDR, rcb->bge_nicaddr);

       /* Reset the standard receive producer ring producer index. */
       bge_writembx(sc, BGE_MBX_RX_STD_PROD_LO, 0);

       /* 57XX step 42 */
       /*
        * Initialize the jumbo RX ring control block
        * We set the 'ring disabled' bit in the flags
        * field until we're actually ready to start
        * using this ring (i.e. once we set the MTU
        * high enough to require it).
        */
       if (BGE_IS_JUMBO_CAPABLE(sc)) {
               rcb = &sc->bge_rdata->bge_info.bge_jumbo_rx_rcb;
               BGE_HOSTADDR(rcb->bge_hostaddr,
                   BGE_RING_DMA_ADDR(sc, bge_rx_jumbo_ring));
               rcb->bge_maxlen_flags = BGE_RCB_MAXLEN_FLAGS(0,
                   BGE_RCB_FLAG_USE_EXT_RX_BD | BGE_RCB_FLAG_RING_DISABLED);
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
                       rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS_5717;
               else
                       rcb->bge_nicaddr = BGE_JUMBO_RX_RINGS;
               CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_HI,
                   rcb->bge_hostaddr.bge_addr_hi);
               CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_HADDR_LO,
                   rcb->bge_hostaddr.bge_addr_lo);
               /* Program the jumbo receive producer ring RCB parameters. */
               CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_MAXLEN_FLAGS,
                   rcb->bge_maxlen_flags);
               CSR_WRITE_4(sc, BGE_RX_JUMBO_RCB_NICADDR, rcb->bge_nicaddr);
               /* Reset the jumbo receive producer ring producer index. */
               bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, 0);
       }

       /* 57XX step 43 */
       /* Disable the mini receive producer ring RCB. */
       if (BGE_IS_5700_FAMILY(sc)) {
               /* Set up dummy disabled mini ring RCB */
               rcb = &sc->bge_rdata->bge_info.bge_mini_rx_rcb;
               rcb->bge_maxlen_flags =
                   BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED);
               CSR_WRITE_4(sc, BGE_RX_MINI_RCB_MAXLEN_FLAGS,
                   rcb->bge_maxlen_flags);
               /* Reset the mini receive producer ring producer index. */
               bge_writembx(sc, BGE_MBX_RX_MINI_PROD_LO, 0);

               bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
                   offsetof(struct bge_ring_data, bge_info),
                   sizeof(struct bge_gib),
                   BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
       }

       /* Choose de-pipeline mode for BCM5906 A0, A1 and A2. */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
               if (sc->bge_chipid == BGE_CHIPID_BCM5906_A0 ||
                   sc->bge_chipid == BGE_CHIPID_BCM5906_A1 ||
                   sc->bge_chipid == BGE_CHIPID_BCM5906_A2)
                       CSR_WRITE_4(sc, BGE_ISO_PKT_TX,
                           (CSR_READ_4(sc, BGE_ISO_PKT_TX) & ~3) | 2);
       }
       /* 5718 step 14, 57XX step 44 */
       /*
        * The BD ring replenish thresholds control how often the
        * hardware fetches new BD's from the producer rings in host
        * memory.  Setting the value too low on a busy system can
        * starve the hardware and reduce the throughput.
        *
        * Set the BD ring replenish thresholds. The recommended
        * values are 1/8th the number of descriptors allocated to
        * each ring, but since we try to avoid filling the entire
        * ring we set these to the minimal value of 8.  This needs to
        * be done on several of the supported chip revisions anyway,
        * to work around HW bugs.
        */
       CSR_WRITE_4(sc, BGE_RBDI_STD_REPL_THRESH, 8);
       if (BGE_IS_JUMBO_CAPABLE(sc))
               CSR_WRITE_4(sc, BGE_RBDI_JUMBO_REPL_THRESH, 8);

       /* 5718 step 18 */
       if (BGE_IS_5717_PLUS(sc)) {
               CSR_WRITE_4(sc, BGE_STD_REPL_LWM, 4);
               CSR_WRITE_4(sc, BGE_JUMBO_REPL_LWM, 4);
       }

       /* 57XX step 45 */
       /*
        * Disable all send rings by setting the 'ring disabled' bit
        * in the flags field of all the TX send ring control blocks,
        * located in NIC memory.
        */
       if (BGE_IS_5700_FAMILY(sc)) {
               /* 5700 to 5704 had 16 send rings. */
               limit = BGE_TX_RINGS_EXTSSRAM_MAX;
       } else if (BGE_IS_5717_PLUS(sc)) {
               limit = BGE_TX_RINGS_5717_MAX;
       } else if (BGE_IS_57765_FAMILY(sc) ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
               limit = BGE_TX_RINGS_57765_MAX;
       } else
               limit = 1;
       rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
       for (i = 0; i < limit; i++) {
               RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
                   BGE_RCB_MAXLEN_FLAGS(0, BGE_RCB_FLAG_RING_DISABLED));
               RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
               rcb_addr += sizeof(struct bge_rcb);
       }

       /* 57XX step 46 and 47 */
       /* Configure send ring RCB 0 (we use only the first ring) */
       rcb_addr = BGE_MEMWIN_START + BGE_SEND_RING_RCB;
       BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_tx_ring));
       RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
       RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
               RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, BGE_SEND_RING_5717);
       else
               RCB_WRITE_4(sc, rcb_addr, bge_nicaddr,
                   BGE_NIC_TXRING_ADDR(0, BGE_TX_RING_CNT));
       RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
           BGE_RCB_MAXLEN_FLAGS(BGE_TX_RING_CNT, 0));

       /* 57XX step 48 */
       /*
        * Disable all receive return rings by setting the
        * 'ring disabled' bit in the flags field of all the receive
        * return ring control blocks, located in NIC memory.
        */
       if (BGE_IS_5717_PLUS(sc)) {
               /* Should be 17, use 16 until we get an SRAM map. */
               limit = 16;
       } else if (BGE_IS_5700_FAMILY(sc))
               limit = BGE_RX_RINGS_MAX;
       else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762 ||
           BGE_IS_57765_FAMILY(sc))
               limit = 4;
       else
               limit = 1;
       /* Disable all receive return rings */
       rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
       for (i = 0; i < limit; i++) {
               RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, 0);
               RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, 0);
               RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
                   BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt,
                       BGE_RCB_FLAG_RING_DISABLED));
               RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0);
               bge_writembx(sc, BGE_MBX_RX_CONS0_LO +
                   (i * (sizeof(uint64_t))), 0);
               rcb_addr += sizeof(struct bge_rcb);
       }

       /* 57XX step 49 */
       /*
        * Set up receive return ring 0.  Note that the NIC address
        * for RX return rings is 0x0.  The return rings live entirely
        * within the host, so the nicaddr field in the RCB isn't used.
        */
       rcb_addr = BGE_MEMWIN_START + BGE_RX_RETURN_RING_RCB;
       BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_rx_return_ring));
       RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_hi, taddr.bge_addr_hi);
       RCB_WRITE_4(sc, rcb_addr, bge_hostaddr.bge_addr_lo, taddr.bge_addr_lo);
       RCB_WRITE_4(sc, rcb_addr, bge_nicaddr, 0x00000000);
       RCB_WRITE_4(sc, rcb_addr, bge_maxlen_flags,
           BGE_RCB_MAXLEN_FLAGS(sc->bge_return_ring_cnt, 0));

       /* 5718 step 24, 57XX step 53 */
       /* Set random backoff seed for TX */
       CSR_WRITE_4(sc, BGE_TX_RANDOM_BACKOFF,
           (CLLADDR(ifp->if_sadl)[0] + CLLADDR(ifp->if_sadl)[1] +
               CLLADDR(ifp->if_sadl)[2] + CLLADDR(ifp->if_sadl)[3] +
               CLLADDR(ifp->if_sadl)[4] + CLLADDR(ifp->if_sadl)[5]) &
           BGE_TX_BACKOFF_SEED_MASK);

       /* 5718 step 26, 57XX step 55 */
       /* Set inter-packet gap */
       val = 0x2620;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
               val |= CSR_READ_4(sc, BGE_TX_LENGTHS) &
                   (BGE_TXLEN_JMB_FRM_LEN_MSK | BGE_TXLEN_CNT_DN_VAL_MSK);
       CSR_WRITE_4(sc, BGE_TX_LENGTHS, val);

       /* 5718 step 27, 57XX step 56 */
       /*
        * Specify which ring to use for packets that don't match
        * any RX rules.
        */
       CSR_WRITE_4(sc, BGE_RX_RULES_CFG, 0x08);

       /* 5718 step 28, 57XX step 57 */
       /*
        * Configure number of RX lists. One interrupt distribution
        * list, sixteen active lists, one bad frames class.
        */
       CSR_WRITE_4(sc, BGE_RXLP_CFG, 0x181);

       /* 5718 step 29, 57XX step 58 */
       /* Initialize RX list placement stats mask. */
       if (BGE_IS_575X_PLUS(sc)) {
               val = CSR_READ_4(sc, BGE_RXLP_STATS_ENABLE_MASK);
               val &= ~BGE_RXLPSTATCONTROL_DACK_FIX;
               CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, val);
       } else
               CSR_WRITE_4(sc, BGE_RXLP_STATS_ENABLE_MASK, 0x007FFFFF);

       /* 5718 step 30, 57XX step 59 */
       CSR_WRITE_4(sc, BGE_RXLP_STATS_CTL, 0x1);

       /* 5718 step 33, 57XX step 62 */
       /* Disable host coalescing until we get it set up */
       CSR_WRITE_4(sc, BGE_HCC_MODE, 0x00000000);

       /* 5718 step 34, 57XX step 63 */
       /* Poll to make sure it's shut down. */
       for (i = 0; i < BGE_TIMEOUT * 2; i++) {
               DELAY(10);
               if (!(CSR_READ_4(sc, BGE_HCC_MODE) & BGE_HCCMODE_ENABLE))
                       break;
       }

       if (i == BGE_TIMEOUT * 2) {
               aprint_error_dev(sc->bge_dev,
                   "host coalescing engine failed to idle\n");
               return ENXIO;
       }

       /* 5718 step 35, 36, 37 */
       /* Set up host coalescing defaults */
       mutex_enter(sc->sc_intr_lock);
       const uint32_t rx_coal_ticks = sc->bge_rx_coal_ticks;
       const uint32_t tx_coal_ticks = sc->bge_tx_coal_ticks;
       const uint32_t rx_max_coal_bds = sc->bge_rx_max_coal_bds;
       const uint32_t tx_max_coal_bds = sc->bge_tx_max_coal_bds;
       mutex_exit(sc->sc_intr_lock);
       CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_coal_ticks);
       CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS, tx_coal_ticks);
       CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_max_coal_bds);
       CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS, tx_max_coal_bds);
       if (!(BGE_IS_5705_PLUS(sc))) {
               CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS_INT, 0);
               CSR_WRITE_4(sc, BGE_HCC_TX_COAL_TICKS_INT, 0);
       }
       CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS_INT, 0);
       CSR_WRITE_4(sc, BGE_HCC_TX_MAX_COAL_BDS_INT, 0);

       /* Set up address of statistics block */
       if (BGE_IS_5700_FAMILY(sc)) {
               BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_info.bge_stats));
               CSR_WRITE_4(sc, BGE_HCC_STATS_TICKS, sc->bge_stat_ticks);
               CSR_WRITE_4(sc, BGE_HCC_STATS_BASEADDR, BGE_STATS_BLOCK);
               CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_HI, taddr.bge_addr_hi);
               CSR_WRITE_4(sc, BGE_HCC_STATS_ADDR_LO, taddr.bge_addr_lo);
       }

       /* 5718 step 38 */
       /* Set up address of status block */
       BGE_HOSTADDR(taddr, BGE_RING_DMA_ADDR(sc, bge_status_block));
       CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_BASEADDR, BGE_STATUS_BLOCK);
       CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_HI, taddr.bge_addr_hi);
       CSR_WRITE_4(sc, BGE_HCC_STATUSBLK_ADDR_LO, taddr.bge_addr_lo);
       sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx = 0;
       sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx = 0;

       /* Set up status block size. */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 &&
           sc->bge_chipid != BGE_CHIPID_BCM5700_C0) {
               val = BGE_STATBLKSZ_FULL;
               bzero(&sc->bge_rdata->bge_status_block, BGE_STATUS_BLK_SZ);
       } else {
               val = BGE_STATBLKSZ_32BYTE;
               bzero(&sc->bge_rdata->bge_status_block, 32);
       }

       /* 5718 step 39, 57XX step 73 */
       /* Turn on host coalescing state machine */
       CSR_WRITE_4(sc, BGE_HCC_MODE, val | BGE_HCCMODE_ENABLE);

       /* 5718 step 40, 57XX step 74 */
       /* Turn on RX BD completion state machine and enable attentions */
       CSR_WRITE_4(sc, BGE_RBDC_MODE,
           BGE_RBDCMODE_ENABLE | BGE_RBDCMODE_ATTN);

       /* 5718 step 41, 57XX step 75 */
       /* Turn on RX list placement state machine */
       CSR_WRITE_4(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);

       /* 57XX step 76 */
       /* Turn on RX list selector state machine. */
       if (!(BGE_IS_5705_PLUS(sc)))
               CSR_WRITE_4(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);

       val = BGE_MACMODE_TXDMA_ENB | BGE_MACMODE_RXDMA_ENB |
           BGE_MACMODE_RX_STATS_CLEAR | BGE_MACMODE_TX_STATS_CLEAR |
           BGE_MACMODE_RX_STATS_ENB | BGE_MACMODE_TX_STATS_ENB |
           BGE_MACMODE_FRMHDR_DMA_ENB;

       if (sc->bge_flags & BGEF_FIBER_TBI)
               val |= BGE_PORTMODE_TBI;
       else if (sc->bge_flags & BGEF_FIBER_MII)
               val |= BGE_PORTMODE_GMII;
       else
               val |= BGE_PORTMODE_MII;

       /* 5718 step 42 and 43, 57XX step 77 and 78 */
       /* Allow APE to send/receive frames. */
       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
               val |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;

       /* Turn on DMA, clear stats */
       CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
       /* 5718 step 44 */
       DELAY(40);

       /* 5718 step 45, 57XX step 79 */
       /* Set misc. local control, enable interrupts on attentions */
       BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_ONATTN);
       if (BGE_IS_5717_PLUS(sc)) {
               CSR_READ_4(sc, BGE_MISC_LOCAL_CTL); /* Flush */
               /* 5718 step 46 */
               DELAY(100);
       }

       /* 57XX step 81 */
       /* Turn on DMA completion state machine */
       if (!(BGE_IS_5705_PLUS(sc)))
               CSR_WRITE_4(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);

       /* 5718 step 47, 57XX step 82 */
       val = BGE_WDMAMODE_ENABLE | BGE_WDMAMODE_ALL_ATTNS;

       /* 5718 step 48 */
       /* Enable host coalescing bug fix. */
       if (BGE_IS_5755_PLUS(sc))
               val |= BGE_WDMAMODE_STATUS_TAG_FIX;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
               val |= BGE_WDMAMODE_BURST_ALL_DATA;

       /* Turn on write DMA state machine */
       CSR_WRITE_4_FLUSH(sc, BGE_WDMA_MODE, val);
       /* 5718 step 49 */
       DELAY(40);

       val = BGE_RDMAMODE_ENABLE | BGE_RDMAMODE_ALL_ATTNS;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5717)
               val |= BGE_RDMAMODE_MULT_DMA_RD_DIS;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
               val |= BGE_RDMAMODE_BD_SBD_CRPT_ATTN |
                   BGE_RDMAMODE_MBUF_RBD_CRPT_ATTN |
                   BGE_RDMAMODE_MBUF_SBD_CRPT_ATTN;

       if (sc->bge_flags & BGEF_PCIE)
               val |= BGE_RDMAMODE_FIFO_LONG_BURST;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57766) {
               if (ifp->if_mtu <= ETHERMTU)
                       val |= BGE_RDMAMODE_JMB_2K_MMRR;
       }
       if (sc->bge_flags & BGEF_TSO) {
               val |= BGE_RDMAMODE_TSO4_ENABLE;
               if (BGE_IS_5717_PLUS(sc))
                       val |= BGE_RDMAMODE_TSO6_ENABLE;
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
               val |= CSR_READ_4(sc, BGE_RDMA_MODE) &
                   BGE_RDMAMODE_H2BNC_VLAN_DET;
               /*
                * Allow multiple outstanding read requests from
                * non-LSO read DMA engine.
                */
               val &= ~BGE_RDMAMODE_MULT_DMA_RD_DIS;
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780 ||
           BGE_IS_57765_PLUS(sc)) {
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
                       rdmareg = BGE_RDMA_RSRVCTRL_REG2;
               else
                       rdmareg = BGE_RDMA_RSRVCTRL;
               dmactl = CSR_READ_4(sc, rdmareg);
               /*
                * Adjust tx margin to prevent TX data corruption and
                * fix internal FIFO overflow.
                */
               if (sc->bge_chipid == BGE_CHIPID_BCM5719_A0 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
                       dmactl &= ~(BGE_RDMA_RSRVCTRL_FIFO_LWM_MASK |
                           BGE_RDMA_RSRVCTRL_FIFO_HWM_MASK |
                           BGE_RDMA_RSRVCTRL_TXMRGN_MASK);
                       dmactl |= BGE_RDMA_RSRVCTRL_FIFO_LWM_1_5K |
                           BGE_RDMA_RSRVCTRL_FIFO_HWM_1_5K |
                           BGE_RDMA_RSRVCTRL_TXMRGN_320B;
               }
               /*
                * Enable fix for read DMA FIFO overruns.
                * The fix is to limit the number of RX BDs
                * the hardware would fetch at a time.
                */
               CSR_WRITE_4(sc, rdmareg, dmactl |
                   BGE_RDMA_RSRVCTRL_FIFO_OFLW_FIX);
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) {
               CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
                   CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
                   BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
                   BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
       } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
               /*
                * Allow 4KB burst length reads for non-LSO frames.
                * Enable 512B burst length reads for buffer descriptors.
                */
               CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL,
                   CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL) |
                   BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_512 |
                   BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
       } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
               CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2,
                   CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL_REG2) |
                   BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_BD_4K |
                   BGE_RDMA_LSO_CRPTEN_CTRL_BLEN_LSO_4K);
       }
       /* Turn on read DMA state machine */
       CSR_WRITE_4_FLUSH(sc, BGE_RDMA_MODE, val);
       /* 5718 step 52 */
       delay(40);

       if (sc->bge_flags & BGEF_RDMA_BUG) {
               for (i = 0; i < BGE_NUM_RDMA_CHANNELS / 2; i++) {
                       val = CSR_READ_4(sc, BGE_RDMA_LENGTH + i * 4);
                       if ((val & 0xFFFF) > BGE_FRAMELEN)
                               break;
                       if (((val >> 16) & 0xFFFF) > BGE_FRAMELEN)
                               break;
               }
               if (i != BGE_NUM_RDMA_CHANNELS / 2) {
                       val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
                       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
                               val |= BGE_RDMA_TX_LENGTH_WA_5719;
                       else
                               val |= BGE_RDMA_TX_LENGTH_WA_5720;
                       CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
               }
       }

       /* 5718 step 56, 57XX step 84 */
       /* Turn on RX data completion state machine */
       CSR_WRITE_4(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);

       /* Turn on RX data and RX BD initiator state machine */
       CSR_WRITE_4(sc, BGE_RDBDI_MODE, BGE_RDBDIMODE_ENABLE);

       /* 57XX step 85 */
       /* Turn on Mbuf cluster free state machine */
       if (!BGE_IS_5705_PLUS(sc))
               CSR_WRITE_4(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);

       /* 5718 step 57, 57XX step 86 */
       /* Turn on send data completion state machine */
       val = BGE_SDCMODE_ENABLE;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761)
               val |= BGE_SDCMODE_CDELAY;
       CSR_WRITE_4(sc, BGE_SDC_MODE, val);

       /* 5718 step 58 */
       /* Turn on send BD completion state machine */
       CSR_WRITE_4(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);

       /* 57XX step 88 */
       /* Turn on RX BD initiator state machine */
       CSR_WRITE_4(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);

       /* 5718 step 60, 57XX step 90 */
       /* Turn on send data initiator state machine */
       if (sc->bge_flags & BGEF_TSO) {
               /* XXX: magic value from Linux driver */
               CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE |
                   BGE_SDIMODE_HW_LSO_PRE_DMA);
       } else
               CSR_WRITE_4(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);

       /* 5718 step 61, 57XX step 91 */
       /* Turn on send BD initiator state machine */
       CSR_WRITE_4(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);

       /* 5718 step 62, 57XX step 92 */
       /* Turn on send BD selector state machine */
       CSR_WRITE_4(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);

       /* 5718 step 31, 57XX step 60 */
       CSR_WRITE_4(sc, BGE_SDI_STATS_ENABLE_MASK, 0x007FFFFF);
       /* 5718 step 32, 57XX step 61 */
       CSR_WRITE_4(sc, BGE_SDI_STATS_CTL,
           BGE_SDISTATSCTL_ENABLE | BGE_SDISTATSCTL_FASTER);

       /* ack/clear link change events */
       CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
           BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
           BGE_MACSTAT_LINK_CHANGED);
       CSR_WRITE_4(sc, BGE_MI_STS, 0);

       /*
        * Enable attention when the link has changed state for
        * devices that use auto polling.
        */
       if (sc->bge_flags & BGEF_FIBER_TBI) {
               CSR_WRITE_4(sc, BGE_MI_STS, BGE_MISTS_LINK);
       } else {
               if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
                       mimode = BGE_MIMODE_500KHZ_CONST;
               else
                       mimode = BGE_MIMODE_BASE;
               /* 5718 step 68. 5718 step 69 (optionally). */
               if (BGE_IS_5700_FAMILY(sc) ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705) {
                       mimode |= BGE_MIMODE_AUTOPOLL;
                       BGE_STS_SETBIT(sc, BGE_STS_AUTOPOLL);
               }
               mimode |= BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
               CSR_WRITE_4(sc, BGE_MI_MODE, mimode);
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700)
                       CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
                           BGE_EVTENB_MI_INTERRUPT);
       }

       /*
        * Clear any pending link state attention.
        * Otherwise some link state change events may be lost until attention
        * is cleared by bge_intr() -> bge_link_upd() sequence.
        * It's not necessary on newer BCM chips - perhaps enabling link
        * state change attentions implies clearing pending attention.
        */
       CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
           BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
           BGE_MACSTAT_LINK_CHANGED);

       /* Enable link state change attentions. */
       BGE_SETBIT(sc, BGE_MAC_EVT_ENB, BGE_EVTENB_LINK_CHANGED);

       return 0;
}

static const struct bge_revision *
bge_lookup_rev(uint32_t chipid)
{
       const struct bge_revision *br;

       for (br = bge_revisions; br->br_name != NULL; br++) {
               if (br->br_chipid == chipid)
                       return br;
       }

       for (br = bge_majorrevs; br->br_name != NULL; br++) {
               if (br->br_chipid == BGE_ASICREV(chipid))
                       return br;
       }

       return NULL;
}

static const struct bge_product *
bge_lookup(const struct pci_attach_args *pa)
{
       const struct bge_product *bp;

       for (bp = bge_products; bp->bp_name != NULL; bp++) {
               if (PCI_VENDOR(pa->pa_id) == bp->bp_vendor &&
                   PCI_PRODUCT(pa->pa_id) == bp->bp_product)
                       return bp;
       }

       return NULL;
}

static uint32_t
bge_chipid(const struct pci_attach_args *pa)
{
       uint32_t id;

       id = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_MISC_CTL)
               >> BGE_PCIMISCCTL_ASICREV_SHIFT;

       if (BGE_ASICREV(id) == BGE_ASICREV_USE_PRODID_REG) {
               switch (PCI_PRODUCT(pa->pa_id)) {
               case PCI_PRODUCT_BROADCOM_BCM5717:
               case PCI_PRODUCT_BROADCOM_BCM5718:
               case PCI_PRODUCT_BROADCOM_BCM5719:
               case PCI_PRODUCT_BROADCOM_BCM5720:
               case PCI_PRODUCT_BROADCOM_BCM5725:
               case PCI_PRODUCT_BROADCOM_BCM5727:
               case PCI_PRODUCT_BROADCOM_BCM5762:
               case PCI_PRODUCT_BROADCOM_BCM57764:
               case PCI_PRODUCT_BROADCOM_BCM57767:
               case PCI_PRODUCT_BROADCOM_BCM57787:
                       id = pci_conf_read(pa->pa_pc, pa->pa_tag,
                           BGE_PCI_GEN2_PRODID_ASICREV);
                       break;
               case PCI_PRODUCT_BROADCOM_BCM57761:
               case PCI_PRODUCT_BROADCOM_BCM57762:
               case PCI_PRODUCT_BROADCOM_BCM57765:
               case PCI_PRODUCT_BROADCOM_BCM57766:
               case PCI_PRODUCT_BROADCOM_BCM57781:
               case PCI_PRODUCT_BROADCOM_BCM57782:
               case PCI_PRODUCT_BROADCOM_BCM57785:
               case PCI_PRODUCT_BROADCOM_BCM57786:
               case PCI_PRODUCT_BROADCOM_BCM57791:
               case PCI_PRODUCT_BROADCOM_BCM57795:
                       id = pci_conf_read(pa->pa_pc, pa->pa_tag,
                           BGE_PCI_GEN15_PRODID_ASICREV);
                       break;
               default:
                       id = pci_conf_read(pa->pa_pc, pa->pa_tag,
                           BGE_PCI_PRODID_ASICREV);
                       break;
               }
       }

       return id;
}

/*
* Return true if MSI can be used with this device.
*/
static int
bge_can_use_msi(struct bge_softc *sc)
{
       int can_use_msi = 0;

       switch (BGE_ASICREV(sc->bge_chipid)) {
       case BGE_ASICREV_BCM5714_A0:
       case BGE_ASICREV_BCM5714:
               /*
                * Apparently, MSI doesn't work when these chips are
                * configured in single-port mode.
                */
               break;
       case BGE_ASICREV_BCM5750:
               if (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_AX &&
                   BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5750_BX)
                       can_use_msi = 1;
               break;
       default:
               if (BGE_IS_575X_PLUS(sc))
                       can_use_msi = 1;
       }
       return can_use_msi;
}

/*
* Probe for a Broadcom chip. Check the PCI vendor and device IDs
* against our list and return its name if we find a match. Note
* that since the Broadcom controller contains VPD support, we
* can get the device name string from the controller itself instead
* of the compiled-in string. This is a little slow, but it guarantees
* we'll always announce the right product name.
*/
static int
bge_probe(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa = (struct pci_attach_args *)aux;

       if (bge_lookup(pa) != NULL)
               return 1;

       return 0;
}

static void
bge_attach(device_t parent, device_t self, void *aux)
{
       struct bge_softc * const sc = device_private(self);
       struct pci_attach_args * const pa = aux;
       prop_dictionary_t dict;
       const struct bge_product *bp;
       const struct bge_revision *br;
       pci_chipset_tag_t       pc;
       const char              *intrstr = NULL;
       uint32_t                hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5;
       uint32_t                command;
       struct ifnet            *ifp;
       struct mii_data * const mii = &sc->bge_mii;
       uint32_t                misccfg, mimode, macmode;
       void *                  kva;
       u_char                  eaddr[ETHER_ADDR_LEN];
       pcireg_t                memtype, subid, reg;
       bus_addr_t              memaddr;
       uint32_t                pm_ctl;
       bool                    no_seeprom;
       int                     capmask, trys;
       int                     mii_flags;
       int                     map_flags;
       char intrbuf[PCI_INTRSTR_LEN];

       bp = bge_lookup(pa);
       KASSERT(bp != NULL);

       sc->sc_pc = pa->pa_pc;
       sc->sc_pcitag = pa->pa_tag;
       sc->bge_dev = self;

       sc->bge_pa = *pa;
       pc = sc->sc_pc;
       subid = pci_conf_read(pc, sc->sc_pcitag, PCI_SUBSYS_ID_REG);

       aprint_naive(": Ethernet controller\n");
       aprint_normal(": %s Ethernet\n", bp->bp_name);

       /*
        * Map control/status registers.
        */
       DPRINTFN(5, ("Map control/status regs\n"));
       command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
       command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
       pci_conf_write(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, command);
       command = pci_conf_read(pc, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);

       if (!(command & PCI_COMMAND_MEM_ENABLE)) {
               aprint_error_dev(sc->bge_dev,
                   "failed to enable memory mapping!\n");
               return;
       }

       DPRINTFN(5, ("pci_mem_find\n"));
       memtype = pci_mapreg_type(sc->sc_pc, sc->sc_pcitag, BGE_PCI_BAR0);
       switch (memtype) {
       case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
       case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
#if 0
               if (pci_mapreg_map(pa, BGE_PCI_BAR0,
                   memtype, 0, &sc->bge_btag, &sc->bge_bhandle,
                   &memaddr, &sc->bge_bsize) == 0)
                       break;
#else
               /*
                * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
                * system get NMI on boot (PR#48451). This problem might not be
                * the driver's bug but our PCI common part's bug. Until we
                * find a real reason, we ignore the prefetchable bit.
                */
               if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR0,
                   memtype, &memaddr, &sc->bge_bsize, &map_flags) == 0) {
                       map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
                       if (bus_space_map(pa->pa_memt, memaddr, sc->bge_bsize,
                           map_flags, &sc->bge_bhandle) == 0) {
                               sc->bge_btag = pa->pa_memt;
                               break;
                       }
               }
#endif
               /* FALLTHROUGH */
       default:
               aprint_error_dev(sc->bge_dev, "can't find mem space\n");
               return;
       }

       sc->bge_txrx_stopping = false;

       /* Save various chip information. */
       sc->bge_chipid = bge_chipid(pa);
       sc->bge_phy_addr = bge_phy_addr(sc);

       if (pci_get_capability(sc->sc_pc, sc->sc_pcitag, PCI_CAP_PCIEXPRESS,
           &sc->bge_pciecap, NULL) != 0) {
               /* PCIe */
               sc->bge_flags |= BGEF_PCIE;
               /* Extract supported maximum payload size. */
               reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
                   sc->bge_pciecap + PCIE_DCAP);
               sc->bge_mps = 128 << (reg & PCIE_DCAP_MAX_PAYLOAD);
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
                       sc->bge_expmrq = 2048;
               else
                       sc->bge_expmrq = 4096;
               bge_set_max_readrq(sc);
       } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785) {
               /* PCIe without PCIe cap */
               sc->bge_flags |= BGEF_PCIE;
       } else if ((pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE) &
               BGE_PCISTATE_PCI_BUSMODE) == 0) {
               /* PCI-X */
               sc->bge_flags |= BGEF_PCIX;
               if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX,
                       &sc->bge_pcixcap, NULL) == 0)
                       aprint_error_dev(sc->bge_dev,
                           "unable to find PCIX capability\n");
       }

       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX) {
               /*
                * Kludge for 5700 Bx bug: a hardware bug (PCIX byte enable?)
                * can clobber the chip's PCI config-space power control
                * registers, leaving the card in D3 powersave state. We do
                * not have memory-mapped registers in this state, so force
                * device into D0 state before starting initialization.
                */
               pm_ctl = pci_conf_read(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD);
               pm_ctl &= ~(PCI_PWR_D0 | PCI_PWR_D1 | PCI_PWR_D2 | PCI_PWR_D3);
               pm_ctl |= (1 << 8) | PCI_PWR_D0 ; /* D0 state */
               pci_conf_write(pc, sc->sc_pcitag, BGE_PCI_PWRMGMT_CMD, pm_ctl);
               DELAY(1000);    /* 27 usec is allegedly sufficient */
       }

       /* Save chipset family. */
       switch (BGE_ASICREV(sc->bge_chipid)) {
       case BGE_ASICREV_BCM5717:
       case BGE_ASICREV_BCM5719:
       case BGE_ASICREV_BCM5720:
               sc->bge_flags |= BGEF_5717_PLUS;
               /* FALLTHROUGH */
       case BGE_ASICREV_BCM5762:
       case BGE_ASICREV_BCM57765:
       case BGE_ASICREV_BCM57766:
               if (!BGE_IS_5717_PLUS(sc))
                       sc->bge_flags |= BGEF_57765_FAMILY;
               sc->bge_flags |= BGEF_57765_PLUS | BGEF_5755_PLUS |
                   BGEF_575X_PLUS | BGEF_5705_PLUS | BGEF_JUMBO_CAPABLE;
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720) {
                       /*
                        * Enable work around for DMA engine miscalculation
                        * of TXMBUF available space.
                        */
                       sc->bge_flags |= BGEF_RDMA_BUG;

                       if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
                           (sc->bge_chipid == BGE_CHIPID_BCM5719_A0)) {
                               /* Jumbo frame on BCM5719 A0 does not work. */
                               sc->bge_flags &= ~BGEF_JUMBO_CAPABLE;
                       }
               }
               break;
       case BGE_ASICREV_BCM5755:
       case BGE_ASICREV_BCM5761:
       case BGE_ASICREV_BCM5784:
       case BGE_ASICREV_BCM5785:
       case BGE_ASICREV_BCM5787:
       case BGE_ASICREV_BCM57780:
               sc->bge_flags |= BGEF_5755_PLUS | BGEF_575X_PLUS | BGEF_5705_PLUS;
               break;
       case BGE_ASICREV_BCM5700:
       case BGE_ASICREV_BCM5701:
       case BGE_ASICREV_BCM5703:
       case BGE_ASICREV_BCM5704:
               sc->bge_flags |= BGEF_5700_FAMILY | BGEF_JUMBO_CAPABLE;
               break;
       case BGE_ASICREV_BCM5714_A0:
       case BGE_ASICREV_BCM5780:
       case BGE_ASICREV_BCM5714:
               sc->bge_flags |= BGEF_5714_FAMILY | BGEF_JUMBO_CAPABLE;
               /* FALLTHROUGH */
       case BGE_ASICREV_BCM5750:
       case BGE_ASICREV_BCM5752:
       case BGE_ASICREV_BCM5906:
               sc->bge_flags |= BGEF_575X_PLUS;
               /* FALLTHROUGH */
       case BGE_ASICREV_BCM5705:
               sc->bge_flags |= BGEF_5705_PLUS;
               break;
       }

       /* Identify chips with APE processor. */
       switch (BGE_ASICREV(sc->bge_chipid)) {
       case BGE_ASICREV_BCM5717:
       case BGE_ASICREV_BCM5719:
       case BGE_ASICREV_BCM5720:
       case BGE_ASICREV_BCM5761:
       case BGE_ASICREV_BCM5762:
               sc->bge_flags |= BGEF_APE;
               break;
       }

       /*
        * The 40bit DMA bug applies to the 5714/5715 controllers and is
        * not actually a MAC controller bug but an issue with the embedded
        * PCIe to PCI-X bridge in the device. Use 40bit DMA workaround.
        */
       if (BGE_IS_5714_FAMILY(sc) && ((sc->bge_flags & BGEF_PCIX) != 0))
               sc->bge_flags |= BGEF_40BIT_BUG;

       /* Chips with APE need BAR2 access for APE registers/memory. */
       if ((sc->bge_flags & BGEF_APE) != 0) {
               memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2);
#if 0
               if (pci_mapreg_map(pa, BGE_PCI_BAR2, memtype, 0,
                       &sc->bge_apetag, &sc->bge_apehandle, NULL,
                       &sc->bge_apesize)) {
                       aprint_error_dev(sc->bge_dev,
                           "couldn't map BAR2 memory\n");
                       return;
               }
#else
               /*
                * Workaround for PCI prefetchable bit. Some BCM5717-5720 based
                * system get NMI on boot (PR#48451). This problem might not be
                * the driver's bug but our PCI common part's bug. Until we
                * find a real reason, we ignore the prefetchable bit.
                */
               if (pci_mapreg_info(pa->pa_pc, pa->pa_tag, BGE_PCI_BAR2,
                   memtype, &memaddr, &sc->bge_apesize, &map_flags) != 0) {
                       aprint_error_dev(sc->bge_dev,
                           "couldn't map BAR2 memory\n");
                       return;
               }

               map_flags &= ~BUS_SPACE_MAP_PREFETCHABLE;
               if (bus_space_map(pa->pa_memt, memaddr,
                   sc->bge_apesize, map_flags, &sc->bge_apehandle) != 0) {
                       aprint_error_dev(sc->bge_dev,
                           "couldn't map BAR2 memory\n");
                       return;
               }
               sc->bge_apetag = pa->pa_memt;
#endif

               /* Enable APE register/memory access by host driver. */
               reg = pci_conf_read(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE);
               reg |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
                   BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
                   BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
               pci_conf_write(pa->pa_pc, pa->pa_tag, BGE_PCI_PCISTATE, reg);

               bge_ape_lock_init(sc);
               bge_ape_read_fw_ver(sc);
       }

       /* Identify the chips that use an CPMU. */
       if (BGE_IS_5717_PLUS(sc) ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780)
               sc->bge_flags |= BGEF_CPMU_PRESENT;

       /*
        * When using the BCM5701 in PCI-X mode, data corruption has
        * been observed in the first few bytes of some received packets.
        * Aligning the packet buffer in memory eliminates the corruption.
        * Unfortunately, this misaligns the packet payloads.  On platforms
        * which do not support unaligned accesses, we will realign the
        * payloads by copying the received packets.
        */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701 &&
           sc->bge_flags & BGEF_PCIX)
               sc->bge_flags |= BGEF_RX_ALIGNBUG;

       if (BGE_IS_5700_FAMILY(sc))
               sc->bge_flags |= BGEF_JUMBO_CAPABLE;

       misccfg = CSR_READ_4(sc, BGE_MISC_CFG);
       misccfg &= BGE_MISCCFG_BOARD_ID_MASK;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
           (misccfg == BGE_MISCCFG_BOARD_ID_5788 ||
            misccfg == BGE_MISCCFG_BOARD_ID_5788M))
               sc->bge_flags |= BGEF_IS_5788;

       /*
        * Some controllers seem to require a special firmware to use
        * TSO. But the firmware is not available to FreeBSD and Linux
        * claims that the TSO performed by the firmware is slower than
        * hardware based TSO. Moreover the firmware based TSO has one
        * known bug which can't handle TSO if ethernet header + IP/TCP
        * header is greater than 80 bytes. The workaround for the TSO
        * bug exist but it seems it's too expensive than not using
        * TSO at all. Some hardware also have the TSO bug so limit
        * the TSO to the controllers that are not affected TSO issues
        * (e.g. 5755 or higher).
        */
       if (BGE_IS_5755_PLUS(sc)) {
               /*
                * BCM5754 and BCM5787 shares the same ASIC id so
                * explicit device id check is required.
                */
               if ((PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754) &&
                   (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5754M))
                       sc->bge_flags |= BGEF_TSO;
               /* TSO on BCM5719 A0 does not work. */
               if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719) &&
                   (sc->bge_chipid == BGE_CHIPID_BCM5719_A0))
                       sc->bge_flags &= ~BGEF_TSO;
       }

       capmask = 0xffffffff; /* XXX BMSR_DEFCAPMASK */
       if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703 &&
            (misccfg == 0x4000 || misccfg == 0x8000)) ||
           (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
            PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
            (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901 ||
             PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5901A2 ||
             PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5705F)) ||
           (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_BROADCOM &&
            (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5751F ||
             PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5753F ||
             PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5787F)) ||
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57790 ||
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57791 ||
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM57795 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
               /* These chips are 10/100 only. */
               capmask &= ~BMSR_EXTSTAT;
               sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
           (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5705 &&
            (sc->bge_chipid != BGE_CHIPID_BCM5705_A0 &&
                sc->bge_chipid != BGE_CHIPID_BCM5705_A1)))
               sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;

       /* Set various PHY bug flags. */
       if (sc->bge_chipid == BGE_CHIPID_BCM5701_A0 ||
           sc->bge_chipid == BGE_CHIPID_BCM5701_B0)
               sc->bge_phy_flags |= BGEPHYF_CRC_BUG;
       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5703_AX ||
           BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_AX)
               sc->bge_phy_flags |= BGEPHYF_ADC_BUG;
       if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0)
               sc->bge_phy_flags |= BGEPHYF_5704_A0_BUG;
       if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5701) &&
           PCI_VENDOR(subid) == PCI_VENDOR_DELL)
               sc->bge_phy_flags |= BGEPHYF_NO_3LED;
       if (BGE_IS_5705_PLUS(sc) &&
           BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906 &&
           BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785 &&
           BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM57780 &&
           !BGE_IS_57765_PLUS(sc)) {
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5755 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5761 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784 ||
                   BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5787) {
                       if (PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5722 &&
                           PCI_PRODUCT(pa->pa_id) != PCI_PRODUCT_BROADCOM_BCM5756)
                               sc->bge_phy_flags |= BGEPHYF_JITTER_BUG;
                       if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_BROADCOM_BCM5755M)
                               sc->bge_phy_flags |= BGEPHYF_ADJUST_TRIM;
               } else
                       sc->bge_phy_flags |= BGEPHYF_BER_BUG;
       }

       /*
        * SEEPROM check.
        * First check if firmware knows we do not have SEEPROM.
        */
       if (prop_dictionary_get_bool(device_properties(self),
           "without-seeprom", &no_seeprom) && no_seeprom)
               sc->bge_flags |= BGEF_NO_EEPROM;

       else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
               sc->bge_flags |= BGEF_NO_EEPROM;

       /* Now check the 'ROM failed' bit on the RX CPU */
       else if (CSR_READ_4(sc, BGE_RXCPU_MODE) & BGE_RXCPUMODE_ROMFAIL)
               sc->bge_flags |= BGEF_NO_EEPROM;

       sc->bge_asf_mode = 0;
       /* No ASF if APE present. */
       if ((sc->bge_flags & BGEF_APE) == 0) {
               if (bge_allow_asf && (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
                       BGE_SRAM_DATA_SIG_MAGIC)) {
                       if (bge_readmem_ind(sc, BGE_SRAM_DATA_CFG) &
                           BGE_HWCFG_ASF) {
                               sc->bge_asf_mode |= ASF_ENABLE;
                               sc->bge_asf_mode |= ASF_STACKUP;
                               if (BGE_IS_575X_PLUS(sc))
                                       sc->bge_asf_mode |= ASF_NEW_HANDSHAKE;
                       }
               }
       }

       int counts[PCI_INTR_TYPE_SIZE] = {
               [PCI_INTR_TYPE_INTX] = 1,
               [PCI_INTR_TYPE_MSI] = 1,
               [PCI_INTR_TYPE_MSIX] = 1,
       };
       int max_type = PCI_INTR_TYPE_MSIX;

       if (!bge_can_use_msi(sc)) {
               /* MSI broken, allow only INTx */
               max_type = PCI_INTR_TYPE_INTX;
       }

       if (pci_intr_alloc(pa, &sc->bge_pihp, counts, max_type) != 0) {
               aprint_error_dev(sc->bge_dev, "couldn't alloc interrupt\n");
               return;
       }

       DPRINTFN(5, ("pci_intr_string\n"));
       intrstr = pci_intr_string(pc, sc->bge_pihp[0], intrbuf,
           sizeof(intrbuf));
       pci_intr_setattr(pc, &sc->bge_pihp[0], PCI_INTR_MPSAFE, true);
       DPRINTFN(5, ("pci_intr_establish\n"));
       sc->bge_intrhand = pci_intr_establish_xname(pc, sc->bge_pihp[0],
           IPL_NET, bge_intr, sc, device_xname(sc->bge_dev));
       if (sc->bge_intrhand == NULL) {
               pci_intr_release(pc, sc->bge_pihp, 1);
               sc->bge_pihp = NULL;

               aprint_error_dev(self, "couldn't establish interrupt");
               if (intrstr != NULL)
                       aprint_error(" at %s", intrstr);
               aprint_error("\n");
               return;
       }
       aprint_normal_dev(sc->bge_dev, "interrupting at %s\n", intrstr);

       switch (pci_intr_type(pc, sc->bge_pihp[0])) {
       case PCI_INTR_TYPE_MSIX:
       case PCI_INTR_TYPE_MSI:
               KASSERT(bge_can_use_msi(sc));
               sc->bge_flags |= BGEF_MSI;
               break;
       default:
               /* nothing to do */
               break;
       }

       char wqname[MAXCOMLEN];
       snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->bge_dev));
       int error = workqueue_create(&sc->sc_reset_wq, wqname,
           bge_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
           WQ_MPSAFE);
       if (error) {
               aprint_error_dev(sc->bge_dev,
                   "unable to create reset workqueue\n");
               return;
       }


       /*
        * All controllers except BCM5700 supports tagged status but
        * we use tagged status only for MSI case on BCM5717. Otherwise
        * MSI on BCM5717 does not work.
        */
       if (BGE_IS_57765_PLUS(sc) && sc->bge_flags & BGEF_MSI)
               sc->bge_flags |= BGEF_TAGGED_STATUS;

       /*
        * Reset NVRAM before bge_reset(). It's required to acquire NVRAM
        * lock in bge_reset().
        */
       CSR_WRITE_4_FLUSH(sc, BGE_EE_ADDR,
           BGE_EEADDR_RESET | BGE_EEHALFCLK(BGE_HALFCLK_384SCL));
       delay(1000);
       BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_AUTO_EEPROM);

       bge_stop_fw(sc);
       bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);
       if (bge_reset(sc))
               aprint_error_dev(sc->bge_dev, "chip reset failed\n");

       /*
        * Read the hardware config word in the first 32k of NIC internal
        * memory, or fall back to the config word in the EEPROM.
        * Note: on some BCM5700 cards, this value appears to be unset.
        */
       hwcfg = hwcfg2 = hwcfg3 = hwcfg4 = hwcfg5 = 0;
       if (bge_readmem_ind(sc, BGE_SRAM_DATA_SIG) ==
           BGE_SRAM_DATA_SIG_MAGIC) {
               uint32_t tmp;

               hwcfg = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG);
               tmp = bge_readmem_ind(sc, BGE_SRAM_DATA_VER) >>
                   BGE_SRAM_DATA_VER_SHIFT;
               if ((0 < tmp) && (tmp < 0x100))
                       hwcfg2 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_2);
               if (sc->bge_flags & BGEF_PCIE)
                       hwcfg3 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_3);
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5785)
                       hwcfg4 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_4);
               if (BGE_IS_5717_PLUS(sc))
                       hwcfg5 = bge_readmem_ind(sc, BGE_SRAM_DATA_CFG_5);
       } else if (!(sc->bge_flags & BGEF_NO_EEPROM)) {
               bge_read_eeprom(sc, (void *)&hwcfg,
                   BGE_EE_HWCFG_OFFSET, sizeof(hwcfg));
               hwcfg = be32toh(hwcfg);
       }
       aprint_normal_dev(sc->bge_dev,
           "HW config %08x, %08x, %08x, %08x %08x\n",
           hwcfg, hwcfg2, hwcfg3, hwcfg4, hwcfg5);

       bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
       bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);

       if (bge_chipinit(sc)) {
               aprint_error_dev(sc->bge_dev, "chip initialization failed\n");
               bge_release_resources(sc);
               return;
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
               BGE_SETBIT_FLUSH(sc, BGE_MISC_LOCAL_CTL,
                   BGE_MLC_MISCIO_OUT1 | BGE_MLC_MISCIO_OUTEN1);
               DELAY(100);
       }

       /* Set MI_MODE */
       mimode = BGE_MIMODE_PHYADDR(sc->bge_phy_addr);
       if ((sc->bge_flags & BGEF_CPMU_PRESENT) != 0)
               mimode |= BGE_MIMODE_500KHZ_CONST;
       else
               mimode |= BGE_MIMODE_BASE;
       CSR_WRITE_4_FLUSH(sc, BGE_MI_MODE, mimode);
       DELAY(80);

       /*
        * Get station address from the EEPROM.
        */
       if (bge_get_eaddr(sc, eaddr)) {
               aprint_error_dev(sc->bge_dev,
                   "failed to read station address\n");
               bge_release_resources(sc);
               return;
       }

       br = bge_lookup_rev(sc->bge_chipid);

       if (br == NULL) {
               aprint_normal_dev(sc->bge_dev, "unknown ASIC (0x%x)",
                   sc->bge_chipid);
       } else {
               aprint_normal_dev(sc->bge_dev, "ASIC %s (0x%x)",
                   br->br_name, sc->bge_chipid);
       }
       aprint_normal(", Ethernet address %s\n", ether_sprintf(eaddr));

       /* Allocate the general information block and ring buffers. */
       if (pci_dma64_available(pa)) {
               sc->bge_dmatag = pa->pa_dmat64;
               sc->bge_dmatag32 = pa->pa_dmat;
               sc->bge_dma64 = true;
       } else {
               sc->bge_dmatag = pa->pa_dmat;
               sc->bge_dmatag32 = pa->pa_dmat;
               sc->bge_dma64 = false;
       }

       /* 40bit DMA workaround */
       if (sizeof(bus_addr_t) > 4) {
               if ((sc->bge_flags & BGEF_40BIT_BUG) != 0) {
                       bus_dma_tag_t olddmatag = sc->bge_dmatag; /* save */

                       if (bus_dmatag_subregion(olddmatag, 0,
                           (bus_addr_t)__MASK(40),
                           &(sc->bge_dmatag), BUS_DMA_WAITOK) != 0) {
                               aprint_error_dev(self,
                                   "WARNING: failed to restrict dma range,"
                                   " falling back to parent bus dma range\n");
                               sc->bge_dmatag = olddmatag;
                       }
               }
       }
       SLIST_INIT(&sc->txdma_list);
       DPRINTFN(5, ("bus_dmamem_alloc\n"));
       if (bus_dmamem_alloc(sc->bge_dmatag, sizeof(struct bge_ring_data),
                            PAGE_SIZE, 0, &sc->bge_ring_seg, 1,
               &sc->bge_ring_rseg, BUS_DMA_WAITOK)) {
               aprint_error_dev(sc->bge_dev, "can't alloc rx buffers\n");
               return;
       }
       DPRINTFN(5, ("bus_dmamem_map\n"));
       if (bus_dmamem_map(sc->bge_dmatag, &sc->bge_ring_seg,
               sc->bge_ring_rseg, sizeof(struct bge_ring_data), &kva,
                          BUS_DMA_WAITOK)) {
               aprint_error_dev(sc->bge_dev,
                   "can't map DMA buffers (%zu bytes)\n",
                   sizeof(struct bge_ring_data));
               bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
                   sc->bge_ring_rseg);
               return;
       }
       DPRINTFN(5, ("bus_dmamap_create\n"));
       if (bus_dmamap_create(sc->bge_dmatag, sizeof(struct bge_ring_data), 1,
           sizeof(struct bge_ring_data), 0,
           BUS_DMA_WAITOK, &sc->bge_ring_map)) {
               aprint_error_dev(sc->bge_dev, "can't create DMA map\n");
               bus_dmamem_unmap(sc->bge_dmatag, kva,
                                sizeof(struct bge_ring_data));
               bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
                   sc->bge_ring_rseg);
               return;
       }
       DPRINTFN(5, ("bus_dmamap_load\n"));
       if (bus_dmamap_load(sc->bge_dmatag, sc->bge_ring_map, kva,
                           sizeof(struct bge_ring_data), NULL,
                           BUS_DMA_WAITOK)) {
               bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
               bus_dmamem_unmap(sc->bge_dmatag, kva,
                                sizeof(struct bge_ring_data));
               bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
                   sc->bge_ring_rseg);
               return;
       }

       DPRINTFN(5, ("bzero\n"));
       sc->bge_rdata = (struct bge_ring_data *)kva;

       memset(sc->bge_rdata, 0, sizeof(struct bge_ring_data));

       /* Try to allocate memory for jumbo buffers. */
       if (BGE_IS_JUMBO_CAPABLE(sc)) {
               if (bge_alloc_jumbo_mem(sc)) {
                       aprint_error_dev(sc->bge_dev,
                           "jumbo buffer allocation failed\n");
               } else
                       sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU;
       }

       /* Set default tuneable values. */
       sc->bge_stat_ticks = BGE_TICKS_PER_SEC;
       sc->bge_rx_coal_ticks = 150;
       sc->bge_rx_max_coal_bds = 64;
       sc->bge_tx_coal_ticks = 300;
       sc->bge_tx_max_coal_bds = 400;
       if (BGE_IS_5705_PLUS(sc)) {
               sc->bge_tx_coal_ticks = (12 * 5);
               sc->bge_tx_max_coal_bds = (12 * 5);
                       aprint_verbose_dev(sc->bge_dev,
                           "setting short Tx thresholds\n");
       }

       if (BGE_IS_5717_PLUS(sc))
               sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;
       else if (BGE_IS_5705_PLUS(sc))
               sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT_5705;
       else
               sc->bge_return_ring_cnt = BGE_RETURN_RING_CNT;

       sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
       sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);

       /* Set up ifnet structure */
       ifp = &sc->ethercom.ec_if;
       ifp->if_softc = sc;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_extflags = IFEF_MPSAFE;
       ifp->if_ioctl = bge_ioctl;
       ifp->if_stop = bge_stop;
       ifp->if_start = bge_start;
       ifp->if_init = bge_init;
       IFQ_SET_MAXLEN(&ifp->if_snd, uimax(BGE_TX_RING_CNT - 1, IFQ_MAXLEN));
       IFQ_SET_READY(&ifp->if_snd);
       DPRINTFN(5, ("strcpy if_xname\n"));
       strcpy(ifp->if_xname, device_xname(sc->bge_dev));

       if (sc->bge_chipid != BGE_CHIPID_BCM5700_B0)
               sc->ethercom.ec_if.if_capabilities |=
                   IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx;
#if 1   /* XXX TCP/UDP checksum offload breaks with pf(4) */
               sc->ethercom.ec_if.if_capabilities |=
                   IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
                   IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
#endif
       sc->ethercom.ec_capabilities |=
           ETHERCAP_VLAN_HWTAGGING | ETHERCAP_VLAN_MTU;
       sc->ethercom.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;

       if (sc->bge_flags & BGEF_TSO)
               sc->ethercom.ec_if.if_capabilities |= IFCAP_TSOv4;

       /*
        * Do MII setup.
        */
       DPRINTFN(5, ("mii setup\n"));
       mii->mii_ifp = ifp;
       mii->mii_readreg = bge_miibus_readreg;
       mii->mii_writereg = bge_miibus_writereg;
       mii->mii_statchg = bge_miibus_statchg;

       /*
        * Figure out what sort of media we have by checking the hardware
        * config word.  Note: on some BCM5700 cards, this value appears to be
        * unset. If that's the case, we have to rely on identifying the NIC
        * by its PCI subsystem ID, as we do below for the SysKonnect SK-9D41.
        * The SysKonnect SK-9D41 is a 1000baseSX card.
        */
       if (PCI_PRODUCT(subid) == SK_SUBSYSID_9D41 ||
           (hwcfg & BGE_HWCFG_MEDIA) == BGE_MEDIA_FIBER) {
               if (BGE_IS_5705_PLUS(sc)) {
                       sc->bge_flags |= BGEF_FIBER_MII;
                       sc->bge_phy_flags |= BGEPHYF_NO_WIRESPEED;
               } else
                       sc->bge_flags |= BGEF_FIBER_TBI;
       }

       /* Set bge_phy_flags before prop_dictionary_set_uint32() */
       if (BGE_IS_JUMBO_CAPABLE(sc))
               sc->bge_phy_flags |= BGEPHYF_JUMBO_CAPABLE;

       /* set phyflags and chipid before mii_attach() */
       dict = device_properties(self);
       prop_dictionary_set_uint32(dict, "phyflags", sc->bge_phy_flags);
       prop_dictionary_set_uint32(dict, "chipid", sc->bge_chipid);

       macmode = CSR_READ_4(sc, BGE_MAC_MODE);
       macmode &= ~BGE_MACMODE_PORTMODE;
       /* Initialize ifmedia structures. */
       if (sc->bge_flags & BGEF_FIBER_TBI) {
               CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE,
                   macmode | BGE_PORTMODE_TBI);
               DELAY(40);

               struct ifmedia * const ifm = &sc->bge_ifmedia;
               sc->ethercom.ec_ifmedia = ifm;

               ifmedia_init_with_lock(ifm, IFM_IMASK,
                   bge_ifmedia_upd, bge_ifmedia_sts, sc->sc_intr_lock);
               ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX, 0, NULL);
               ifmedia_add(ifm, IFM_ETHER | IFM_1000_SX | IFM_FDX, 0, NULL);
               ifmedia_add(ifm, IFM_ETHER | IFM_AUTO, 0, NULL);
               ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
               /* Pretend the user requested this setting */
               sc->bge_ifmedia.ifm_media = sc->bge_ifmedia.ifm_cur->ifm_media;
       } else {
               uint16_t phyreg;
               int rv;
               /*
                * Do transceiver setup and tell the firmware the
                * driver is down so we can try to get access the
                * probe if ASF is running.  Retry a couple of times
                * if we get a conflict with the ASF firmware accessing
                * the PHY.
                */
               if (sc->bge_flags & BGEF_FIBER_MII)
                       macmode |= BGE_PORTMODE_GMII;
               else
                       macmode |= BGE_PORTMODE_MII;
               CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, macmode);
               DELAY(40);

               /*
                * Do transceiver setup and tell the firmware the
                * driver is down so we can try to get access the
                * probe if ASF is running.  Retry a couple of times
                * if we get a conflict with the ASF firmware accessing
                * the PHY.
                */
               trys = 0;
               BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
               sc->ethercom.ec_mii = mii;
               ifmedia_init_with_lock(&mii->mii_media, 0, bge_ifmedia_upd,
                   bge_ifmedia_sts, sc->sc_intr_lock);
               mii_flags = MIIF_DOPAUSE;
               if (sc->bge_flags & BGEF_FIBER_MII)
                       mii_flags |= MIIF_HAVEFIBER;
again:
               bge_asf_driver_up(sc);
               mutex_enter(sc->sc_intr_lock);
               rv = bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
                   MII_BMCR, &phyreg);
               if ((rv != 0) || ((phyreg & BMCR_PDOWN) != 0)) {
                       int i;

                       bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
                           MII_BMCR, BMCR_RESET);
                       /* Wait up to 500ms for it to complete. */
                       for (i = 0; i < 500; i++) {
                               bge_miibus_readreg(sc->bge_dev,
                                   sc->bge_phy_addr, MII_BMCR, &phyreg);
                               if ((phyreg & BMCR_RESET) == 0)
                                       break;
                               DELAY(1000);
                       }
               }
               mutex_exit(sc->sc_intr_lock);

               mii_attach(sc->bge_dev, mii, capmask, sc->bge_phy_addr,
                   MII_OFFSET_ANY, mii_flags);

               if (LIST_EMPTY(&mii->mii_phys) && (trys++ < 4))
                       goto again;

               if (LIST_EMPTY(&mii->mii_phys)) {
                       aprint_error_dev(sc->bge_dev, "no PHY found!\n");
                       ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL,
                           0, NULL);
                       ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
               } else
                       ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

               /*
                * Now tell the firmware we are going up after probing the PHY
                */
               if (sc->bge_asf_mode & ASF_STACKUP)
                       BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
       }

       /*
        * Call MI attach routine.
        */
       DPRINTFN(5, ("if_initialize\n"));
       if_initialize(ifp);
       ifp->if_percpuq = if_percpuq_create(ifp);
       if_deferred_start_init(ifp, NULL);
       if_register(ifp);

       DPRINTFN(5, ("ether_ifattach\n"));
       ether_ifattach(ifp, eaddr);
       ether_set_ifflags_cb(&sc->ethercom, bge_ifflags_cb);

       rnd_attach_source(&sc->rnd_source, device_xname(sc->bge_dev),
               RND_TYPE_NET, RND_FLAG_DEFAULT);
#ifdef BGE_EVENT_COUNTERS
       /*
        * Attach event counters.
        */
       evcnt_attach_dynamic(&sc->bge_ev_intr, EVCNT_TYPE_INTR,
           NULL, device_xname(sc->bge_dev), "intr");
       evcnt_attach_dynamic(&sc->bge_ev_intr_spurious, EVCNT_TYPE_INTR,
           NULL, device_xname(sc->bge_dev), "intr_spurious");
       evcnt_attach_dynamic(&sc->bge_ev_intr_spurious2, EVCNT_TYPE_INTR,
           NULL, device_xname(sc->bge_dev), "intr_spurious2");
       evcnt_attach_dynamic(&sc->bge_ev_tx_xoff, EVCNT_TYPE_MISC,
           NULL, device_xname(sc->bge_dev), "tx_xoff");
       evcnt_attach_dynamic(&sc->bge_ev_tx_xon, EVCNT_TYPE_MISC,
           NULL, device_xname(sc->bge_dev), "tx_xon");
       evcnt_attach_dynamic(&sc->bge_ev_rx_xoff, EVCNT_TYPE_MISC,
           NULL, device_xname(sc->bge_dev), "rx_xoff");
       evcnt_attach_dynamic(&sc->bge_ev_rx_xon, EVCNT_TYPE_MISC,
           NULL, device_xname(sc->bge_dev), "rx_xon");
       evcnt_attach_dynamic(&sc->bge_ev_rx_macctl, EVCNT_TYPE_MISC,
           NULL, device_xname(sc->bge_dev), "rx_macctl");
       evcnt_attach_dynamic(&sc->bge_ev_xoffentered, EVCNT_TYPE_MISC,
           NULL, device_xname(sc->bge_dev), "xoffentered");
#endif /* BGE_EVENT_COUNTERS */
       DPRINTFN(5, ("callout_init\n"));
       callout_init(&sc->bge_timeout, CALLOUT_MPSAFE);
       callout_setfunc(&sc->bge_timeout, bge_tick, sc);

       if (pmf_device_register(self, NULL, NULL))
               pmf_class_network_register(self, ifp);
       else
               aprint_error_dev(self, "couldn't establish power handler\n");

       bge_sysctl_init(sc);

#ifdef BGE_DEBUG
       bge_debug_info(sc);
#endif

       sc->bge_attached = true;
}

/*
* Stop all chip I/O so that the kernel's probe routines don't
* get confused by errant DMAs when rebooting.
*/
static int
bge_detach(device_t self, int flags __unused)
{
       struct bge_softc * const sc = device_private(self);
       struct ifnet * const ifp = &sc->ethercom.ec_if;

       if (!sc->bge_attached)
               return 0;

       IFNET_LOCK(ifp);

       /* Stop the interface. Callouts are stopped in it. */
       bge_stop(ifp, 1);
       sc->bge_detaching = true;

       IFNET_UNLOCK(ifp);

       mii_detach(&sc->bge_mii, MII_PHY_ANY, MII_OFFSET_ANY);

       ether_ifdetach(ifp);
       if_detach(ifp);

       /* Delete all remaining media. */
       ifmedia_fini(&sc->bge_mii.mii_media);

       bge_release_resources(sc);

       return 0;
}

static void
bge_release_resources(struct bge_softc *sc)
{

       /* Detach sysctl */
       if (sc->bge_log != NULL)
               sysctl_teardown(&sc->bge_log);

       callout_destroy(&sc->bge_timeout);

#ifdef BGE_EVENT_COUNTERS
       /* Detach event counters. */
       evcnt_detach(&sc->bge_ev_intr);
       evcnt_detach(&sc->bge_ev_intr_spurious);
       evcnt_detach(&sc->bge_ev_intr_spurious2);
       evcnt_detach(&sc->bge_ev_tx_xoff);
       evcnt_detach(&sc->bge_ev_tx_xon);
       evcnt_detach(&sc->bge_ev_rx_xoff);
       evcnt_detach(&sc->bge_ev_rx_xon);
       evcnt_detach(&sc->bge_ev_rx_macctl);
       evcnt_detach(&sc->bge_ev_xoffentered);
#endif /* BGE_EVENT_COUNTERS */

       /* Disestablish the interrupt handler */
       if (sc->bge_intrhand != NULL) {
               pci_intr_disestablish(sc->sc_pc, sc->bge_intrhand);
               pci_intr_release(sc->sc_pc, sc->bge_pihp, 1);
               sc->bge_intrhand = NULL;
       }

       if (sc->bge_cdata.bge_jumbo_buf != NULL)
               bge_free_jumbo_mem(sc);

       if (sc->bge_dmatag != NULL) {
               bus_dmamap_unload(sc->bge_dmatag, sc->bge_ring_map);
               bus_dmamap_destroy(sc->bge_dmatag, sc->bge_ring_map);
               bus_dmamem_unmap(sc->bge_dmatag, (void *)sc->bge_rdata,
                   sizeof(struct bge_ring_data));
               bus_dmamem_free(sc->bge_dmatag, &sc->bge_ring_seg,
                   sc->bge_ring_rseg);
       }

       /* Unmap the device registers */
       if (sc->bge_bsize != 0) {
               bus_space_unmap(sc->bge_btag, sc->bge_bhandle, sc->bge_bsize);
               sc->bge_bsize = 0;
       }

       /* Unmap the APE registers */
       if (sc->bge_apesize != 0) {
               bus_space_unmap(sc->bge_apetag, sc->bge_apehandle,
                   sc->bge_apesize);
               sc->bge_apesize = 0;
       }
       if (sc->sc_intr_lock) {
               mutex_obj_free(sc->sc_intr_lock);
               sc->sc_intr_lock = NULL;
       }
       if (sc->sc_mcast_lock) {
               mutex_obj_free(sc->sc_mcast_lock);
               sc->sc_mcast_lock = NULL;
       }
}

static int
bge_reset(struct bge_softc *sc)
{
       uint32_t cachesize, command;
       uint32_t reset, mac_mode, mac_mode_mask;
       pcireg_t devctl, reg;
       int i, val;
       void (*write_op)(struct bge_softc *, int, int);

       /* Make mask for BGE_MAC_MODE register. */
       mac_mode_mask = BGE_MACMODE_HALF_DUPLEX | BGE_MACMODE_PORTMODE;
       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
               mac_mode_mask |= BGE_MACMODE_APE_RX_EN | BGE_MACMODE_APE_TX_EN;
       /* Keep mac_mode_mask's bits of BGE_MAC_MODE register into mac_mode */
       mac_mode = CSR_READ_4(sc, BGE_MAC_MODE) & mac_mode_mask;

       if (BGE_IS_575X_PLUS(sc) && !BGE_IS_5714_FAMILY(sc) &&
           (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5906)) {
               if (sc->bge_flags & BGEF_PCIE)
                       write_op = bge_writemem_direct;
               else
                       write_op = bge_writemem_ind;
       } else
               write_op = bge_writereg_ind;

       /* 57XX step 4 */
       /* Acquire the NVM lock */
       if ((sc->bge_flags & BGEF_NO_EEPROM) == 0 &&
           BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5700 &&
           BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5701) {
               CSR_WRITE_4(sc, BGE_NVRAM_SWARB, BGE_NVRAMSWARB_SET1);
               for (i = 0; i < 8000; i++) {
                       if (CSR_READ_4(sc, BGE_NVRAM_SWARB) &
                           BGE_NVRAMSWARB_GNT1)
                               break;
                       DELAY(20);
               }
               if (i == 8000) {
                       printf("%s: NVRAM lock timedout!\n",
                           device_xname(sc->bge_dev));
               }
       }

       /* Take APE lock when performing reset. */
       bge_ape_lock(sc, BGE_APE_LOCK_GRC);

       /* 57XX step 3 */
       /* Save some important PCI state. */
       cachesize = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ);
       /* 5718 reset step 3 */
       command = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);

       /* 5718 reset step 5, 57XX step 5b-5d */
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
           BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
           BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);

       /* XXX ???: Disable fastboot on controllers that support it. */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5752 ||
           BGE_IS_5755_PLUS(sc))
               CSR_WRITE_4(sc, BGE_FASTBOOT_PC, 0);

       /* 5718 reset step 2, 57XX step 6 */
       /*
        * Write the magic number to SRAM at offset 0xB50.
        * When firmware finishes its initialization it will
        * write ~BGE_MAGIC_NUMBER to the same location.
        */
       bge_writemem_ind(sc, BGE_SRAM_FW_MB, BGE_SRAM_FW_MB_MAGIC);

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
               val = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
               val = (val & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
                   | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
               CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, val);
       }

       /* 5718 reset step 6, 57XX step 7 */
       reset = BGE_MISCCFG_RESET_CORE_CLOCKS | BGE_32BITTIME_66MHZ;
       /*
        * XXX: from FreeBSD/Linux; no documentation
        */
       if (sc->bge_flags & BGEF_PCIE) {
               if ((BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) &&
                   !BGE_IS_57765_PLUS(sc) &&
                   (CSR_READ_4(sc, BGE_PHY_TEST_CTRL_REG) ==
                       (BGE_PHY_PCIE_LTASS_MODE | BGE_PHY_PCIE_SCRAM_MODE))) {
                       /* PCI Express 1.0 system */
                       CSR_WRITE_4(sc, BGE_PHY_TEST_CTRL_REG,
                           BGE_PHY_PCIE_SCRAM_MODE);
               }
               if (sc->bge_chipid != BGE_CHIPID_BCM5750_A0) {
                       /*
                        * Prevent PCI Express link training
                        * during global reset.
                        */
                       CSR_WRITE_4(sc, BGE_MISC_CFG, 1 << 29);
                       reset |= (1 << 29);
               }
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906) {
               i = CSR_READ_4(sc, BGE_VCPU_STATUS);
               CSR_WRITE_4(sc, BGE_VCPU_STATUS,
                   i | BGE_VCPU_STATUS_DRV_RESET);
               i = CSR_READ_4(sc, BGE_VCPU_EXT_CTRL);
               CSR_WRITE_4(sc, BGE_VCPU_EXT_CTRL,
                   i & ~BGE_VCPU_EXT_CTRL_HALT_CPU);
       }

       /*
        * Set GPHY Power Down Override to leave GPHY
        * powered up in D0 uninitialized.
        */
       if (BGE_IS_5705_PLUS(sc) &&
           (sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
               reset |= BGE_MISCCFG_GPHY_PD_OVERRIDE;

       /* Issue global reset */
       write_op(sc, BGE_MISC_CFG, reset);

       /* 5718 reset step 7, 57XX step 8 */
       if (sc->bge_flags & BGEF_PCIE)
               delay(100*1000); /* too big */
       else
               delay(1000);

       if (sc->bge_flags & BGEF_PCIE) {
               if (sc->bge_chipid == BGE_CHIPID_BCM5750_A0) {
                       DELAY(500000);
                       /* XXX: Magic Numbers */
                       reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
                           BGE_PCI_UNKNOWN0);
                       pci_conf_write(sc->sc_pc, sc->sc_pcitag,
                           BGE_PCI_UNKNOWN0,
                           reg | (1 << 15));
               }
               devctl = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
                   sc->bge_pciecap + PCIE_DCSR);
               /* Clear enable no snoop and disable relaxed ordering. */
               devctl &= ~(PCIE_DCSR_ENA_RELAX_ORD |
                   PCIE_DCSR_ENA_NO_SNOOP);

               /* Set PCIE max payload size to 128 for older PCIe devices */
               if ((sc->bge_flags & BGEF_CPMU_PRESENT) == 0)
                       devctl &= ~(0x00e0);
               /* Clear device status register. Write 1b to clear */
               devctl |= PCIE_DCSR_URD | PCIE_DCSR_FED
                   | PCIE_DCSR_NFED | PCIE_DCSR_CED;
               pci_conf_write(sc->sc_pc, sc->sc_pcitag,
                   sc->bge_pciecap + PCIE_DCSR, devctl);
               bge_set_max_readrq(sc);
       }

       /* From Linux: dummy read to flush PCI posted writes */
       reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD);

       /*
        * Reset some of the PCI state that got zapped by reset
        * To modify the PCISTATE register, BGE_PCIMISCCTL_PCISTATE_RW must be
        * set, too.
        */
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MISC_CTL,
           BGE_PCIMISCCTL_INDIRECT_ACCESS | BGE_PCIMISCCTL_MASK_PCI_INTR |
           BGE_HIF_SWAP_OPTIONS | BGE_PCIMISCCTL_PCISTATE_RW);
       val = BGE_PCISTATE_ROM_ENABLE | BGE_PCISTATE_ROM_RETRY_ENABLE;
       if (sc->bge_chipid == BGE_CHIPID_BCM5704_A0 &&
           (sc->bge_flags & BGEF_PCIX) != 0)
               val |= BGE_PCISTATE_RETRY_SAME_DMA;
       if ((sc->bge_mfw_flags & BGE_MFW_ON_APE) != 0)
               val |= BGE_PCISTATE_ALLOW_APE_CTLSPC_WR |
                   BGE_PCISTATE_ALLOW_APE_SHMEM_WR |
                   BGE_PCISTATE_ALLOW_APE_PSPACE_WR;
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_PCISTATE, val);
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CACHESZ, cachesize);
       pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_CMD, command);

       /* 57xx step 11: disable PCI-X Relaxed Ordering. */
       if (sc->bge_flags & BGEF_PCIX) {
               reg = pci_conf_read(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
                   + PCIX_CMD);
               /* Set max memory read byte count to 2K */
               if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5703) {
                       reg &= ~PCIX_CMD_BYTECNT_MASK;
                       reg |= PCIX_CMD_BCNT_2048;
               } else if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704){
                       /*
                        * For 5704, set max outstanding split transaction
                        * field to 0 (0 means it supports 1 request)
                        */
                       reg &= ~(PCIX_CMD_SPLTRANS_MASK
                           | PCIX_CMD_BYTECNT_MASK);
                       reg |= PCIX_CMD_BCNT_2048;
               }
               pci_conf_write(sc->sc_pc, sc->sc_pcitag, sc->bge_pcixcap
                   + PCIX_CMD, reg & ~PCIX_CMD_RELAXED_ORDER);
       }

       /* 5718 reset step 10, 57XX step 12 */
       /* Enable memory arbiter. */
       if (BGE_IS_5714_FAMILY(sc)) {
               val = CSR_READ_4(sc, BGE_MARB_MODE);
               CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE | val);
       } else
               CSR_WRITE_4(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);

       /* XXX 5721, 5751 and 5752 */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5750) {
               /* Step 19: */
               BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, 1 << 29 | 1 << 25);
               /* Step 20: */
               BGE_SETBIT(sc, BGE_TLP_CONTROL_REG, BGE_TLP_DATA_FIFO_PROTECT);
       }

       /* 5718 reset step 12, 57XX step 15 and 16 */
       /* Fix up byte swapping */
       CSR_WRITE_4(sc, BGE_MODE_CTL, BGE_DMA_SWAP_OPTIONS);

       /* 5718 reset step 13, 57XX step 17 */
       /* Poll until the firmware initialization is complete */
       bge_poll_fw(sc);

       /* 57XX step 21 */
       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5704_BX) {
               pcireg_t msidata;

               msidata = pci_conf_read(sc->sc_pc, sc->sc_pcitag,
                   BGE_PCI_MSI_DATA);
               msidata |= ((1 << 13 | 1 << 12 | 1 << 10) << 16);
               pci_conf_write(sc->sc_pc, sc->sc_pcitag, BGE_PCI_MSI_DATA,
                   msidata);
       }

       /* 57XX step 18 */
       /* Write mac mode. */
       val = CSR_READ_4(sc, BGE_MAC_MODE);
       /* Restore mac_mode_mask's bits using mac_mode */
       val = (val & ~mac_mode_mask) | mac_mode;
       CSR_WRITE_4_FLUSH(sc, BGE_MAC_MODE, val);
       DELAY(40);

       bge_ape_unlock(sc, BGE_APE_LOCK_GRC);

       /*
        * The 5704 in TBI mode apparently needs some special
        * adjustment to insure the SERDES drive level is set
        * to 1.2V.
        */
       if (sc->bge_flags & BGEF_FIBER_TBI &&
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
               uint32_t serdescfg;

               serdescfg = CSR_READ_4(sc, BGE_SERDES_CFG);
               serdescfg = (serdescfg & ~0xFFF) | 0x880;
               CSR_WRITE_4(sc, BGE_SERDES_CFG, serdescfg);
       }

       if (sc->bge_flags & BGEF_PCIE &&
           !BGE_IS_57765_PLUS(sc) &&
           sc->bge_chipid != BGE_CHIPID_BCM5750_A0 &&
           BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5785) {
               uint32_t v;

               /* Enable PCI Express bug fix */
               v = CSR_READ_4(sc, BGE_TLP_CONTROL_REG);
               CSR_WRITE_4(sc, BGE_TLP_CONTROL_REG,
                   v | BGE_TLP_DATA_FIFO_PROTECT);
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720)
               BGE_CLRBIT(sc, BGE_CPMU_CLCK_ORIDE,
                   CPMU_CLCK_ORIDE_MAC_ORIDE_EN);

       return 0;
}

/*
* Frame reception handling. This is called if there's a frame
* on the receive return list.
*
* Note: we have to be able to handle two possibilities here:
* 1) the frame is from the jumbo receive ring
* 2) the frame is from the standard receive ring
*/

static void
bge_rxeof(struct bge_softc *sc)
{
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       uint16_t rx_prod, rx_cons;
       int stdcnt = 0, jumbocnt = 0;
       bus_dmamap_t dmamap;
       bus_addr_t offset, toff;
       bus_size_t tlen;
       int tosync;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_status_block),
           sizeof(struct bge_status_block),
           BUS_DMASYNC_POSTREAD);

       rx_cons = sc->bge_rx_saved_considx;
       rx_prod = sc->bge_rdata->bge_status_block.bge_idx[0].bge_rx_prod_idx;

       /* Nothing to do */
       if (rx_cons == rx_prod)
               return;

       offset = offsetof(struct bge_ring_data, bge_rx_return_ring);
       tosync = rx_prod - rx_cons;

       if (tosync != 0)
               rnd_add_uint32(&sc->rnd_source, tosync);

       toff = offset + (rx_cons * sizeof(struct bge_rx_bd));

       if (tosync < 0) {
               tlen = (sc->bge_return_ring_cnt - rx_cons) *
                   sizeof(struct bge_rx_bd);
               bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
                   toff, tlen, BUS_DMASYNC_POSTREAD);
               tosync = rx_prod;
               toff = offset;
       }

       if (tosync != 0) {
               bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
                   toff, tosync * sizeof(struct bge_rx_bd),
                   BUS_DMASYNC_POSTREAD);
       }

       while (rx_cons != rx_prod) {
               struct bge_rx_bd        *cur_rx;
               uint32_t                rxidx;
               struct mbuf             *m = NULL;

               cur_rx = &sc->bge_rdata->bge_rx_return_ring[rx_cons];

               rxidx = cur_rx->bge_idx;
               BGE_INC(rx_cons, sc->bge_return_ring_cnt);

               if (cur_rx->bge_flags & BGE_RXBDFLAG_JUMBO_RING) {
                       BGE_INC(sc->bge_jumbo, BGE_JUMBO_RX_RING_CNT);
                       m = sc->bge_cdata.bge_rx_jumbo_chain[rxidx];
                       sc->bge_cdata.bge_rx_jumbo_chain[rxidx] = NULL;
                       jumbocnt++;
                       bus_dmamap_sync(sc->bge_dmatag,
                           sc->bge_cdata.bge_rx_jumbo_map,
                           mtod(m, char *) - (char *)sc->bge_cdata.bge_jumbo_buf,
                           BGE_JLEN, BUS_DMASYNC_POSTREAD);
                       if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
                               if_statinc(ifp, if_ierrors);
                               bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
                               continue;
                       }
                       if (bge_newbuf_jumbo(sc, sc->bge_jumbo,
                                            NULL) == ENOBUFS) {
                               if_statinc(ifp, if_ierrors);
                               bge_newbuf_jumbo(sc, sc->bge_jumbo, m);
                               continue;
                       }
               } else {
                       m = sc->bge_cdata.bge_rx_std_chain[rxidx];
                       sc->bge_cdata.bge_rx_std_chain[rxidx] = NULL;

                       stdcnt++;
                       sc->bge_std_cnt--;

                       dmamap = sc->bge_cdata.bge_rx_std_map[rxidx];
                       bus_dmamap_sync(sc->bge_dmatag, dmamap, 0,
                           dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
                       bus_dmamap_unload(sc->bge_dmatag, dmamap);

                       if (cur_rx->bge_flags & BGE_RXBDFLAG_ERROR) {
                               m_free(m);
                               if_statinc(ifp, if_ierrors);
                               continue;
                       }
               }

#ifndef __NO_STRICT_ALIGNMENT
               /*
                * XXX: if the 5701 PCIX-Rx-DMA workaround is in effect,
                * the Rx buffer has the layer-2 header unaligned.
                * If our CPU requires alignment, re-align by copying.
                */
               if (sc->bge_flags & BGEF_RX_ALIGNBUG) {
                       memmove(mtod(m, char *) + ETHER_ALIGN, m->m_data,
                               cur_rx->bge_len);
                       m->m_data += ETHER_ALIGN;
               }
#endif

               m->m_pkthdr.len = m->m_len = cur_rx->bge_len - ETHER_CRC_LEN;
               m_set_rcvif(m, ifp);

               bge_rxcsum(sc, cur_rx, m);

               /*
                * If we received a packet with a vlan tag, pass it
                * to vlan_input() instead of ether_input().
                */
               if (cur_rx->bge_flags & BGE_RXBDFLAG_VLAN_TAG)
                       vlan_set_tag(m, cur_rx->bge_vlan_tag);

               if_percpuq_enqueue(ifp->if_percpuq, m);
       }

       sc->bge_rx_saved_considx = rx_cons;
       bge_writembx(sc, BGE_MBX_RX_CONS0_LO, sc->bge_rx_saved_considx);
       if (stdcnt)
               bge_fill_rx_ring_std(sc);
       if (jumbocnt)
               bge_writembx(sc, BGE_MBX_RX_JUMBO_PROD_LO, sc->bge_jumbo);
}

static void
bge_rxcsum(struct bge_softc *sc, struct bge_rx_bd *cur_rx, struct mbuf *m)
{

       if (BGE_IS_57765_PLUS(sc)) {
               if ((cur_rx->bge_flags & BGE_RXBDFLAG_IPV6) == 0) {
                       if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
                               m->m_pkthdr.csum_flags = M_CSUM_IPv4;
                       if ((cur_rx->bge_error_flag &
                               BGE_RXERRFLAG_IP_CSUM_NOK) != 0)
                               m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
                       if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM) {
                               m->m_pkthdr.csum_data =
                                   cur_rx->bge_tcp_udp_csum;
                               m->m_pkthdr.csum_flags |=
                                   (M_CSUM_TCPv4 | M_CSUM_UDPv4 |M_CSUM_DATA);
                       }
               }
       } else {
               if ((cur_rx->bge_flags & BGE_RXBDFLAG_IP_CSUM) != 0)
                       m->m_pkthdr.csum_flags = M_CSUM_IPv4;
               if ((cur_rx->bge_ip_csum ^ 0xffff) != 0)
                       m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
               /*
                * Rx transport checksum-offload may also
                * have bugs with packets which, when transmitted,
                * were `runts' requiring padding.
                */
               if (cur_rx->bge_flags & BGE_RXBDFLAG_TCP_UDP_CSUM &&
                   (/* (sc->_bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||*/
                           m->m_pkthdr.len >= ETHER_MIN_NOPAD)) {
                       m->m_pkthdr.csum_data =
                           cur_rx->bge_tcp_udp_csum;
                       m->m_pkthdr.csum_flags |=
                           (M_CSUM_TCPv4 | M_CSUM_UDPv4 | M_CSUM_DATA);
               }
       }
}

static void
bge_txeof(struct bge_softc *sc)
{
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       struct bge_tx_bd *cur_tx = NULL;
       struct txdmamap_pool_entry *dma;
       bus_addr_t offset, toff;
       bus_size_t tlen;
       int tosync;
       struct mbuf *m;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_status_block),
           sizeof(struct bge_status_block),
           BUS_DMASYNC_POSTREAD);

       const uint16_t hw_cons_idx =
           sc->bge_rdata->bge_status_block.bge_idx[0].bge_tx_cons_idx;
       offset = offsetof(struct bge_ring_data, bge_tx_ring);
       tosync = hw_cons_idx - sc->bge_tx_saved_considx;

       if (tosync != 0)
               rnd_add_uint32(&sc->rnd_source, tosync);

       toff = offset + (sc->bge_tx_saved_considx * sizeof(struct bge_tx_bd));

       if (tosync < 0) {
               tlen = (BGE_TX_RING_CNT - sc->bge_tx_saved_considx) *
                   sizeof(struct bge_tx_bd);
               bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
                   toff, tlen, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
               tosync = hw_cons_idx;
               toff = offset;
       }

       if (tosync != 0) {
               bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
                   toff, tosync * sizeof(struct bge_tx_bd),
                   BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
       }

       /*
        * Go through our tx ring and free mbufs for those
        * frames that have been sent.
        */
       while (sc->bge_tx_saved_considx != hw_cons_idx) {
               uint32_t idx = sc->bge_tx_saved_considx;
               cur_tx = &sc->bge_rdata->bge_tx_ring[idx];
               if (cur_tx->bge_flags & BGE_TXBDFLAG_END)
                       if_statinc(ifp, if_opackets);
               m = sc->bge_cdata.bge_tx_chain[idx];
               if (m != NULL) {
                       sc->bge_cdata.bge_tx_chain[idx] = NULL;
                       dma = sc->txdma[idx];
                       if (dma->is_dma32) {
                               bus_dmamap_sync(sc->bge_dmatag32, dma->dmamap32,
                                   0, dma->dmamap32->dm_mapsize,
                                   BUS_DMASYNC_POSTWRITE);
                               bus_dmamap_unload(
                                   sc->bge_dmatag32, dma->dmamap32);
                       } else {
                               bus_dmamap_sync(sc->bge_dmatag, dma->dmamap,
                                   0, dma->dmamap->dm_mapsize,
                                   BUS_DMASYNC_POSTWRITE);
                               bus_dmamap_unload(sc->bge_dmatag, dma->dmamap);
                       }
                       SLIST_INSERT_HEAD(&sc->txdma_list, dma, link);
                       sc->txdma[idx] = NULL;

                       m_freem(m);
               }
               sc->bge_txcnt--;
               BGE_INC(sc->bge_tx_saved_considx, BGE_TX_RING_CNT);
               sc->bge_tx_sending = false;
       }
}

static int
bge_intr(void *xsc)
{
       struct bge_softc * const sc = xsc;
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       uint32_t pcistate, statusword, statustag;
       uint32_t intrmask = BGE_PCISTATE_INTR_NOT_ACTIVE;

       /* 5717 and newer chips have no BGE_PCISTATE_INTR_NOT_ACTIVE bit */
       if (BGE_IS_5717_PLUS(sc))
               intrmask = 0;

       mutex_enter(sc->sc_intr_lock);
       if (sc->bge_txrx_stopping) {
               mutex_exit(sc->sc_intr_lock);
               return 1;
       }

       /*
        * It is possible for the interrupt to arrive before
        * the status block is updated prior to the interrupt.
        * Reading the PCI State register will confirm whether the
        * interrupt is ours and will flush the status block.
        */
       pcistate = CSR_READ_4(sc, BGE_PCI_PCISTATE);

       /* read status word from status block */
       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_status_block),
           sizeof(struct bge_status_block),
           BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
       statusword = sc->bge_rdata->bge_status_block.bge_status;
       statustag = sc->bge_rdata->bge_status_block.bge_status_tag << 24;

       if (sc->bge_flags & BGEF_TAGGED_STATUS) {
               if (sc->bge_lasttag == statustag &&
                   (~pcistate & intrmask)) {
                       BGE_EVCNT_INCR(sc->bge_ev_intr_spurious);
                       mutex_exit(sc->sc_intr_lock);
                       return 0;
               }
               sc->bge_lasttag = statustag;
       } else {
               if (!(statusword & BGE_STATFLAG_UPDATED) &&
                   !(~pcistate & intrmask)) {
                       BGE_EVCNT_INCR(sc->bge_ev_intr_spurious2);
                       mutex_exit(sc->sc_intr_lock);
                       return 0;
               }
               statustag = 0;
       }
       /* Ack interrupt and stop others from occurring. */
       bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);
       BGE_EVCNT_INCR(sc->bge_ev_intr);

       /* clear status word */
       sc->bge_rdata->bge_status_block.bge_status = 0;

       bus_dmamap_sync(sc->bge_dmatag, sc->bge_ring_map,
           offsetof(struct bge_ring_data, bge_status_block),
           sizeof(struct bge_status_block),
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
           statusword & BGE_STATFLAG_LINKSTATE_CHANGED ||
           BGE_STS_BIT(sc, BGE_STS_LINK_EVT))
               bge_link_upd(sc);

       /* Check RX return ring producer/consumer */
       bge_rxeof(sc);

       /* Check TX ring producer/consumer */
       bge_txeof(sc);

       if (sc->bge_pending_rxintr_change) {
               uint32_t rx_ticks = sc->bge_rx_coal_ticks;
               uint32_t rx_bds = sc->bge_rx_max_coal_bds;

               CSR_WRITE_4(sc, BGE_HCC_RX_COAL_TICKS, rx_ticks);
               DELAY(10);
               (void)CSR_READ_4(sc, BGE_HCC_RX_COAL_TICKS);

               CSR_WRITE_4(sc, BGE_HCC_RX_MAX_COAL_BDS, rx_bds);
               DELAY(10);
               (void)CSR_READ_4(sc, BGE_HCC_RX_MAX_COAL_BDS);

               sc->bge_pending_rxintr_change = false;
       }
       bge_handle_events(sc);

       /* Re-enable interrupts. */
       bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, statustag);

       if_schedule_deferred_start(ifp);

       mutex_exit(sc->sc_intr_lock);

       return 1;
}

static void
bge_asf_driver_up(struct bge_softc *sc)
{
       if (sc->bge_asf_mode & ASF_STACKUP) {
               /* Send ASF heartbeat approx. every 2s */
               if (sc->bge_asf_count)
                       sc->bge_asf_count --;
               else {
                       sc->bge_asf_count = 2;

                       bge_wait_for_event_ack(sc);

                       bge_writemem_ind(sc, BGE_SRAM_FW_CMD_MB,
                           BGE_FW_CMD_DRV_ALIVE3);
                       bge_writemem_ind(sc, BGE_SRAM_FW_CMD_LEN_MB, 4);
                       bge_writemem_ind(sc, BGE_SRAM_FW_CMD_DATA_MB,
                           BGE_FW_HB_TIMEOUT_SEC);
                       CSR_WRITE_4_FLUSH(sc, BGE_RX_CPU_EVENT,
                           CSR_READ_4(sc, BGE_RX_CPU_EVENT) |
                           BGE_RX_CPU_DRV_EVENT);
               }
       }
}

static void
bge_tick(void *xsc)
{
       struct bge_softc * const sc = xsc;
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       struct mii_data * const mii = &sc->bge_mii;

       mutex_enter(sc->sc_intr_lock);

       if (BGE_IS_5705_PLUS(sc))
               bge_stats_update_regs(sc);
       else
               bge_stats_update(sc);

       if (sc->bge_flags & BGEF_FIBER_TBI) {
               /*
                * Since in TBI mode auto-polling can't be used we should poll
                * link status manually. Here we register pending link event
                * and trigger interrupt.
                */
               BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
               BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
       } else {
               /*
                * Do not touch PHY if we have link up. This could break
                * IPMI/ASF mode or produce extra input errors.
                * (extra input errors was reported for bcm5701 & bcm5704).
                */
               if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
                       mii_tick(mii);
               }
       }

       bge_asf_driver_up(sc);

       const bool ok = bge_watchdog_tick(ifp);
       if (ok)
               callout_schedule(&sc->bge_timeout, hz);
       mutex_exit(sc->sc_intr_lock);
}

static void
bge_stats_update_regs(struct bge_softc *sc)
{
       struct ifnet * const ifp = &sc->ethercom.ec_if;

       net_stat_ref_t nsr = IF_STAT_GETREF(ifp);

       if_statadd_ref(ifp, nsr, if_collisions,
           CSR_READ_4(sc, BGE_MAC_STATS +
           offsetof(struct bge_mac_stats_regs, etherStatsCollisions)));

       /*
        * On BCM5717, BCM5718, BCM5719 A0 and BCM5720 A0,
        * RXLP_LOCSTAT_IFIN_DROPS includes unwanted multicast frames
        * (silicon bug). There's no reliable workaround so just
        * ignore the counter
        */
       if (BGE_ASICREV(sc->bge_chipid) != BGE_ASICREV_BCM5717 &&
           sc->bge_chipid != BGE_CHIPID_BCM5719_A0 &&
           sc->bge_chipid != BGE_CHIPID_BCM5720_A0) {
               if_statadd_ref(ifp, nsr, if_ierrors,
                   CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_DROPS));
       }
       if_statadd_ref(ifp, nsr, if_ierrors,
           CSR_READ_4(sc, BGE_RXLP_LOCSTAT_IFIN_ERRORS));
       if_statadd_ref(ifp, nsr, if_ierrors,
           CSR_READ_4(sc, BGE_RXLP_LOCSTAT_OUT_OF_BDS));

       IF_STAT_PUTREF(ifp);

       if (sc->bge_flags & BGEF_RDMA_BUG) {
               uint32_t val, ucast, mcast, bcast;

               ucast = CSR_READ_4(sc, BGE_MAC_STATS +
                   offsetof(struct bge_mac_stats_regs, ifHCOutUcastPkts));
               mcast = CSR_READ_4(sc, BGE_MAC_STATS +
                   offsetof(struct bge_mac_stats_regs, ifHCOutMulticastPkts));
               bcast = CSR_READ_4(sc, BGE_MAC_STATS +
                   offsetof(struct bge_mac_stats_regs, ifHCOutBroadcastPkts));

               /*
                * If controller transmitted more than BGE_NUM_RDMA_CHANNELS
                * frames, it's safe to disable workaround for DMA engine's
                * miscalculation of TXMBUF space.
                */
               if (ucast + mcast + bcast > BGE_NUM_RDMA_CHANNELS) {
                       val = CSR_READ_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL);
                       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5719)
                               val &= ~BGE_RDMA_TX_LENGTH_WA_5719;
                       else
                               val &= ~BGE_RDMA_TX_LENGTH_WA_5720;
                       CSR_WRITE_4(sc, BGE_RDMA_LSO_CRPTEN_CTRL, val);
                       sc->bge_flags &= ~BGEF_RDMA_BUG;
               }
       }
}

static void
bge_stats_update(struct bge_softc *sc)
{
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       bus_size_t stats = BGE_MEMWIN_START + BGE_STATS_BLOCK;

#define READ_STAT(sc, stats, stat) \
         CSR_READ_4(sc, stats + offsetof(struct bge_stats, stat))

       uint64_t collisions =
         (READ_STAT(sc, stats, dot3StatsSingleCollisionFrames.bge_addr_lo) +
          READ_STAT(sc, stats, dot3StatsMultipleCollisionFrames.bge_addr_lo) +
          READ_STAT(sc, stats, dot3StatsExcessiveCollisions.bge_addr_lo) +
          READ_STAT(sc, stats, dot3StatsLateCollisions.bge_addr_lo));

       if_statadd(ifp, if_collisions, collisions - sc->bge_if_collisions);
       sc->bge_if_collisions = collisions;


       BGE_EVCNT_UPD(sc->bge_ev_tx_xoff,
                     READ_STAT(sc, stats, outXoffSent.bge_addr_lo));
       BGE_EVCNT_UPD(sc->bge_ev_tx_xon,
                     READ_STAT(sc, stats, outXonSent.bge_addr_lo));
       BGE_EVCNT_UPD(sc->bge_ev_rx_xoff,
                     READ_STAT(sc, stats,
                               xoffPauseFramesReceived.bge_addr_lo));
       BGE_EVCNT_UPD(sc->bge_ev_rx_xon,
                     READ_STAT(sc, stats, xonPauseFramesReceived.bge_addr_lo));
       BGE_EVCNT_UPD(sc->bge_ev_rx_macctl,
                     READ_STAT(sc, stats,
                               macControlFramesReceived.bge_addr_lo));
       BGE_EVCNT_UPD(sc->bge_ev_xoffentered,
                     READ_STAT(sc, stats, xoffStateEntered.bge_addr_lo));

#undef READ_STAT
}

/*
* Pad outbound frame to ETHER_MIN_NOPAD for an unusual reason.
* The bge hardware will pad out Tx runts to ETHER_MIN_NOPAD,
* but when such padded frames employ the  bge IP/TCP checksum offload,
* the hardware checksum assist gives incorrect results (possibly
* from incorporating its own padding into the UDP/TCP checksum; who knows).
* If we pad such runts with zeros, the onboard checksum comes out correct.
*/
static inline int
bge_cksum_pad(struct mbuf *pkt)
{
       struct mbuf *last = NULL;
       int padlen;

       padlen = ETHER_MIN_NOPAD - pkt->m_pkthdr.len;

       /* if there's only the packet-header and we can pad there, use it. */
       if (pkt->m_pkthdr.len == pkt->m_len &&
           M_TRAILINGSPACE(pkt) >= padlen) {
               last = pkt;
       } else {
               /*
                * Walk packet chain to find last mbuf. We will either
                * pad there, or append a new mbuf and pad it
                * (thus perhaps avoiding the bcm5700 dma-min bug).
                */
               for (last = pkt; last->m_next != NULL; last = last->m_next) {
                       continue; /* do nothing */
               }

               /* `last' now points to last in chain. */
               if (M_TRAILINGSPACE(last) < padlen) {
                       /* Allocate new empty mbuf, pad it. Compact later. */
                       struct mbuf *n;
                       MGET(n, M_DONTWAIT, MT_DATA);
                       if (n == NULL)
                               return ENOBUFS;
                       MCLAIM(n, last->m_owner);
                       n->m_len = 0;
                       last->m_next = n;
                       last = n;
               }
       }

       KDASSERT(!M_READONLY(last));
       KDASSERT(M_TRAILINGSPACE(last) >= padlen);

       /* Now zero the pad area, to avoid the bge cksum-assist bug */
       memset(mtod(last, char *) + last->m_len, 0, padlen);
       last->m_len += padlen;
       pkt->m_pkthdr.len += padlen;
       return 0;
}

/*
* Compact outbound packets to avoid bug with DMA segments less than 8 bytes.
*/
static inline int
bge_compact_dma_runt(struct mbuf *pkt)
{
       struct mbuf     *m, *prev;
       int             totlen;

       prev = NULL;
       totlen = 0;

       for (m = pkt; m != NULL; prev = m, m = m->m_next) {
               int mlen = m->m_len;
               int shortfall = 8 - mlen ;

               totlen += mlen;
               if (mlen == 0)
                       continue;
               if (mlen >= 8)
                       continue;

               /*
                * If we get here, mbuf data is too small for DMA engine.
                * Try to fix by shuffling data to prev or next in chain.
                * If that fails, do a compacting deep-copy of the whole chain.
                */

               /* Internal frag. If fits in prev, copy it there. */
               if (prev && M_TRAILINGSPACE(prev) >= m->m_len) {
                       memcpy(prev->m_data + prev->m_len, m->m_data, mlen);
                       prev->m_len += mlen;
                       m->m_len = 0;
                       /* XXX stitch chain */
                       prev->m_next = m_free(m);
                       m = prev;
                       continue;
               } else if (m->m_next != NULL &&
                           M_TRAILINGSPACE(m) >= shortfall &&
                           m->m_next->m_len >= (8 + shortfall)) {
                   /* m is writable and have enough data in next, pull up. */

                       memcpy(m->m_data + m->m_len, m->m_next->m_data,
                           shortfall);
                       m->m_len += shortfall;
                       m->m_next->m_len -= shortfall;
                       m->m_next->m_data += shortfall;
               } else if (m->m_next == NULL || 1) {
                       /*
                        * Got a runt at the very end of the packet.
                        * borrow data from the tail of the preceding mbuf and
                        * update its length in-place. (The original data is
                        * still valid, so we can do this even if prev is not
                        * writable.)
                        */

                       /*
                        * If we'd make prev a runt, just move all of its data.
                        */
                       KASSERT(prev != NULL /*, ("runt but null PREV")*/);
                       KASSERT(prev->m_len >= 8 /*, ("runt prev")*/);

                       if ((prev->m_len - shortfall) < 8)
                               shortfall = prev->m_len;

#ifdef notyet   /* just do the safe slow thing for now */
                       if (!M_READONLY(m)) {
                               if (M_LEADINGSPACE(m) < shorfall) {
                                       void *m_dat;
                                       m_dat = M_BUFADDR(m);
                                       memmove(m_dat, mtod(m, void*),
                                           m->m_len);
                                       m->m_data = m_dat;
                               }
                       } else
#endif  /* just do the safe slow thing */
                       {
                               struct mbuf * n = NULL;
                               int newprevlen = prev->m_len - shortfall;

                               MGET(n, M_NOWAIT, MT_DATA);
                               if (n == NULL)
                                  return ENOBUFS;
                               MCLAIM(n, prev->m_owner);
                               KASSERT(m->m_len + shortfall < MLEN
                                       /*,
                                         ("runt %d +prev %d too big\n", m->m_len, shortfall)*/);

                               /* first copy the data we're stealing from prev */
                               memcpy(n->m_data, prev->m_data + newprevlen,
                                   shortfall);

                               /* update prev->m_len accordingly */
                               prev->m_len -= shortfall;

                               /* copy data from runt m */
                               memcpy(n->m_data + shortfall, m->m_data,
                                   m->m_len);

                               /* n holds what we stole from prev, plus m */
                               n->m_len = shortfall + m->m_len;

                               /* stitch n into chain and free m */
                               n->m_next = m->m_next;
                               prev->m_next = n;
                               /* KASSERT(m->m_next == NULL); */
                               m->m_next = NULL;
                               m_free(m);
                               m = n;  /* for continuing loop */
                       }
               }
       }
       return 0;
}

/*
* Encapsulate an mbuf chain in the tx ring by coupling the mbuf data
* pointers to descriptors.
*/
static int
bge_encap(struct bge_softc *sc, struct mbuf *m_head, uint32_t *txidx)
{
       struct bge_tx_bd        *f, *prev_f;
       uint32_t                frag, cur;
       uint16_t                csum_flags = 0;
       uint16_t                txbd_tso_flags = 0;
       struct txdmamap_pool_entry *dma;
       bus_dmamap_t dmamap;
       bus_dma_tag_t dmatag;
       int                     i = 0;
       int                     use_tso, maxsegsize, error;
       bool                    have_vtag;
       uint16_t                vtag;
       bool                    remap;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       if (m_head->m_pkthdr.csum_flags) {
               if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
                       csum_flags |= BGE_TXBDFLAG_IP_CSUM;
               if (m_head->m_pkthdr.csum_flags & (M_CSUM_TCPv4 |M_CSUM_UDPv4))
                       csum_flags |= BGE_TXBDFLAG_TCP_UDP_CSUM;
       }

       /*
        * If we were asked to do an outboard checksum, and the NIC
        * has the bug where it sometimes adds in the Ethernet padding,
        * explicitly pad with zeros so the cksum will be correct either way.
        * (For now, do this for all chip versions, until newer
        * are confirmed to not require the workaround.)
        */
       if ((csum_flags & BGE_TXBDFLAG_TCP_UDP_CSUM) == 0 ||
#ifdef notyet
           (sc->bge_quirks & BGE_QUIRK_SHORT_CKSUM_BUG) == 0 ||
#endif
           m_head->m_pkthdr.len >= ETHER_MIN_NOPAD)
               goto check_dma_bug;

       if (bge_cksum_pad(m_head) != 0)
               return ENOBUFS;

check_dma_bug:
       if (!(BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX))
               goto doit;

       /*
        * bcm5700 Revision B silicon cannot handle DMA descriptors with
        * less than eight bytes.  If we encounter a teeny mbuf
        * at the end of a chain, we can pad.  Otherwise, copy.
        */
       if (bge_compact_dma_runt(m_head) != 0)
               return ENOBUFS;

doit:
       dma = SLIST_FIRST(&sc->txdma_list);
       if (dma == NULL) {
               return ENOBUFS;
       }
       dmamap = dma->dmamap;
       dmatag = sc->bge_dmatag;
       dma->is_dma32 = false;

       /*
        * Set up any necessary TSO state before we start packing...
        */
       use_tso = (m_head->m_pkthdr.csum_flags & M_CSUM_TSOv4) != 0;
       if (!use_tso) {
               maxsegsize = 0;
       } else {        /* TSO setup */
               unsigned  mss;
               struct ether_header *eh;
               unsigned ip_tcp_hlen, iptcp_opt_words, tcp_seg_flags, offset;
               unsigned bge_hlen;
               struct mbuf * m0 = m_head;
               struct ip *ip;
               struct tcphdr *th;
               int iphl, hlen;

               /*
                * XXX It would be nice if the mbuf pkthdr had offset
                * fields for the protocol headers.
                */

               eh = mtod(m0, struct ether_header *);
               switch (htons(eh->ether_type)) {
               case ETHERTYPE_IP:
                       offset = ETHER_HDR_LEN;
                       break;

               case ETHERTYPE_VLAN:
                       offset = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
                       break;

               default:
                       /*
                        * Don't support this protocol or encapsulation.
                        */
                       return ENOBUFS;
               }

               /*
                * TCP/IP headers are in the first mbuf; we can do
                * this the easy way.
                */
               iphl = M_CSUM_DATA_IPv4_IPHL(m0->m_pkthdr.csum_data);
               hlen = iphl + offset;
               if (__predict_false(m0->m_len <
                                   (hlen + sizeof(struct tcphdr)))) {

                       aprint_error_dev(sc->bge_dev,
                           "TSO: hard case m0->m_len == %d < ip/tcp hlen %zd,"
                           "not handled yet\n",
                           m0->m_len, hlen+ sizeof(struct tcphdr));
#ifdef NOTYET
                       /*
                        * XXX [email protected]: untested.
                        * how to force this branch to be taken?
                        */
                       BGE_EVCNT_INCR(sc->bge_ev_txtsopain);

                       m_copydata(m0, offset, sizeof(ip), &ip);
                       m_copydata(m0, hlen, sizeof(th), &th);

                       ip.ip_len = 0;

                       m_copyback(m0, hlen + offsetof(struct ip, ip_len),
                           sizeof(ip.ip_len), &ip.ip_len);

                       th.th_sum = in_cksum_phdr(ip.ip_src.s_addr,
                           ip.ip_dst.s_addr, htons(IPPROTO_TCP));

                       m_copyback(m0, hlen + offsetof(struct tcphdr, th_sum),
                           sizeof(th.th_sum), &th.th_sum);

                       hlen += th.th_off << 2;
                       iptcp_opt_words = hlen;
#else
                       /*
                        * if_wm "hard" case not yet supported, can we not
                        * mandate it out of existence?
                        */
                       (void) ip; (void)th; (void) ip_tcp_hlen;

                       return ENOBUFS;
#endif
               } else {
                       ip = (struct ip *) (mtod(m0, char *) + offset);
                       th = (struct tcphdr *) (mtod(m0, char *) + hlen);
                       ip_tcp_hlen = iphl +  (th->th_off << 2);

                       /* Total IP/TCP options, in 32-bit words */
                       iptcp_opt_words = (ip_tcp_hlen
                                          - sizeof(struct tcphdr)
                                          - sizeof(struct ip)) >> 2;
               }
               if (BGE_IS_575X_PLUS(sc)) {
                       th->th_sum = 0;
                       csum_flags = 0;
               } else {
                       /*
                        * XXX [email protected]: 5705 untested.
                        * Requires TSO firmware patch for 5701/5703/5704.
                        */
                       th->th_sum = in_cksum_phdr(ip->ip_src.s_addr,
                           ip->ip_dst.s_addr, htons(IPPROTO_TCP));
               }

               mss = m_head->m_pkthdr.segsz;
               txbd_tso_flags |=
                   BGE_TXBDFLAG_CPU_PRE_DMA |
                   BGE_TXBDFLAG_CPU_POST_DMA;

               /*
                * Our NIC TSO-assist assumes TSO has standard, optionless
                * IPv4 and TCP headers, which total 40 bytes. By default,
                * the NIC copies 40 bytes of IP/TCP header from the
                * supplied header into the IP/TCP header portion of
                * each post-TSO-segment. If the supplied packet has IP or
                * TCP options, we need to tell the NIC to copy those extra
                * bytes into each  post-TSO header, in addition to the normal
                * 40-byte IP/TCP header (and to leave space accordingly).
                * Unfortunately, the driver encoding of option length
                * varies across different ASIC families.
                */
               tcp_seg_flags = 0;
               bge_hlen = ip_tcp_hlen >> 2;
               if (BGE_IS_5717_PLUS(sc)) {
                       tcp_seg_flags = (bge_hlen & 0x3) << 14;
                       txbd_tso_flags |=
                           ((bge_hlen & 0xF8) << 7) | ((bge_hlen & 0x4) << 2);
               } else if (BGE_IS_5705_PLUS(sc)) {
                       tcp_seg_flags = bge_hlen << 11;
               } else {
                       /* XXX iptcp_opt_words or bge_hlen ? */
                       txbd_tso_flags |= iptcp_opt_words << 12;
               }
               maxsegsize = mss | tcp_seg_flags;
               ip->ip_len = htons(mss + ip_tcp_hlen);
               ip->ip_sum = 0;

       }       /* TSO setup */

       have_vtag = vlan_has_tag(m_head);
       if (have_vtag)
               vtag = vlan_get_tag(m_head);

       /*
        * Start packing the mbufs in this chain into
        * the fragment pointers. Stop when we run out
        * of fragments or hit the end of the mbuf chain.
        */
       remap = true;
load_again:
       error = bus_dmamap_load_mbuf(dmatag, dmamap, m_head, BUS_DMA_NOWAIT);
       if (__predict_false(error)) {
               if (error == EFBIG && remap) {
                       struct mbuf *m;
                       remap = false;
                       m = m_defrag(m_head, M_NOWAIT);
                       if (m != NULL) {
                               KASSERT(m == m_head);
                               goto load_again;
                       }
               }
               return error;
       }
       /*
        * Sanity check: avoid coming within 16 descriptors
        * of the end of the ring.
        */
       if (dmamap->dm_nsegs > (BGE_TX_RING_CNT - sc->bge_txcnt - 16)) {
               BGE_TSO_PRINTF(("%s: "
                   " dmamap_load_mbuf too close to ring wrap\n",
                   device_xname(sc->bge_dev)));
               goto fail_unload;
       }

       /* Iterate over dmap-map fragments. */
       f = prev_f = NULL;
       cur = frag = *txidx;

       for (i = 0; i < dmamap->dm_nsegs; i++) {
               f = &sc->bge_rdata->bge_tx_ring[frag];
               if (sc->bge_cdata.bge_tx_chain[frag] != NULL)
                       break;

               BGE_HOSTADDR(f->bge_addr, dmamap->dm_segs[i].ds_addr);
               f->bge_len = dmamap->dm_segs[i].ds_len;
               if (sizeof(bus_addr_t) > 4 && dma->is_dma32 == false && use_tso && (
                   (dmamap->dm_segs[i].ds_addr & 0xffffffff00000000) !=
                   ((dmamap->dm_segs[i].ds_addr + f->bge_len) & 0xffffffff00000000) ||
                   (prev_f != NULL &&
                    prev_f->bge_addr.bge_addr_hi != f->bge_addr.bge_addr_hi))
                  ) {
                       /*
                        * watchdog timeout issue was observed with TSO,
                        * limiting DMA address space to 32bits seems to
                        * address the issue.
                        */
                       bus_dmamap_unload(dmatag, dmamap);
                       dmatag = sc->bge_dmatag32;
                       dmamap = dma->dmamap32;
                       dma->is_dma32 = true;
                       remap = true;
                       goto load_again;
               }

               /*
                * For 5751 and follow-ons, for TSO we must turn
                * off checksum-assist flag in the tx-descr, and
                * supply the ASIC-revision-specific encoding
                * of TSO flags and segsize.
                */
               if (use_tso) {
                       if (BGE_IS_575X_PLUS(sc) || i == 0) {
                               f->bge_rsvd = maxsegsize;
                               f->bge_flags = csum_flags | txbd_tso_flags;
                       } else {
                               f->bge_rsvd = 0;
                               f->bge_flags =
                                 (csum_flags | txbd_tso_flags) & 0x0fff;
                       }
               } else {
                       f->bge_rsvd = 0;
                       f->bge_flags = csum_flags;
               }

               if (have_vtag) {
                       f->bge_flags |= BGE_TXBDFLAG_VLAN_TAG;
                       f->bge_vlan_tag = vtag;
               } else {
                       f->bge_vlan_tag = 0;
               }
               prev_f = f;
               cur = frag;
               BGE_INC(frag, BGE_TX_RING_CNT);
       }

       if (i < dmamap->dm_nsegs) {
               BGE_TSO_PRINTF(("%s: reached %d < dm_nsegs %d\n",
                   device_xname(sc->bge_dev), i, dmamap->dm_nsegs));
               goto fail_unload;
       }

       bus_dmamap_sync(dmatag, dmamap, 0, dmamap->dm_mapsize,
           BUS_DMASYNC_PREWRITE);

       if (frag == sc->bge_tx_saved_considx) {
               BGE_TSO_PRINTF(("%s: frag %d = wrapped id %d?\n",
                   device_xname(sc->bge_dev), frag, sc->bge_tx_saved_considx));

               goto fail_unload;
       }

       sc->bge_rdata->bge_tx_ring[cur].bge_flags |= BGE_TXBDFLAG_END;
       sc->bge_cdata.bge_tx_chain[cur] = m_head;
       SLIST_REMOVE_HEAD(&sc->txdma_list, link);
       sc->txdma[cur] = dma;
       sc->bge_txcnt += dmamap->dm_nsegs;

       *txidx = frag;

       return 0;

fail_unload:
       bus_dmamap_unload(dmatag, dmamap);

       return ENOBUFS;
}


static void
bge_start(struct ifnet *ifp)
{
       struct bge_softc * const sc = ifp->if_softc;

       mutex_enter(sc->sc_intr_lock);
       if (!sc->bge_txrx_stopping)
               bge_start_locked(ifp);
       mutex_exit(sc->sc_intr_lock);
}

/*
* Main transmit routine. To avoid having to do mbuf copies, we put pointers
* to the mbuf data regions directly in the transmit descriptors.
*/
static void
bge_start_locked(struct ifnet *ifp)
{
       struct bge_softc * const sc = ifp->if_softc;
       struct mbuf *m_head = NULL;
       struct mbuf *m;
       uint32_t prodidx;
       int pkts = 0;
       int error;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       prodidx = sc->bge_tx_prodidx;

       while (sc->bge_cdata.bge_tx_chain[prodidx] == NULL) {
               IFQ_POLL(&ifp->if_snd, m_head);
               if (m_head == NULL)
                       break;

#if 0
               /*
                * XXX
                * safety overkill.  If this is a fragmented packet chain
                * with delayed TCP/UDP checksums, then only encapsulate
                * it if we have enough descriptors to handle the entire
                * chain at once.
                * (paranoia -- may not actually be needed)
                */
               if (m_head->m_flags & M_FIRSTFRAG &&
                   m_head->m_pkthdr.csum_flags & (CSUM_DELAY_DATA)) {
                       if ((BGE_TX_RING_CNT - sc->bge_txcnt) <
                           M_CSUM_DATA_IPv4_OFFSET(m_head->m_pkthdr.csum_data) + 16) {
                               ifp->if_flags |= IFF_OACTIVE;
                               break;
                       }
               }
#endif

               /*
                * Pack the data into the transmit ring. If we
                * don't have room, set the OACTIVE flag and wait
                * for the NIC to drain the ring.
                */
               error = bge_encap(sc, m_head, &prodidx);
               if (__predict_false(error)) {
                       if (SLIST_EMPTY(&sc->txdma_list)) {
                               /* just wait for the transmit ring to drain */
                               break;
                       }
                       IFQ_DEQUEUE(&ifp->if_snd, m);
                       KASSERT(m == m_head);
                       m_freem(m_head);
                       continue;
               }

               /* now we are committed to transmit the packet */
               IFQ_DEQUEUE(&ifp->if_snd, m);
               KASSERT(m == m_head);
               pkts++;

               /*
                * If there's a BPF listener, bounce a copy of this frame
                * to him.
                */
               bpf_mtap(ifp, m_head, BPF_D_OUT);
       }
       if (pkts == 0)
               return;

       /* Transmit */
       bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);
       /* 5700 b2 errata */
       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5700_BX)
               bge_writembx(sc, BGE_MBX_TX_HOST_PROD0_LO, prodidx);

       sc->bge_tx_prodidx = prodidx;
       sc->bge_tx_lastsent = time_uptime;
       sc->bge_tx_sending = true;
}

static int
bge_init(struct ifnet *ifp)
{
       struct bge_softc * const sc = ifp->if_softc;
       const uint16_t *m;
       uint32_t mode, reg;
       int error = 0;

       ASSERT_SLEEPABLE();
       KASSERT(IFNET_LOCKED(ifp));
       KASSERT(ifp == &sc->ethercom.ec_if);

       if (sc->bge_detaching)
               return ENXIO;

       /* Cancel pending I/O and flush buffers. */
       bge_stop(ifp, 0);

       bge_stop_fw(sc);
       bge_sig_pre_reset(sc, BGE_RESET_START);
       bge_reset(sc);
       bge_sig_legacy(sc, BGE_RESET_START);

       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
               reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
               reg &= ~(BGE_CPMU_CTRL_LINK_AWARE_MODE |
                   BGE_CPMU_CTRL_LINK_IDLE_MODE);
               CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);

               reg = CSR_READ_4(sc, BGE_CPMU_LSPD_10MB_CLK);
               reg &= ~BGE_CPMU_LSPD_10MB_CLK;
               reg |= BGE_CPMU_LSPD_10MB_MACCLK_6_25;
               CSR_WRITE_4(sc, BGE_CPMU_LSPD_10MB_CLK, reg);

               reg = CSR_READ_4(sc, BGE_CPMU_LNK_AWARE_PWRMD);
               reg &= ~BGE_CPMU_LNK_AWARE_MACCLK_MASK;
               reg |= BGE_CPMU_LNK_AWARE_MACCLK_6_25;
               CSR_WRITE_4(sc, BGE_CPMU_LNK_AWARE_PWRMD, reg);

               reg = CSR_READ_4(sc, BGE_CPMU_HST_ACC);
               reg &= ~BGE_CPMU_HST_ACC_MACCLK_MASK;
               reg |= BGE_CPMU_HST_ACC_MACCLK_6_25;
               CSR_WRITE_4(sc, BGE_CPMU_HST_ACC, reg);
       }

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM57780) {
               pcireg_t aercap;

               reg = CSR_READ_4(sc, BGE_PCIE_PWRMNG_THRESH);
               reg = (reg & ~BGE_PCIE_PWRMNG_L1THRESH_MASK)
                   | BGE_PCIE_PWRMNG_L1THRESH_4MS
                   | BGE_PCIE_PWRMNG_EXTASPMTMR_EN;
               CSR_WRITE_4(sc, BGE_PCIE_PWRMNG_THRESH, reg);

               reg = CSR_READ_4(sc, BGE_PCIE_EIDLE_DELAY);
               reg = (reg & ~BGE_PCIE_EIDLE_DELAY_MASK)
                   | BGE_PCIE_EIDLE_DELAY_13CLK;
               CSR_WRITE_4(sc, BGE_PCIE_EIDLE_DELAY, reg);

               /* Clear correctable error */
               if (pci_get_ext_capability(sc->sc_pc, sc->sc_pcitag,
                   PCI_EXTCAP_AER, &aercap, NULL) != 0)
                       pci_conf_write(sc->sc_pc, sc->sc_pcitag,
                           aercap + PCI_AER_COR_STATUS, 0xffffffff);

               reg = CSR_READ_4(sc, BGE_PCIE_LINKCTL);
               reg = (reg & ~BGE_PCIE_LINKCTL_L1_PLL_PDEN)
                   | BGE_PCIE_LINKCTL_L1_PLL_PDDIS;
               CSR_WRITE_4(sc, BGE_PCIE_LINKCTL, reg);
       }

       bge_sig_post_reset(sc, BGE_RESET_START);

       bge_chipinit(sc);

       /*
        * Init the various state machines, ring
        * control blocks and firmware.
        */
       error = bge_blockinit(sc);
       if (error != 0) {
               aprint_error_dev(sc->bge_dev, "initialization error %d\n",
                   error);
               return error;
       }

       /* 5718 step 25, 57XX step 54 */
       /* Specify MTU. */
       CSR_WRITE_4(sc, BGE_RX_MTU, ifp->if_mtu +
           ETHER_HDR_LEN + ETHER_CRC_LEN + ETHER_VLAN_ENCAP_LEN);

       /* 5718 step 23 */
       /* Load our MAC address. */
       m = (const uint16_t *)&(CLLADDR(ifp->if_sadl)[0]);
       CSR_WRITE_4(sc, BGE_MAC_ADDR1_LO, htons(m[0]));
       CSR_WRITE_4(sc, BGE_MAC_ADDR1_HI,
           ((uint32_t)htons(m[1]) << 16) | htons(m[2]));

       /* Enable or disable promiscuous mode as needed. */
       if (ifp->if_flags & IFF_PROMISC)
               BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
       else
               BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);

       /* Program multicast filter. */
       mutex_enter(sc->sc_mcast_lock);
       bge_setmulti(sc);
       mutex_exit(sc->sc_mcast_lock);

       /* Init RX ring. */
       bge_init_rx_ring_std(sc);

       /*
        * Workaround for a bug in 5705 ASIC rev A0. Poll the NIC's
        * memory to insure that the chip has in fact read the first
        * entry of the ring.
        */
       if (sc->bge_chipid == BGE_CHIPID_BCM5705_A0) {
               u_int i;
               for (i = 0; i < 10; i++) {
                       DELAY(20);
                       uint32_t v = bge_readmem_ind(sc, BGE_STD_RX_RINGS + 8);
                       if (v == (MCLBYTES - ETHER_ALIGN))
                               break;
               }
               if (i == 10)
                       aprint_error_dev(sc->bge_dev,
                           "5705 A0 chip failed to load RX ring\n");
       }

       /* Init jumbo RX ring. */
       if (ifp->if_mtu > (ETHERMTU + ETHER_HDR_LEN + ETHER_CRC_LEN))
               bge_init_rx_ring_jumbo(sc);

       /* Init our RX return ring index */
       sc->bge_rx_saved_considx = 0;

       /* Init TX ring. */
       bge_init_tx_ring(sc);

       /* 5718 step 63, 57XX step 94 */
       /* Enable TX MAC state machine lockup fix. */
       mode = CSR_READ_4(sc, BGE_TX_MODE);
       if (BGE_IS_5755_PLUS(sc) ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
               mode |= BGE_TXMODE_MBUF_LOCKUP_FIX;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5720 ||
           BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762) {
               mode &= ~(BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
               mode |= CSR_READ_4(sc, BGE_TX_MODE) &
                   (BGE_TXMODE_JMB_FRM_LEN | BGE_TXMODE_CNT_DN_MODE);
       }

       /* Turn on transmitter */
       CSR_WRITE_4_FLUSH(sc, BGE_TX_MODE, mode | BGE_TXMODE_ENABLE);
       /* 5718 step 64 */
       DELAY(100);

       /* 5718 step 65, 57XX step 95 */
       /* Turn on receiver */
       mode = CSR_READ_4(sc, BGE_RX_MODE);
       if (BGE_IS_5755_PLUS(sc))
               mode |= BGE_RXMODE_IPV6_ENABLE;
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5762)
               mode |= BGE_RXMODE_IPV4_FRAG_FIX;
       CSR_WRITE_4_FLUSH(sc, BGE_RX_MODE, mode | BGE_RXMODE_ENABLE);
       /* 5718 step 66 */
       DELAY(10);

       /* 5718 step 12, 57XX step 37 */
       /*
        * XXX Documents of 5718 series and 577xx say the recommended value
        * is 1, but tg3 set 1 only on 57765 series.
        */
       if (BGE_IS_57765_PLUS(sc))
               reg = 1;
       else
               reg = 2;
       CSR_WRITE_4_FLUSH(sc, BGE_MAX_RX_FRAME_LOWAT, reg);

       /* Tell firmware we're alive. */
       BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);

       /* Enable host interrupts. */
       BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_CLEAR_INTA);
       BGE_CLRBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
       bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 0);

       mutex_enter(sc->sc_intr_lock);
       if ((error = bge_ifmedia_upd(ifp)) == 0) {
               sc->bge_txrx_stopping = false;

               /* IFNET_LOCKED asserted above */
               ifp->if_flags |= IFF_RUNNING;

               callout_schedule(&sc->bge_timeout, hz);
       }
       mutex_exit(sc->sc_intr_lock);

       mutex_enter(sc->sc_mcast_lock);
       sc->bge_if_flags = ifp->if_flags;
       mutex_exit(sc->sc_mcast_lock);

       return error;
}

/*
* Set media options.
*/
static int
bge_ifmedia_upd(struct ifnet *ifp)
{
       struct bge_softc * const sc = ifp->if_softc;
       struct mii_data * const mii = &sc->bge_mii;
       struct ifmedia * const ifm = &sc->bge_ifmedia;
       int rc;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       /* If this is a 1000baseX NIC, enable the TBI port. */
       if (sc->bge_flags & BGEF_FIBER_TBI) {
               if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
                       return EINVAL;
               switch (IFM_SUBTYPE(ifm->ifm_media)) {
               case IFM_AUTO:
                       /*
                        * The BCM5704 ASIC appears to have a special
                        * mechanism for programming the autoneg
                        * advertisement registers in TBI mode.
                        */
                       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5704) {
                               uint32_t sgdig;
                               sgdig = CSR_READ_4(sc, BGE_SGDIG_STS);
                               if (sgdig & BGE_SGDIGSTS_DONE) {
                                       CSR_WRITE_4(sc, BGE_TX_TBI_AUTONEG, 0);
                                       sgdig = CSR_READ_4(sc, BGE_SGDIG_CFG);
                                       sgdig |= BGE_SGDIGCFG_AUTO |
                                           BGE_SGDIGCFG_PAUSE_CAP |
                                           BGE_SGDIGCFG_ASYM_PAUSE;
                                       CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
                                           sgdig | BGE_SGDIGCFG_SEND);
                                       DELAY(5);
                                       CSR_WRITE_4_FLUSH(sc, BGE_SGDIG_CFG,
                                           sgdig);
                               }
                       }
                       break;
               case IFM_1000_SX:
                       if ((ifm->ifm_media & IFM_FDX) != 0) {
                               BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
                                   BGE_MACMODE_HALF_DUPLEX);
                       } else {
                               BGE_SETBIT_FLUSH(sc, BGE_MAC_MODE,
                                   BGE_MACMODE_HALF_DUPLEX);
                       }
                       DELAY(40);
                       break;
               default:
                       return EINVAL;
               }
               /* XXX 802.3x flow control for 1000BASE-SX */
               return 0;
       }

       if ((BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5784) &&
           (BGE_CHIPREV(sc->bge_chipid) != BGE_CHIPREV_5784_AX)) {
               uint32_t reg;

               reg = CSR_READ_4(sc, BGE_CPMU_CTRL);
               if ((reg & BGE_CPMU_CTRL_GPHY_10MB_RXONLY) != 0) {
                       reg &= ~BGE_CPMU_CTRL_GPHY_10MB_RXONLY;
                       CSR_WRITE_4(sc, BGE_CPMU_CTRL, reg);
               }
       }

       BGE_STS_SETBIT(sc, BGE_STS_LINK_EVT);
       if ((rc = mii_mediachg(mii)) == ENXIO)
               return 0;

       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
               uint32_t reg;

               reg = CSR_READ_4(sc, BGE_CPMU_LSPD_1000MB_CLK);
               if ((reg & BGE_CPMU_LSPD_1000MB_MACCLK_MASK)
                   == (BGE_CPMU_LSPD_1000MB_MACCLK_12_5)) {
                       reg &= ~BGE_CPMU_LSPD_1000MB_MACCLK_MASK;
                       delay(40);
                       CSR_WRITE_4(sc, BGE_CPMU_LSPD_1000MB_CLK, reg);
               }
       }

       /*
        * Force an interrupt so that we will call bge_link_upd
        * if needed and clear any pending link state attention.
        * Without this we are not getting any further interrupts
        * for link state changes and thus will not UP the link and
        * not be able to send in bge_start. The only way to get
        * things working was to receive a packet and get a RX intr.
        */
       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700 ||
           sc->bge_flags & BGEF_IS_5788)
               BGE_SETBIT(sc, BGE_MISC_LOCAL_CTL, BGE_MLC_INTR_SET);
       else
               BGE_SETBIT(sc, BGE_HCC_MODE, BGE_HCCMODE_COAL_NOW);

       return rc;
}

/*
* Report current media status.
*/
static void
bge_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
{
       struct bge_softc * const sc = ifp->if_softc;
       struct mii_data * const mii = &sc->bge_mii;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       if (sc->bge_flags & BGEF_FIBER_TBI) {
               ifmr->ifm_status = IFM_AVALID;
               ifmr->ifm_active = IFM_ETHER;
               if (CSR_READ_4(sc, BGE_MAC_STS) &
                   BGE_MACSTAT_TBI_PCS_SYNCHED)
                       ifmr->ifm_status |= IFM_ACTIVE;
               ifmr->ifm_active |= IFM_1000_SX;
               if (CSR_READ_4(sc, BGE_MAC_MODE) & BGE_MACMODE_HALF_DUPLEX)
                       ifmr->ifm_active |= IFM_HDX;
               else
                       ifmr->ifm_active |= IFM_FDX;
               return;
       }

       mii_pollstat(mii);
       ifmr->ifm_status = mii->mii_media_status;
       ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
           sc->bge_flowflags;
}

static int
bge_ifflags_cb(struct ethercom *ec)
{
       struct ifnet * const ifp = &ec->ec_if;
       struct bge_softc * const sc = ifp->if_softc;
       int ret = 0;

       KASSERT(IFNET_LOCKED(ifp));
       mutex_enter(sc->sc_mcast_lock);

       u_short change = ifp->if_flags ^ sc->bge_if_flags;
       sc->bge_if_flags = ifp->if_flags;

       if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
               ret = ENETRESET;
       } else if ((change & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
               if ((ifp->if_flags & IFF_PROMISC) == 0)
                       BGE_CLRBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);
               else
                       BGE_SETBIT(sc, BGE_RX_MODE, BGE_RXMODE_RX_PROMISC);

               bge_setmulti(sc);
       }

       mutex_exit(sc->sc_mcast_lock);

       return ret;
}

static int
bge_ioctl(struct ifnet *ifp, u_long command, void *data)
{
       struct bge_softc * const sc = ifp->if_softc;
       struct ifreq * const ifr = (struct ifreq *) data;
       int error = 0;

       switch (command) {
       case SIOCADDMULTI:
       case SIOCDELMULTI:
               break;
       default:
               KASSERT(IFNET_LOCKED(ifp));
       }

       const int s = splnet();

       switch (command) {
       case SIOCSIFMEDIA:
               mutex_enter(sc->sc_intr_lock);
               /* XXX Flow control is not supported for 1000BASE-SX */
               if (sc->bge_flags & BGEF_FIBER_TBI) {
                       ifr->ifr_media &= ~IFM_ETH_FMASK;
                       sc->bge_flowflags = 0;
               }

               /* Flow control requires full-duplex mode. */
               if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
                   (ifr->ifr_media & IFM_FDX) == 0) {
                       ifr->ifr_media &= ~IFM_ETH_FMASK;
               }
               if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
                       if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
                               /* We can do both TXPAUSE and RXPAUSE. */
                               ifr->ifr_media |=
                                   IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
                       }
                       sc->bge_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
               }
               mutex_exit(sc->sc_intr_lock);

               if (sc->bge_flags & BGEF_FIBER_TBI) {
                       error = ifmedia_ioctl(ifp, ifr, &sc->bge_ifmedia,
                           command);
               } else {
                       struct mii_data * const mii = &sc->bge_mii;
                       error = ifmedia_ioctl(ifp, ifr, &mii->mii_media,
                           command);
               }
               break;
       default:
               if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
                       break;

               error = 0;

               if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
                       mutex_enter(sc->sc_mcast_lock);
                       if (sc->bge_if_flags & IFF_RUNNING) {
                               bge_setmulti(sc);
                       }
                       mutex_exit(sc->sc_mcast_lock);
               }
               break;
       }

       splx(s);

       return error;
}

static bool
bge_watchdog_check(struct bge_softc * const sc)
{

       KASSERT(mutex_owned(sc->sc_intr_lock));

       if (!sc->bge_tx_sending)
               return true;

       if (time_uptime - sc->bge_tx_lastsent <= bge_watchdog_timeout)
               return true;

       /* If pause frames are active then don't reset the hardware. */
       if ((CSR_READ_4(sc, BGE_RX_MODE) & BGE_RXMODE_FLOWCTL_ENABLE) != 0) {
               const uint32_t status = CSR_READ_4(sc, BGE_RX_STS);
               if ((status & BGE_RXSTAT_REMOTE_XOFFED) != 0) {
                       /*
                        * If link partner has us in XOFF state then wait for
                        * the condition to clear.
                        */
                       CSR_WRITE_4(sc, BGE_RX_STS, status);
                       sc->bge_tx_lastsent = time_uptime;
                       return true;
               } else if ((status & BGE_RXSTAT_RCVD_XOFF) != 0 &&
                   (status & BGE_RXSTAT_RCVD_XON) != 0) {
                       /*
                        * If link partner has us in XOFF state then wait for
                        * the condition to clear.
                        */
                       CSR_WRITE_4(sc, BGE_RX_STS, status);
                       sc->bge_tx_lastsent = time_uptime;
                       return true;
               }
               /*
                * Any other condition is unexpected and the controller
                * should be reset.
                */
       }

       return false;
}

static bool
bge_watchdog_tick(struct ifnet *ifp)
{
       struct bge_softc * const sc = ifp->if_softc;

       KASSERT(mutex_owned(sc->sc_intr_lock));

       if (!sc->sc_trigger_reset && bge_watchdog_check(sc))
               return true;

       if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
               workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);

       return false;
}

/*
* Perform an interface watchdog reset.
*/
static void
bge_handle_reset_work(struct work *work, void *arg)
{
       struct bge_softc * const sc = arg;
       struct ifnet * const ifp = &sc->ethercom.ec_if;

       printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);

       /* Don't want ioctl operations to happen */
       IFNET_LOCK(ifp);

       /* reset the interface. */
       bge_init(ifp);

       IFNET_UNLOCK(ifp);

       /*
        * There are still some upper layer processing which call
        * ifp->if_start(). e.g. ALTQ or one CPU system
        */
       /* Try to get more packets going. */
       ifp->if_start(ifp);

       atomic_store_relaxed(&sc->sc_reset_pending, 0);
}

static void
bge_stop_block(struct bge_softc *sc, bus_addr_t reg, uint32_t bit)
{
       int i;

       BGE_CLRBIT_FLUSH(sc, reg, bit);

       for (i = 0; i < 1000; i++) {
               delay(100);
               if ((CSR_READ_4(sc, reg) & bit) == 0)
                       return;
       }

       /*
        * Doesn't print only when the register is BGE_SRS_MODE. It occurs
        * on some environment (and once after boot?)
        */
       if (reg != BGE_SRS_MODE)
               aprint_error_dev(sc->bge_dev,
                   "block failed to stop: reg 0x%lx, bit 0x%08x\n",
                   (u_long)reg, bit);
}

/*
* Stop the adapter and free any mbufs allocated to the
* RX and TX lists.
*/
static void
bge_stop(struct ifnet *ifp, int disable)
{
       struct bge_softc * const sc = ifp->if_softc;

       ASSERT_SLEEPABLE();
       KASSERT(IFNET_LOCKED(ifp));

       mutex_enter(sc->sc_intr_lock);
       sc->bge_txrx_stopping = true;
       mutex_exit(sc->sc_intr_lock);

       callout_halt(&sc->bge_timeout, NULL);

       /* Disable host interrupts. */
       BGE_SETBIT(sc, BGE_PCI_MISC_CTL, BGE_PCIMISCCTL_MASK_PCI_INTR);
       bge_writembx_flush(sc, BGE_MBX_IRQ0_LO, 1);

       /*
        * Tell firmware we're shutting down.
        */
       bge_stop_fw(sc);
       bge_sig_pre_reset(sc, BGE_RESET_SHUTDOWN);

       /*
        * Disable all of the receiver blocks.
        */
       bge_stop_block(sc, BGE_RX_MODE, BGE_RXMODE_ENABLE);
       bge_stop_block(sc, BGE_RBDI_MODE, BGE_RBDIMODE_ENABLE);
       bge_stop_block(sc, BGE_RXLP_MODE, BGE_RXLPMODE_ENABLE);
       if (BGE_IS_5700_FAMILY(sc))
               bge_stop_block(sc, BGE_RXLS_MODE, BGE_RXLSMODE_ENABLE);
       bge_stop_block(sc, BGE_RDBDI_MODE, BGE_RBDIMODE_ENABLE);
       bge_stop_block(sc, BGE_RDC_MODE, BGE_RDCMODE_ENABLE);
       bge_stop_block(sc, BGE_RBDC_MODE, BGE_RBDCMODE_ENABLE);

       /*
        * Disable all of the transmit blocks.
        */
       bge_stop_block(sc, BGE_SRS_MODE, BGE_SRSMODE_ENABLE);
       bge_stop_block(sc, BGE_SBDI_MODE, BGE_SBDIMODE_ENABLE);
       bge_stop_block(sc, BGE_SDI_MODE, BGE_SDIMODE_ENABLE);
       bge_stop_block(sc, BGE_RDMA_MODE, BGE_RDMAMODE_ENABLE);
       bge_stop_block(sc, BGE_SDC_MODE, BGE_SDCMODE_ENABLE);
       if (BGE_IS_5700_FAMILY(sc))
               bge_stop_block(sc, BGE_DMAC_MODE, BGE_DMACMODE_ENABLE);
       bge_stop_block(sc, BGE_SBDC_MODE, BGE_SBDCMODE_ENABLE);

       BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE, BGE_MACMODE_TXDMA_ENB);
       delay(40);

       bge_stop_block(sc, BGE_TX_MODE, BGE_TXMODE_ENABLE);

       /*
        * Shut down all of the memory managers and related
        * state machines.
        */
       /* 5718 step 5a,5b */
       bge_stop_block(sc, BGE_HCC_MODE, BGE_HCCMODE_ENABLE);
       bge_stop_block(sc, BGE_WDMA_MODE, BGE_WDMAMODE_ENABLE);
       if (BGE_IS_5700_FAMILY(sc))
               bge_stop_block(sc, BGE_MBCF_MODE, BGE_MBCFMODE_ENABLE);

       /* 5718 step 5c,5d */
       CSR_WRITE_4(sc, BGE_FTQ_RESET, 0xFFFFFFFF);
       CSR_WRITE_4(sc, BGE_FTQ_RESET, 0);

       if (BGE_IS_5700_FAMILY(sc)) {
               bge_stop_block(sc, BGE_BMAN_MODE, BGE_BMANMODE_ENABLE);
               bge_stop_block(sc, BGE_MARB_MODE, BGE_MARBMODE_ENABLE);
       }

       bge_reset(sc);
       bge_sig_legacy(sc, BGE_RESET_SHUTDOWN);
       bge_sig_post_reset(sc, BGE_RESET_SHUTDOWN);

       /*
        * Keep the ASF firmware running if up.
        */
       if (sc->bge_asf_mode & ASF_STACKUP)
               BGE_SETBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);
       else
               BGE_CLRBIT(sc, BGE_MODE_CTL, BGE_MODECTL_STACKUP);

       /* Free the RX lists. */
       bge_free_rx_ring_std(sc);

       /* Free jumbo RX list. */
       if (BGE_IS_JUMBO_CAPABLE(sc))
               bge_free_rx_ring_jumbo(sc);

       /* Free TX buffers. */
       bge_free_tx_ring(sc, disable);

       /*
        * Isolate/power down the PHY.
        */
       if (!(sc->bge_flags & BGEF_FIBER_TBI)) {
               mutex_enter(sc->sc_intr_lock);
               mii_down(&sc->bge_mii);
               mutex_exit(sc->sc_intr_lock);
       }

       sc->bge_tx_saved_considx = BGE_TXCONS_UNSET;

       /* Clear MAC's link state (PHY may still have link UP). */
       BGE_STS_CLRBIT(sc, BGE_STS_LINK);

       ifp->if_flags &= ~IFF_RUNNING;

       mutex_enter(sc->sc_mcast_lock);
       sc->bge_if_flags = ifp->if_flags;
       mutex_exit(sc->sc_mcast_lock);
}

static void
bge_link_upd(struct bge_softc *sc)
{
       struct ifnet * const ifp = &sc->ethercom.ec_if;
       struct mii_data * const mii = &sc->bge_mii;
       uint32_t status;
       uint16_t phyval;
       int link;

       KASSERT(sc->sc_intr_lock);

       /* Clear 'pending link event' flag */
       BGE_STS_CLRBIT(sc, BGE_STS_LINK_EVT);

       /*
        * Process link state changes.
        * Grrr. The link status word in the status block does
        * not work correctly on the BCM5700 rev AX and BX chips,
        * according to all available information. Hence, we have
        * to enable MII interrupts in order to properly obtain
        * async link changes. Unfortunately, this also means that
        * we have to read the MAC status register to detect link
        * changes, thereby adding an additional register access to
        * the interrupt handler.
        */

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5700) {
               status = CSR_READ_4(sc, BGE_MAC_STS);
               if (status & BGE_MACSTAT_MI_INTERRUPT) {
                       mii_pollstat(mii);

                       if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
                           mii->mii_media_status & IFM_ACTIVE &&
                           IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
                               BGE_STS_SETBIT(sc, BGE_STS_LINK);
                       else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
                           (!(mii->mii_media_status & IFM_ACTIVE) ||
                           IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
                               BGE_STS_CLRBIT(sc, BGE_STS_LINK);

                       /* Clear the interrupt */
                       CSR_WRITE_4(sc, BGE_MAC_EVT_ENB,
                           BGE_EVTENB_MI_INTERRUPT);
                       bge_miibus_readreg(sc->bge_dev, sc->bge_phy_addr,
                           BRGPHY_MII_ISR, &phyval);
                       bge_miibus_writereg(sc->bge_dev, sc->bge_phy_addr,
                           BRGPHY_MII_IMR, BRGPHY_INTRS);
               }
               return;
       }

       if (sc->bge_flags & BGEF_FIBER_TBI) {
               status = CSR_READ_4(sc, BGE_MAC_STS);
               if (status & BGE_MACSTAT_TBI_PCS_SYNCHED) {
                       if (!BGE_STS_BIT(sc, BGE_STS_LINK)) {
                               BGE_STS_SETBIT(sc, BGE_STS_LINK);
                               if (BGE_ASICREV(sc->bge_chipid)
                                   == BGE_ASICREV_BCM5704) {
                                       BGE_CLRBIT_FLUSH(sc, BGE_MAC_MODE,
                                           BGE_MACMODE_TBI_SEND_CFGS);
                                       DELAY(40);
                               }
                               CSR_WRITE_4(sc, BGE_MAC_STS, 0xFFFFFFFF);
                               if_link_state_change(ifp, LINK_STATE_UP);
                       }
               } else if (BGE_STS_BIT(sc, BGE_STS_LINK)) {
                       BGE_STS_CLRBIT(sc, BGE_STS_LINK);
                       if_link_state_change(ifp, LINK_STATE_DOWN);
               }
       } else if (BGE_STS_BIT(sc, BGE_STS_AUTOPOLL)) {
               /*
                * Some broken BCM chips have BGE_STATFLAG_LINKSTATE_CHANGED
                * bit in status word always set. Workaround this bug by
                * reading PHY link status directly.
                */
               link = (CSR_READ_4(sc, BGE_MI_STS) & BGE_MISTS_LINK)?
                   BGE_STS_LINK : 0;

               if (BGE_STS_BIT(sc, BGE_STS_LINK) != link) {
                       mii_pollstat(mii);

                       if (!BGE_STS_BIT(sc, BGE_STS_LINK) &&
                           mii->mii_media_status & IFM_ACTIVE &&
                           IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE)
                               BGE_STS_SETBIT(sc, BGE_STS_LINK);
                       else if (BGE_STS_BIT(sc, BGE_STS_LINK) &&
                           (!(mii->mii_media_status & IFM_ACTIVE) ||
                           IFM_SUBTYPE(mii->mii_media_active) == IFM_NONE))
                               BGE_STS_CLRBIT(sc, BGE_STS_LINK);
               }
       } else {
               /*
                * For controllers that call mii_tick, we have to poll
                * link status.
                */
               mii_pollstat(mii);
       }

       if (BGE_CHIPREV(sc->bge_chipid) == BGE_CHIPREV_5784_AX) {
               uint32_t reg, scale;

               reg = CSR_READ_4(sc, BGE_CPMU_CLCK_STAT) &
                   BGE_CPMU_CLCK_STAT_MAC_CLCK_MASK;
               if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_62_5)
                       scale = 65;
               else if (reg == BGE_CPMU_CLCK_STAT_MAC_CLCK_6_25)
                       scale = 6;
               else
                       scale = 12;

               reg = CSR_READ_4(sc, BGE_MISC_CFG) &
                   ~BGE_MISCCFG_TIMER_PRESCALER;
               reg |= scale << 1;
               CSR_WRITE_4(sc, BGE_MISC_CFG, reg);
       }
       /* Clear the attention */
       CSR_WRITE_4(sc, BGE_MAC_STS, BGE_MACSTAT_SYNC_CHANGED |
           BGE_MACSTAT_CFG_CHANGED | BGE_MACSTAT_MI_COMPLETE |
           BGE_MACSTAT_LINK_CHANGED);
}

static int
bge_sysctl_verify(SYSCTLFN_ARGS)
{
       int error, t;
       struct sysctlnode node;

       node = *rnode;
       t = *(int*)rnode->sysctl_data;
       node.sysctl_data = &t;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

#if 0
       DPRINTF2(("%s: t = %d, nodenum = %d, rnodenum = %d\n", __func__, t,
           node.sysctl_num, rnode->sysctl_num));
#endif

       if (node.sysctl_num == bge_rxthresh_nodenum) {
               if (t < 0 || t >= NBGE_RX_THRESH)
                       return EINVAL;
               bge_update_all_threshes(t);
       } else
               return EINVAL;

       *(int*)rnode->sysctl_data = t;

       return 0;
}

/*
* Set up sysctl(3) MIB, hw.bge.*.
*/
static void
bge_sysctl_init(struct bge_softc *sc)
{
       int rc, bge_root_num;
       const struct sysctlnode *node;

       if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
           0, CTLTYPE_NODE, "bge",
           SYSCTL_DESCR("BGE interface controls"),
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL)) != 0) {
               goto out;
       }

       bge_root_num = node->sysctl_num;

       /* BGE Rx interrupt mitigation level */
       if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
           CTLFLAG_READWRITE,
           CTLTYPE_INT, "rx_lvl",
           SYSCTL_DESCR("BGE receive interrupt mitigation level"),
           bge_sysctl_verify, 0,
           &bge_rx_thresh_lvl,
           0, CTL_HW, bge_root_num, CTL_CREATE,
           CTL_EOL)) != 0) {
               goto out;
       }

       bge_rxthresh_nodenum = node->sysctl_num;

#ifdef BGE_DEBUG
       if ((rc = sysctl_createv(&sc->bge_log, 0, NULL, &node,
           CTLFLAG_READWRITE,
           CTLTYPE_BOOL, "trigger_reset",
           SYSCTL_DESCR("Trigger an interface reset"),
           NULL, 0, &sc->sc_trigger_reset, 0, CTL_CREATE,
           CTL_EOL)) != 0) {
               goto out;
       }
#endif
       return;

out:
       aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}

#ifdef BGE_DEBUG
void
bge_debug_info(struct bge_softc *sc)
{

       printf("Hardware Flags:\n");
       if (BGE_IS_57765_PLUS(sc))
               printf(" - 57765 Plus\n");
       if (BGE_IS_5717_PLUS(sc))
               printf(" - 5717 Plus\n");
       if (BGE_IS_5755_PLUS(sc))
               printf(" - 5755 Plus\n");
       if (BGE_IS_575X_PLUS(sc))
               printf(" - 575X Plus\n");
       if (BGE_IS_5705_PLUS(sc))
               printf(" - 5705 Plus\n");
       if (BGE_IS_5714_FAMILY(sc))
               printf(" - 5714 Family\n");
       if (BGE_IS_5700_FAMILY(sc))
               printf(" - 5700 Family\n");
       if (sc->bge_flags & BGEF_IS_5788)
               printf(" - 5788\n");
       if (sc->bge_flags & BGEF_JUMBO_CAPABLE)
               printf(" - Supports Jumbo Frames\n");
       if (sc->bge_flags & BGEF_NO_EEPROM)
               printf(" - No EEPROM\n");
       if (sc->bge_flags & BGEF_PCIX)
               printf(" - PCI-X Bus\n");
       if (sc->bge_flags & BGEF_PCIE)
               printf(" - PCI Express Bus\n");
       if (sc->bge_flags & BGEF_RX_ALIGNBUG)
               printf(" - RX Alignment Bug\n");
       if (sc->bge_flags & BGEF_APE)
               printf(" - APE\n");
       if (sc->bge_flags & BGEF_CPMU_PRESENT)
               printf(" - CPMU\n");
       if (sc->bge_flags & BGEF_TSO)
               printf(" - TSO\n");
       if (sc->bge_flags & BGEF_TAGGED_STATUS)
               printf(" - TAGGED_STATUS\n");

       /* PHY related */
       if (sc->bge_phy_flags & BGEPHYF_NO_3LED)
               printf(" - No 3 LEDs\n");
       if (sc->bge_phy_flags & BGEPHYF_CRC_BUG)
               printf(" - CRC bug\n");
       if (sc->bge_phy_flags & BGEPHYF_ADC_BUG)
               printf(" - ADC bug\n");
       if (sc->bge_phy_flags & BGEPHYF_5704_A0_BUG)
               printf(" - 5704 A0 bug\n");
       if (sc->bge_phy_flags & BGEPHYF_JITTER_BUG)
               printf(" - jitter bug\n");
       if (sc->bge_phy_flags & BGEPHYF_BER_BUG)
               printf(" - BER bug\n");
       if (sc->bge_phy_flags & BGEPHYF_ADJUST_TRIM)
               printf(" - adjust trim\n");
       if (sc->bge_phy_flags & BGEPHYF_NO_WIRESPEED)
               printf(" - no wirespeed\n");

       /* ASF related */
       if (sc->bge_asf_mode & ASF_ENABLE)
               printf(" - ASF enable\n");
       if (sc->bge_asf_mode & ASF_NEW_HANDSHAKE)
               printf(" - ASF new handshake\n");
       if (sc->bge_asf_mode & ASF_STACKUP)
               printf(" - ASF stackup\n");
}
#endif /* BGE_DEBUG */

static int
bge_get_eaddr_fw(struct bge_softc *sc, uint8_t ether_addr[])
{
       prop_dictionary_t dict;
       prop_data_t ea;

       if ((sc->bge_flags & BGEF_NO_EEPROM) == 0)
               return 1;

       dict = device_properties(sc->bge_dev);
       ea = prop_dictionary_get(dict, "mac-address");
       if (ea != NULL) {
               KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
               KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
               memcpy(ether_addr, prop_data_value(ea), ETHER_ADDR_LEN);
               return 0;
       }

       return 1;
}

static int
bge_get_eaddr_mem(struct bge_softc *sc, uint8_t ether_addr[])
{
       uint32_t mac_addr;

       mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_HIGH_MB);
       if ((mac_addr >> 16) == 0x484b) {
               ether_addr[0] = (uint8_t)(mac_addr >> 8);
               ether_addr[1] = (uint8_t)mac_addr;
               mac_addr = bge_readmem_ind(sc, BGE_SRAM_MAC_ADDR_LOW_MB);
               ether_addr[2] = (uint8_t)(mac_addr >> 24);
               ether_addr[3] = (uint8_t)(mac_addr >> 16);
               ether_addr[4] = (uint8_t)(mac_addr >> 8);
               ether_addr[5] = (uint8_t)mac_addr;
               return 0;
       }
       return 1;
}

static int
bge_get_eaddr_nvram(struct bge_softc *sc, uint8_t ether_addr[])
{
       int mac_offset = BGE_EE_MAC_OFFSET;

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
               mac_offset = BGE_EE_MAC_OFFSET_5906;

       return (bge_read_nvram(sc, ether_addr, mac_offset + 2,
           ETHER_ADDR_LEN));
}

static int
bge_get_eaddr_eeprom(struct bge_softc *sc, uint8_t ether_addr[])
{

       if (BGE_ASICREV(sc->bge_chipid) == BGE_ASICREV_BCM5906)
               return 1;

       return (bge_read_eeprom(sc, ether_addr, BGE_EE_MAC_OFFSET + 2,
          ETHER_ADDR_LEN));
}

static int
bge_get_eaddr(struct bge_softc *sc, uint8_t eaddr[])
{
       static const bge_eaddr_fcn_t bge_eaddr_funcs[] = {
               /* NOTE: Order is critical */
               bge_get_eaddr_fw,
               bge_get_eaddr_mem,
               bge_get_eaddr_nvram,
               bge_get_eaddr_eeprom,
               NULL
       };
       const bge_eaddr_fcn_t *func;

       for (func = bge_eaddr_funcs; *func != NULL; ++func) {
               if ((*func)(sc, eaddr) == 0)
                       break;
       }
       return *func == NULL ? ENXIO : 0;
}