/*      $NetBSD: if_age.c,v 1.74 2024/06/29 12:11:11 riastradh Exp $ */
/*      $OpenBSD: if_age.c,v 1.1 2009/01/16 05:00:34 kevlo Exp $        */

/*-
* Copyright (c) 2008, Pyun YongHyeon <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice unmodified, this list of conditions, and the following
*    disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_age.c,v 1.74 2024/06/29 12:11:11 riastradh Exp $");

#include "vlan.h"

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/endian.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/queue.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/callout.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#endif

#include <net/if_types.h>
#include <net/if_vlanvar.h>

#include <net/bpf.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>

#include <dev/pci/if_agereg.h>

static int      age_match(device_t, cfdata_t, void *);
static void     age_attach(device_t, device_t, void *);
static int      age_detach(device_t, int);

static bool     age_resume(device_t, const pmf_qual_t *);

static int      age_miibus_readreg(device_t, int, int, uint16_t *);
static int      age_miibus_writereg(device_t, int, int, uint16_t);
static void     age_miibus_statchg(struct ifnet *);

static int      age_init(struct ifnet *);
static int      age_ioctl(struct ifnet *, u_long, void *);
static void     age_start(struct ifnet *);
static void     age_watchdog(struct ifnet *);
static bool     age_shutdown(device_t, int);
static void     age_mediastatus(struct ifnet *, struct ifmediareq *);
static int      age_mediachange(struct ifnet *);

static int      age_intr(void *);
static int      age_dma_alloc(struct age_softc *);
static void     age_dma_free(struct age_softc *);
static void     age_get_macaddr(struct age_softc *, uint8_t[]);
static void     age_phy_reset(struct age_softc *);

static int      age_encap(struct age_softc *, struct mbuf *);
static void     age_init_tx_ring(struct age_softc *);
static int      age_init_rx_ring(struct age_softc *);
static void     age_init_rr_ring(struct age_softc *);
static void     age_init_cmb_block(struct age_softc *);
static void     age_init_smb_block(struct age_softc *);
static int      age_newbuf(struct age_softc *, struct age_rxdesc *, int);
static void     age_mac_config(struct age_softc *);
static void     age_txintr(struct age_softc *, int);
static void     age_rxeof(struct age_softc *sc, struct rx_rdesc *);
static void     age_rxintr(struct age_softc *, int);
static void     age_tick(void *);
static void     age_reset(struct age_softc *);
static void     age_stop(struct ifnet *, int);
static void     age_stats_update(struct age_softc *);
static void     age_stop_txmac(struct age_softc *);
static void     age_stop_rxmac(struct age_softc *);
static void     age_rxvlan(struct age_softc *sc);
static void     age_rxfilter(struct age_softc *);

CFATTACH_DECL_NEW(age, sizeof(struct age_softc),
   age_match, age_attach, age_detach, NULL);

int agedebug = 0;
#define DPRINTF(x)      do { if (agedebug) printf x; } while (0)

#define AGE_CSUM_FEATURES       (M_CSUM_TCPv4 | M_CSUM_UDPv4)

static int
age_match(device_t dev, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa = aux;

       return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ATTANSIC &&
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ATTANSIC_ETHERNET_GIGA);
}

static void
age_attach(device_t parent, device_t self, void *aux)
{
       struct age_softc *sc = device_private(self);
       struct pci_attach_args *pa = aux;
       pci_intr_handle_t ih;
       const char *intrstr;
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct mii_data * const mii = &sc->sc_miibus;
       pcireg_t memtype;
       int error = 0;
       char intrbuf[PCI_INTRSTR_LEN];

       aprint_naive("\n");
       aprint_normal(": Attansic/Atheros L1 Gigabit Ethernet\n");

       sc->sc_dev = self;
       sc->sc_pct = pa->pa_pc;
       sc->sc_pcitag = pa->pa_tag;

       if (pci_dma64_available(pa))
               sc->sc_dmat = pa->pa_dmat64;
       else
               sc->sc_dmat = pa->pa_dmat;

       /*
        * Allocate IO memory
        */
       memtype = pci_mapreg_type(sc->sc_pct, sc->sc_pcitag, AGE_PCIR_BAR);
       switch (memtype) {
       case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
       case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT_1M:
       case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
               break;
       default:
               aprint_error_dev(self, "invalid base address register\n");
               break;
       }

       if (pci_mapreg_map(pa, AGE_PCIR_BAR, memtype, 0, &sc->sc_mem_bt,
           &sc->sc_mem_bh, NULL, &sc->sc_mem_size) != 0) {
               aprint_error_dev(self, "could not map mem space\n");
               return;
       }

       if (pci_intr_map(pa, &ih) != 0) {
               aprint_error_dev(self, "could not map interrupt\n");
               goto fail;
       }

       /*
        * Allocate IRQ
        */
       intrstr = pci_intr_string(sc->sc_pct, ih, intrbuf, sizeof(intrbuf));
       sc->sc_irq_handle = pci_intr_establish_xname(sc->sc_pct, ih, IPL_NET,
           age_intr, sc, device_xname(self));
       if (sc->sc_irq_handle == NULL) {
               aprint_error_dev(self, "could not establish interrupt");
               if (intrstr != NULL)
                       aprint_error(" at %s", intrstr);
               aprint_error("\n");
               goto fail;
       }
       aprint_normal_dev(self, "%s\n", intrstr);

       /* Set PHY address. */
       sc->age_phyaddr = AGE_PHY_ADDR;

       /* Reset PHY. */
       age_phy_reset(sc);

       /* Reset the ethernet controller. */
       age_reset(sc);

       /* Get PCI and chip id/revision. */
       sc->age_rev = PCI_REVISION(pa->pa_class);
       sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
           MASTER_CHIP_REV_SHIFT;

       aprint_debug_dev(self, "PCI device revision : 0x%04x\n", sc->age_rev);
       aprint_debug_dev(self, "Chip id/revision : 0x%04x\n", sc->age_chip_rev);

       if (agedebug) {
               aprint_debug_dev(self, "%d Tx FIFO, %d Rx FIFO\n",
                   CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
                   CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
       }

       /* Set max allowable DMA size. */
       sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
       sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;

       /* Allocate DMA stuffs */
       error = age_dma_alloc(sc);
       if (error)
               goto fail;

       callout_init(&sc->sc_tick_ch, 0);
       callout_setfunc(&sc->sc_tick_ch, age_tick, sc);

       /* Load station address. */
       age_get_macaddr(sc, sc->sc_enaddr);

       aprint_normal_dev(self, "Ethernet address %s\n",
           ether_sprintf(sc->sc_enaddr));

       ifp->if_softc = sc;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_init = age_init;
       ifp->if_ioctl = age_ioctl;
       ifp->if_start = age_start;
       ifp->if_stop = age_stop;
       ifp->if_watchdog = age_watchdog;
       ifp->if_baudrate = IF_Gbps(1);
       IFQ_SET_MAXLEN(&ifp->if_snd, AGE_TX_RING_CNT - 1);
       IFQ_SET_READY(&ifp->if_snd);
       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);

       sc->sc_ec.ec_capabilities = ETHERCAP_VLAN_MTU;

       ifp->if_capabilities |= IFCAP_CSUM_IPv4_Rx |
                               IFCAP_CSUM_TCPv4_Rx |
                               IFCAP_CSUM_UDPv4_Rx;
#ifdef AGE_CHECKSUM
       ifp->if_capabilities |= IFCAP_CSUM_IPv4_Tx |
                               IFCAP_CSUM_TCPv4_Tx |
                               IFCAP_CSUM_UDPv4_Tx;
#endif

#if NVLAN > 0
       sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
       sc->sc_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
#endif

       /* Set up MII bus. */
       mii->mii_ifp = ifp;
       mii->mii_readreg = age_miibus_readreg;
       mii->mii_writereg = age_miibus_writereg;
       mii->mii_statchg = age_miibus_statchg;

       sc->sc_ec.ec_mii = mii;
       ifmedia_init(&mii->mii_media, 0, age_mediachange, age_mediastatus);
       mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
          MII_OFFSET_ANY, MIIF_DOPAUSE);

       if (LIST_FIRST(&mii->mii_phys) == NULL) {
               aprint_error_dev(self, "no PHY found!\n");
               ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
       } else
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

       if_attach(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, sc->sc_enaddr);

       if (pmf_device_register1(self, NULL, age_resume, age_shutdown))
               pmf_class_network_register(self, ifp);
       else
               aprint_error_dev(self, "couldn't establish power handler\n");

       return;

fail:
       age_dma_free(sc);
       if (sc->sc_irq_handle != NULL) {
               pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
               sc->sc_irq_handle = NULL;
       }
       if (sc->sc_mem_size) {
               bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
               sc->sc_mem_size = 0;
       }
}

static int
age_detach(device_t self, int flags)
{
       struct age_softc *sc = device_private(self);
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       int s;

       pmf_device_deregister(self);
       s = splnet();
       age_stop(ifp, 0);
       splx(s);

       mii_detach(&sc->sc_miibus, MII_PHY_ANY, MII_OFFSET_ANY);

       ether_ifdetach(ifp);
       if_detach(ifp);
       age_dma_free(sc);

       /* Delete all remaining media. */
       ifmedia_fini(&sc->sc_miibus.mii_media);

       if (sc->sc_irq_handle != NULL) {
               pci_intr_disestablish(sc->sc_pct, sc->sc_irq_handle);
               sc->sc_irq_handle = NULL;
       }
       if (sc->sc_mem_size) {
               bus_space_unmap(sc->sc_mem_bt, sc->sc_mem_bh, sc->sc_mem_size);
               sc->sc_mem_size = 0;
       }
       return 0;
}

/*
*      Read a PHY register on the MII of the L1.
*/
static int
age_miibus_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
       struct age_softc *sc = device_private(dev);
       uint32_t v;
       int i;

       if (phy != sc->age_phyaddr)
               return -1;

       CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
           MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
       for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
               DELAY(1);
               v = CSR_READ_4(sc, AGE_MDIO);
               if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
                       break;
       }

       if (i == 0) {
               printf("%s: phy read timeout: phy %d, reg %d\n",
                       device_xname(sc->sc_dev), phy, reg);
               return ETIMEDOUT;
       }

       *val = (v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT;
       return 0;
}

/*
*      Write a PHY register on the MII of the L1.
*/
static int
age_miibus_writereg(device_t dev, int phy, int reg, uint16_t val)
{
       struct age_softc *sc = device_private(dev);
       uint32_t v;
       int i;

       if (phy != sc->age_phyaddr)
               return -1;

       CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
           (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
           MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));

       for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
               DELAY(1);
               v = CSR_READ_4(sc, AGE_MDIO);
               if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
                       break;
       }

       if (i == 0) {
               printf("%s: phy write timeout: phy %d, reg %d\n",
                   device_xname(sc->sc_dev), phy, reg);
               return ETIMEDOUT;
       }

       return 0;
}

/*
*      Callback from MII layer when media changes.
*/
static void
age_miibus_statchg(struct ifnet *ifp)
{
       struct age_softc *sc = ifp->if_softc;
       struct mii_data *mii = &sc->sc_miibus;

       if ((ifp->if_flags & IFF_RUNNING) == 0)
               return;

       sc->age_flags &= ~AGE_FLAG_LINK;
       if ((mii->mii_media_status & IFM_AVALID) != 0) {
               switch (IFM_SUBTYPE(mii->mii_media_active)) {
               case IFM_10_T:
               case IFM_100_TX:
               case IFM_1000_T:
                       sc->age_flags |= AGE_FLAG_LINK;
                       break;
               default:
                       break;
               }
       }

       /* Stop Rx/Tx MACs. */
       age_stop_rxmac(sc);
       age_stop_txmac(sc);

       /* Program MACs with resolved speed/duplex/flow-control. */
       if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
               uint32_t reg;

               age_mac_config(sc);
               reg = CSR_READ_4(sc, AGE_MAC_CFG);
               /* Restart DMA engine and Tx/Rx MAC. */
               CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
                   DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
               reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
               CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
       }
}

/*
*      Get the current interface media status.
*/
static void
age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
       struct age_softc *sc = ifp->if_softc;
       struct mii_data *mii = &sc->sc_miibus;

       mii_pollstat(mii);
       ifmr->ifm_status = mii->mii_media_status;
       ifmr->ifm_active = mii->mii_media_active;
}

/*
*      Set hardware to newly-selected media.
*/
static int
age_mediachange(struct ifnet *ifp)
{
       struct age_softc *sc = ifp->if_softc;
       struct mii_data *mii = &sc->sc_miibus;
       int error;

       if (mii->mii_instance != 0) {
               struct mii_softc *miisc;

               LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
                       mii_phy_reset(miisc);
       }
       error = mii_mediachg(mii);

       return error;
}

static int
age_intr(void *arg)
{
       struct age_softc *sc = arg;
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct cmb *cmb;
       uint32_t status;

       status = CSR_READ_4(sc, AGE_INTR_STATUS);
       if (status == 0 || (status & AGE_INTRS) == 0)
               return 0;

       cmb = sc->age_rdata.age_cmb_block;
       if (cmb == NULL) {
               /* Happens when bringing up the interface
                * w/o having a carrier. Ack the interrupt.
                */
               CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
               return 0;
       }

       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
           sc->age_cdata.age_cmb_block_map->dm_mapsize,
           BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
       status = le32toh(cmb->intr_status);
       /* ACK/reenable interrupts */
       CSR_WRITE_4(sc, AGE_INTR_STATUS, status);
       while ((status & AGE_INTRS) != 0) {
               sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
                   TPD_CONS_SHIFT;
               sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
                   RRD_PROD_SHIFT;

               /* Let hardware know CMB was served. */
               cmb->intr_status = 0;
               bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
                   sc->age_cdata.age_cmb_block_map->dm_mapsize,
                   BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);

               if (ifp->if_flags & IFF_RUNNING) {
                       if (status & INTR_CMB_RX)
                               age_rxintr(sc, sc->age_rr_prod);

                       if (status & INTR_CMB_TX)
                               age_txintr(sc, sc->age_tpd_cons);

                       if (status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) {
                               if (status & INTR_DMA_RD_TO_RST)
                                       printf("%s: DMA read error! -- "
                                           "resetting\n",
                                           device_xname(sc->sc_dev));
                               if (status & INTR_DMA_WR_TO_RST)
                                       printf("%s: DMA write error! -- "
                                           "resetting\n",
                                           device_xname(sc->sc_dev));
                               age_init(ifp);
                       }

                       if_schedule_deferred_start(ifp);

                       if (status & INTR_SMB)
                               age_stats_update(sc);
               }
               /* check if more interrupts did came in */
               bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
                   sc->age_cdata.age_cmb_block_map->dm_mapsize,
                   BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
               status = le32toh(cmb->intr_status);
       }

       return 1;
}

static void
age_get_macaddr(struct age_softc *sc, uint8_t eaddr[])
{
       uint32_t ea[2], reg;
       int i, vpdc;

       reg = CSR_READ_4(sc, AGE_SPI_CTRL);
       if ((reg & SPI_VPD_ENB) != 0) {
               /* Get VPD stored in TWSI EEPROM. */
               reg &= ~SPI_VPD_ENB;
               CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
       }

       if (pci_get_capability(sc->sc_pct, sc->sc_pcitag,
           PCI_CAP_VPD, &vpdc, NULL)) {
               /*
                * PCI VPD capability found, let TWSI reload EEPROM.
                * This will set Ethernet address of controller.
                */
               CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
                   TWSI_CTRL_SW_LD_START);
               for (i = 100; i > 0; i--) {
                       DELAY(1000);
                       reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
                       if ((reg & TWSI_CTRL_SW_LD_START) == 0)
                               break;
               }
               if (i == 0)
                       printf("%s: reloading EEPROM timeout!\n",
                           device_xname(sc->sc_dev));
       } else {
               if (agedebug)
                       printf("%s: PCI VPD capability not found!\n",
                           device_xname(sc->sc_dev));
       }

       ea[0] = CSR_READ_4(sc, AGE_PAR0);
       ea[1] = CSR_READ_4(sc, AGE_PAR1);

       eaddr[0] = (ea[1] >> 8) & 0xFF;
       eaddr[1] = (ea[1] >> 0) & 0xFF;
       eaddr[2] = (ea[0] >> 24) & 0xFF;
       eaddr[3] = (ea[0] >> 16) & 0xFF;
       eaddr[4] = (ea[0] >> 8) & 0xFF;
       eaddr[5] = (ea[0] >> 0) & 0xFF;
}

static void
age_phy_reset(struct age_softc *sc)
{
       uint16_t reg, pn;
       int i, linkup;

       /* Reset PHY. */
       CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
       DELAY(2000);
       CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
       DELAY(2000);

#define ATPHY_DBG_ADDR          0x1D
#define ATPHY_DBG_DATA          0x1E
#define ATPHY_CDTC              0x16
#define PHY_CDTC_ENB            0x0001
#define PHY_CDTC_POFF           8
#define ATPHY_CDTS              0x1C
#define PHY_CDTS_STAT_OK        0x0000
#define PHY_CDTS_STAT_SHORT     0x0100
#define PHY_CDTS_STAT_OPEN      0x0200
#define PHY_CDTS_STAT_INVAL     0x0300
#define PHY_CDTS_STAT_MASK      0x0300

       /* Check power saving mode. Magic from Linux. */
       age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
       for (linkup = 0, pn = 0; pn < 4; pn++) {
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, ATPHY_CDTC,
                   (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
               for (i = 200; i > 0; i--) {
                       DELAY(1000);
                       age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
                           ATPHY_CDTC, &reg);
                       if ((reg & PHY_CDTC_ENB) == 0)
                               break;
               }
               DELAY(1000);
               age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_CDTS, &reg);
               if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
                       linkup++;
                       break;
               }
       }
       age_miibus_writereg(sc->sc_dev, sc->age_phyaddr, MII_BMCR,
           BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
       if (linkup == 0) {
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_ADDR, 0);
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_DATA, 0x124E);
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_ADDR, 1);
               age_miibus_readreg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_DATA, &reg);
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_DATA, reg | 0x03);
               /* XXX */
               DELAY(1500 * 1000);
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_ADDR, 0);
               age_miibus_writereg(sc->sc_dev, sc->age_phyaddr,
                   ATPHY_DBG_DATA, 0x024E);
       }

#undef ATPHY_DBG_ADDR
#undef ATPHY_DBG_DATA
#undef ATPHY_CDTC
#undef PHY_CDTC_ENB
#undef PHY_CDTC_POFF
#undef ATPHY_CDTS
#undef PHY_CDTS_STAT_OK
#undef PHY_CDTS_STAT_SHORT
#undef PHY_CDTS_STAT_OPEN
#undef PHY_CDTS_STAT_INVAL
#undef PHY_CDTS_STAT_MASK
}

static int
age_dma_alloc(struct age_softc *sc)
{
       struct age_txdesc *txd;
       struct age_rxdesc *rxd;
       int nsegs, error, i;

       /*
        * Create DMA stuffs for TX ring
        */
       error = bus_dmamap_create(sc->sc_dmat, AGE_TX_RING_SZ, 1,
           AGE_TX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_tx_ring_map);
       if (error) {
               sc->age_cdata.age_tx_ring_map = NULL;
               return ENOBUFS;
       }

       /* Allocate DMA'able memory for TX ring */
       error = bus_dmamem_alloc(sc->sc_dmat, AGE_TX_RING_SZ,
           PAGE_SIZE, 0, &sc->age_rdata.age_tx_ring_seg, 1,
           &nsegs, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not allocate DMA'able memory for Tx ring, "
                   "error = %i\n", device_xname(sc->sc_dev), error);
               return error;
       }

       error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_tx_ring_seg,
           nsegs, AGE_TX_RING_SZ, (void **)&sc->age_rdata.age_tx_ring,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
       if (error)
               return ENOBUFS;

       memset(sc->age_rdata.age_tx_ring, 0, AGE_TX_RING_SZ);

       /*  Load the DMA map for Tx ring. */
       error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
           sc->age_rdata.age_tx_ring, AGE_TX_RING_SZ, NULL, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not load DMA'able memory for Tx ring, "
                   "error = %i\n", device_xname(sc->sc_dev), error);
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_tx_ring_seg, 1);
               return error;
       }

       sc->age_rdata.age_tx_ring_paddr =
           sc->age_cdata.age_tx_ring_map->dm_segs[0].ds_addr;

       /*
        * Create DMA stuffs for RX ring
        */
       error = bus_dmamap_create(sc->sc_dmat, AGE_RX_RING_SZ, 1,
           AGE_RX_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_ring_map);
       if (error) {
               sc->age_cdata.age_rx_ring_map = NULL;
               return ENOBUFS;
       }

       /* Allocate DMA'able memory for RX ring */
       error = bus_dmamem_alloc(sc->sc_dmat, AGE_RX_RING_SZ,
           PAGE_SIZE, 0, &sc->age_rdata.age_rx_ring_seg, 1,
           &nsegs, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not allocate DMA'able memory for Rx ring, "
                   "error = %i.\n", device_xname(sc->sc_dev), error);
               return error;
       }

       error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rx_ring_seg,
           nsegs, AGE_RX_RING_SZ, (void **)&sc->age_rdata.age_rx_ring,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
       if (error)
               return ENOBUFS;

       memset(sc->age_rdata.age_rx_ring, 0, AGE_RX_RING_SZ);

       /* Load the DMA map for Rx ring. */
       error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rx_ring_map,
           sc->age_rdata.age_rx_ring, AGE_RX_RING_SZ, NULL, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not load DMA'able memory for Rx ring, "
                   "error = %i.\n", device_xname(sc->sc_dev), error);
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_rx_ring_seg, 1);
               return error;
       }

       sc->age_rdata.age_rx_ring_paddr =
           sc->age_cdata.age_rx_ring_map->dm_segs[0].ds_addr;

       /*
        * Create DMA stuffs for RX return ring
        */
       error = bus_dmamap_create(sc->sc_dmat, AGE_RR_RING_SZ, 1,
           AGE_RR_RING_SZ, 0, BUS_DMA_NOWAIT, &sc->age_cdata.age_rr_ring_map);
       if (error) {
               sc->age_cdata.age_rr_ring_map = NULL;
               return ENOBUFS;
       }

       /* Allocate DMA'able memory for RX return ring */
       error = bus_dmamem_alloc(sc->sc_dmat, AGE_RR_RING_SZ,
           PAGE_SIZE, 0, &sc->age_rdata.age_rr_ring_seg, 1,
           &nsegs, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not allocate DMA'able memory for Rx "
                   "return ring, error = %i.\n",
                   device_xname(sc->sc_dev), error);
               return error;
       }

       error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_rr_ring_seg,
           nsegs, AGE_RR_RING_SZ, (void **)&sc->age_rdata.age_rr_ring,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
       if (error)
               return ENOBUFS;

       memset(sc->age_rdata.age_rr_ring, 0, AGE_RR_RING_SZ);

       /*  Load the DMA map for Rx return ring. */
       error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_rr_ring_map,
           sc->age_rdata.age_rr_ring, AGE_RR_RING_SZ, NULL, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not load DMA'able memory for Rx return ring, "
                   "error = %i\n", device_xname(sc->sc_dev), error);
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_rr_ring_seg, 1);
               return error;
       }

       sc->age_rdata.age_rr_ring_paddr =
           sc->age_cdata.age_rr_ring_map->dm_segs[0].ds_addr;

       /*
        * Create DMA stuffs for CMB block
        */
       error = bus_dmamap_create(sc->sc_dmat, AGE_CMB_BLOCK_SZ, 1,
           AGE_CMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
           &sc->age_cdata.age_cmb_block_map);
       if (error) {
               sc->age_cdata.age_cmb_block_map = NULL;
               return ENOBUFS;
       }

       /* Allocate DMA'able memory for CMB block */
       error = bus_dmamem_alloc(sc->sc_dmat, AGE_CMB_BLOCK_SZ,
           PAGE_SIZE, 0, &sc->age_rdata.age_cmb_block_seg, 1,
           &nsegs, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not allocate DMA'able memory for "
                   "CMB block, error = %i\n", device_xname(sc->sc_dev), error);
               return error;
       }

       error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_cmb_block_seg,
           nsegs, AGE_CMB_BLOCK_SZ, (void **)&sc->age_rdata.age_cmb_block,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
       if (error)
               return ENOBUFS;

       memset(sc->age_rdata.age_cmb_block, 0, AGE_CMB_BLOCK_SZ);

       /*  Load the DMA map for CMB block. */
       error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_cmb_block_map,
           sc->age_rdata.age_cmb_block, AGE_CMB_BLOCK_SZ, NULL,
           BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not load DMA'able memory for CMB block, "
                   "error = %i\n", device_xname(sc->sc_dev), error);
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_cmb_block_seg, 1);
               return error;
       }

       sc->age_rdata.age_cmb_block_paddr =
           sc->age_cdata.age_cmb_block_map->dm_segs[0].ds_addr;

       /*
        * Create DMA stuffs for SMB block
        */
       error = bus_dmamap_create(sc->sc_dmat, AGE_SMB_BLOCK_SZ, 1,
           AGE_SMB_BLOCK_SZ, 0, BUS_DMA_NOWAIT,
           &sc->age_cdata.age_smb_block_map);
       if (error) {
               sc->age_cdata.age_smb_block_map = NULL;
               return ENOBUFS;
       }

       /* Allocate DMA'able memory for SMB block */
       error = bus_dmamem_alloc(sc->sc_dmat, AGE_SMB_BLOCK_SZ,
           PAGE_SIZE, 0, &sc->age_rdata.age_smb_block_seg, 1,
           &nsegs, BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not allocate DMA'able memory for "
                   "SMB block, error = %i\n", device_xname(sc->sc_dev), error);
               return error;
       }

       error = bus_dmamem_map(sc->sc_dmat, &sc->age_rdata.age_smb_block_seg,
           nsegs, AGE_SMB_BLOCK_SZ, (void **)&sc->age_rdata.age_smb_block,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
       if (error)
               return ENOBUFS;

       memset(sc->age_rdata.age_smb_block, 0, AGE_SMB_BLOCK_SZ);

       /*  Load the DMA map for SMB block */
       error = bus_dmamap_load(sc->sc_dmat, sc->age_cdata.age_smb_block_map,
           sc->age_rdata.age_smb_block, AGE_SMB_BLOCK_SZ, NULL,
           BUS_DMA_NOWAIT);
       if (error) {
               printf("%s: could not load DMA'able memory for SMB block, "
                   "error = %i\n", device_xname(sc->sc_dev), error);
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_smb_block_seg, 1);
               return error;
       }

       sc->age_rdata.age_smb_block_paddr =
           sc->age_cdata.age_smb_block_map->dm_segs[0].ds_addr;

       /*
        * All of the memory we allocated above needs to be within
        * the same 4GB segment.  Make sure this is so.
        *
        * XXX We don't care WHAT 4GB segment they're in, just that
        * XXX they're all in the same one.  Need some bus_dma API
        * XXX help to make this easier to enforce when we actually
        * XXX perform the allocation.
        */
       if (! (AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
              AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)

           && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
              AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)

           && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
              AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)

           && AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr) ==
              AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr))) {
               aprint_error_dev(sc->sc_dev,
                   "control data allocation constraints failed\n");
               return ENOBUFS;
       }

       /* Create DMA maps for Tx buffers. */
       for (i = 0; i < AGE_TX_RING_CNT; i++) {
               txd = &sc->age_cdata.age_txdesc[i];
               txd->tx_m = NULL;
               txd->tx_dmamap = NULL;
               error = bus_dmamap_create(sc->sc_dmat, AGE_TSO_MAXSIZE,
                   AGE_MAXTXSEGS, AGE_TSO_MAXSEGSIZE, 0, BUS_DMA_NOWAIT,
                   &txd->tx_dmamap);
               if (error) {
                       txd->tx_dmamap = NULL;
                       printf("%s: could not create Tx dmamap, error = %i.\n",
                           device_xname(sc->sc_dev), error);
                       return error;
               }
       }

       /* Create DMA maps for Rx buffers. */
       error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
           BUS_DMA_NOWAIT, &sc->age_cdata.age_rx_sparemap);
       if (error) {
               sc->age_cdata.age_rx_sparemap = NULL;
               printf("%s: could not create spare Rx dmamap, error = %i.\n",
                   device_xname(sc->sc_dev), error);
               return error;
       }
       for (i = 0; i < AGE_RX_RING_CNT; i++) {
               rxd = &sc->age_cdata.age_rxdesc[i];
               rxd->rx_m = NULL;
               rxd->rx_dmamap = NULL;
               error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
                   MCLBYTES, 0, BUS_DMA_NOWAIT, &rxd->rx_dmamap);
               if (error) {
                       rxd->rx_dmamap = NULL;
                       printf("%s: could not create Rx dmamap, error = %i.\n",
                           device_xname(sc->sc_dev), error);
                       return error;
               }
       }

       return 0;
}

static void
age_dma_free(struct age_softc *sc)
{
       struct age_txdesc *txd;
       struct age_rxdesc *rxd;
       int i;

       /* Tx buffers */
       for (i = 0; i < AGE_TX_RING_CNT; i++) {
               txd = &sc->age_cdata.age_txdesc[i];
               if (txd->tx_dmamap != NULL) {
                       bus_dmamap_destroy(sc->sc_dmat, txd->tx_dmamap);
                       txd->tx_dmamap = NULL;
               }
       }
       /* Rx buffers */
       for (i = 0; i < AGE_RX_RING_CNT; i++) {
               rxd = &sc->age_cdata.age_rxdesc[i];
               if (rxd->rx_dmamap != NULL) {
                       bus_dmamap_destroy(sc->sc_dmat, rxd->rx_dmamap);
                       rxd->rx_dmamap = NULL;
               }
       }
       if (sc->age_cdata.age_rx_sparemap != NULL) {
               bus_dmamap_destroy(sc->sc_dmat, sc->age_cdata.age_rx_sparemap);
               sc->age_cdata.age_rx_sparemap = NULL;
       }

       /* Tx ring. */
       if (sc->age_cdata.age_tx_ring_map != NULL)
               bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_tx_ring_map);
       if (sc->age_cdata.age_tx_ring_map != NULL &&
           sc->age_rdata.age_tx_ring != NULL)
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_tx_ring_seg, 1);
       sc->age_rdata.age_tx_ring = NULL;
       sc->age_cdata.age_tx_ring_map = NULL;

       /* Rx ring. */
       if (sc->age_cdata.age_rx_ring_map != NULL)
               bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rx_ring_map);
       if (sc->age_cdata.age_rx_ring_map != NULL &&
           sc->age_rdata.age_rx_ring != NULL)
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_rx_ring_seg, 1);
       sc->age_rdata.age_rx_ring = NULL;
       sc->age_cdata.age_rx_ring_map = NULL;

       /* Rx return ring. */
       if (sc->age_cdata.age_rr_ring_map != NULL)
               bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_rr_ring_map);
       if (sc->age_cdata.age_rr_ring_map != NULL &&
           sc->age_rdata.age_rr_ring != NULL)
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_rr_ring_seg, 1);
       sc->age_rdata.age_rr_ring = NULL;
       sc->age_cdata.age_rr_ring_map = NULL;

       /* CMB block */
       if (sc->age_cdata.age_cmb_block_map != NULL)
               bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_cmb_block_map);
       if (sc->age_cdata.age_cmb_block_map != NULL &&
           sc->age_rdata.age_cmb_block != NULL)
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_cmb_block_seg, 1);
       sc->age_rdata.age_cmb_block = NULL;
       sc->age_cdata.age_cmb_block_map = NULL;

       /* SMB block */
       if (sc->age_cdata.age_smb_block_map != NULL)
               bus_dmamap_unload(sc->sc_dmat, sc->age_cdata.age_smb_block_map);
       if (sc->age_cdata.age_smb_block_map != NULL &&
           sc->age_rdata.age_smb_block != NULL)
               bus_dmamem_free(sc->sc_dmat,
                   &sc->age_rdata.age_smb_block_seg, 1);
       sc->age_rdata.age_smb_block = NULL;
       sc->age_cdata.age_smb_block_map = NULL;
}

static void
age_start(struct ifnet *ifp)
{
       struct age_softc *sc = ifp->if_softc;
       struct mbuf *m_head;
       int enq, error;

       if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
               return;
       if ((sc->age_flags & AGE_FLAG_LINK) == 0)
               return;

       enq = 0;
       for (;;) {
               IFQ_POLL(&ifp->if_snd, m_head);
               if (m_head == NULL)
                       break;

               /*
                * Pack the data into the transmit ring. If we
                * don't have room, set the OACTIVE flag and wait
                * for the NIC to drain the ring.
                */
               if ((error = age_encap(sc, m_head)) != 0) {
                       if (error == EFBIG) {
                               /* This is fatal for the packet. */
                               IFQ_DEQUEUE(&ifp->if_snd, m_head);
                               m_freem(m_head);
                               if_statinc(ifp, if_oerrors);
                               continue;
                       }
                       ifp->if_flags |= IFF_OACTIVE;
                       break;
               }
               IFQ_DEQUEUE(&ifp->if_snd, m_head);
               enq = 1;

               /*
                * If there's a BPF listener, bounce a copy of this frame
                * to him.
                */
               bpf_mtap(ifp, m_head, BPF_D_OUT);
       }

       if (enq) {
               /* Update mbox. */
               AGE_COMMIT_MBOX(sc);
               /* Set a timeout in case the chip goes out to lunch. */
               ifp->if_timer = AGE_TX_TIMEOUT;
       }
}

static void
age_watchdog(struct ifnet *ifp)
{
       struct age_softc *sc = ifp->if_softc;

       if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
               printf("%s: watchdog timeout (missed link)\n",
                   device_xname(sc->sc_dev));
               if_statinc(ifp, if_oerrors);
               age_init(ifp);
               return;
       }

       if (sc->age_cdata.age_tx_cnt == 0) {
               printf("%s: watchdog timeout (missed Tx interrupts) "
                   "-- recovering\n", device_xname(sc->sc_dev));
               age_start(ifp);
               return;
       }

       printf("%s: watchdog timeout\n", device_xname(sc->sc_dev));
       if_statinc(ifp, if_oerrors);
       age_init(ifp);
       age_start(ifp);
}

static bool
age_shutdown(device_t self, int howto)
{
       struct age_softc *sc;
       struct ifnet *ifp;

       sc = device_private(self);
       ifp = &sc->sc_ec.ec_if;
       age_stop(ifp, 1);

       return true;
}

static int
age_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct age_softc *sc = ifp->if_softc;
       int s, error;

       s = splnet();

       error = ether_ioctl(ifp, cmd, data);
       if (error == ENETRESET) {
               if (ifp->if_flags & IFF_RUNNING)
                       age_rxfilter(sc);
               error = 0;
       }

       splx(s);
       return error;
}

static void
age_mac_config(struct age_softc *sc)
{
       struct mii_data *mii;
       uint32_t reg;

       mii = &sc->sc_miibus;

       reg = CSR_READ_4(sc, AGE_MAC_CFG);
       reg &= ~MAC_CFG_FULL_DUPLEX;
       reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
       reg &= ~MAC_CFG_SPEED_MASK;

       /* Reprogram MAC with resolved speed/duplex. */
       switch (IFM_SUBTYPE(mii->mii_media_active)) {
       case IFM_10_T:
       case IFM_100_TX:
               reg |= MAC_CFG_SPEED_10_100;
               break;
       case IFM_1000_T:
               reg |= MAC_CFG_SPEED_1000;
               break;
       }
       if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
               reg |= MAC_CFG_FULL_DUPLEX;
               if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
                       reg |= MAC_CFG_TX_FC;
               if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
                       reg |= MAC_CFG_RX_FC;
       }

       CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}

static bool
age_resume(device_t dv, const pmf_qual_t *qual)
{
       struct age_softc *sc = device_private(dv);
       uint16_t cmd;

       /*
        * Clear INTx emulation disable for hardware that
        * is set in resume event. From Linux.
        */
       cmd = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
       if ((cmd & PCI_COMMAND_INTERRUPT_DISABLE) != 0) {
               cmd &= ~PCI_COMMAND_INTERRUPT_DISABLE;
               pci_conf_write(sc->sc_pct, sc->sc_pcitag,
                   PCI_COMMAND_STATUS_REG, cmd);
       }

       return true;
}

static int
age_encap(struct age_softc *sc, struct mbuf * const m)
{
       struct age_txdesc *txd, *txd_last;
       struct tx_desc *desc;
       bus_dmamap_t map;
       uint32_t cflags, poff, vtag;
       int error, i, nsegs, prod;

       cflags = vtag = 0;
       poff = 0;

       prod = sc->age_cdata.age_tx_prod;
       txd = &sc->age_cdata.age_txdesc[prod];
       txd_last = txd;
       map = txd->tx_dmamap;

       error = bus_dmamap_load_mbuf(sc->sc_dmat, map, m, BUS_DMA_NOWAIT);
       if (error == EFBIG) {
               struct mbuf *mnew = m_defrag(m, M_NOWAIT);
               if (mnew != NULL) {
                       KASSERT(m == mnew);
                       error = bus_dmamap_load_mbuf(sc->sc_dmat, map, mnew,
                           BUS_DMA_NOWAIT);
               } else {
                       /* Just drop if we can't defrag. */
                       error = EFBIG;
               }
               if (error) {
                       if (error == EFBIG) {
                               printf("%s: Tx packet consumes too many "
                                   "DMA segments, dropping...\n",
                                   device_xname(sc->sc_dev));
                       }
                       return error;
               }
       } else if (error) {
               return error;
       }

       nsegs = map->dm_nsegs;
       KASSERT(nsegs != 0);

       /* Check descriptor overrun. */
       if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
               bus_dmamap_unload(sc->sc_dmat, map);
               return ENOBUFS;
       }
       bus_dmamap_sync(sc->sc_dmat, map, 0, map->dm_mapsize,
           BUS_DMASYNC_PREWRITE);

       /* Configure Tx IP/TCP/UDP checksum offload. */
       if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
               cflags |= AGE_TD_CSUM;
               if ((m->m_pkthdr.csum_flags & M_CSUM_TCPv4) != 0)
                       cflags |= AGE_TD_TCPCSUM;
               if ((m->m_pkthdr.csum_flags & M_CSUM_UDPv4) != 0)
                       cflags |= AGE_TD_UDPCSUM;
               /* Set checksum start offset. */
               cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
       }

#if NVLAN > 0
       /* Configure VLAN hardware tag insertion. */
       if (vlan_has_tag(m)) {
               vtag = AGE_TX_VLAN_TAG(htons(vlan_get_tag(m)));
               vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
               cflags |= AGE_TD_INSERT_VLAN_TAG;
       }
#endif

       desc = NULL;
       KASSERT(nsegs > 0);
       for (i = 0; ; i++) {
               desc = &sc->age_rdata.age_tx_ring[prod];
               desc->addr = htole64(map->dm_segs[i].ds_addr);
               desc->len =
                   htole32(AGE_TX_BYTES(map->dm_segs[i].ds_len) | vtag);
               desc->flags = htole32(cflags);
               sc->age_cdata.age_tx_cnt++;
               if (i == (nsegs - 1))
                       break;

               /* Sync this descriptor and go to the next one */
               bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
                   prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
                   BUS_DMASYNC_PREWRITE);
               AGE_DESC_INC(prod, AGE_TX_RING_CNT);
       }

       /* Set EOP on the last descriptor and sync it. */
       desc->flags |= htole32(AGE_TD_EOP);
       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
           prod * sizeof(struct tx_desc), sizeof(struct tx_desc),
           BUS_DMASYNC_PREWRITE);

       if (nsegs > 1) {
               /* Swap dmamap of the first and the last. */
               txd = &sc->age_cdata.age_txdesc[prod];
               map = txd_last->tx_dmamap;
               txd_last->tx_dmamap = txd->tx_dmamap;
               txd->tx_dmamap = map;
               txd->tx_m = m;
               KASSERT(txd_last->tx_m == NULL);
       } else {
               KASSERT(txd_last == &sc->age_cdata.age_txdesc[prod]);
               txd_last->tx_m = m;
       }

       /* Update producer index. */
       AGE_DESC_INC(prod, AGE_TX_RING_CNT);
       sc->age_cdata.age_tx_prod = prod;

       return 0;
}

static void
age_txintr(struct age_softc *sc, int tpd_cons)
{
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct age_txdesc *txd;
       int cons, prog;

       if (sc->age_cdata.age_tx_cnt <= 0) {
               if (ifp->if_timer != 0)
                       printf("timer running without packets\n");
               if (sc->age_cdata.age_tx_cnt)
                       printf("age_tx_cnt corrupted\n");
       }

       /*
        * Go through our Tx list and free mbufs for those
        * frames which have been transmitted.
        */
       cons = sc->age_cdata.age_tx_cons;
       for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
               if (sc->age_cdata.age_tx_cnt <= 0)
                       break;
               prog++;
               ifp->if_flags &= ~IFF_OACTIVE;
               sc->age_cdata.age_tx_cnt--;
               txd = &sc->age_cdata.age_txdesc[cons];
               /*
                * Clear Tx descriptors, it's not required but would
                * help debugging in case of Tx issues.
                */
               bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map,
                   cons * sizeof(struct tx_desc), sizeof(struct tx_desc),
                   BUS_DMASYNC_POSTWRITE);
               txd->tx_desc->addr = 0;
               txd->tx_desc->len = 0;
               txd->tx_desc->flags = 0;

               if (txd->tx_m == NULL)
                       continue;
               /* Reclaim transmitted mbufs. */
               bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
               m_freem(txd->tx_m);
               txd->tx_m = NULL;
       }

       if (prog > 0) {
               sc->age_cdata.age_tx_cons = cons;

               /*
                * Unarm watchdog timer only when there are no pending
                * Tx descriptors in queue.
                */
               if (sc->age_cdata.age_tx_cnt == 0)
                       ifp->if_timer = 0;
       }
}

/* Receive a frame. */
static void
age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
{
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct age_rxdesc *rxd;
       struct rx_desc *desc;
       struct mbuf *mp, *m;
       uint32_t status, index;
       int count, nsegs, pktlen;
       int rx_cons;

       status = le32toh(rxrd->flags);
       index = le32toh(rxrd->index);
       rx_cons = AGE_RX_CONS(index);
       nsegs = AGE_RX_NSEGS(index);

       sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
       if ((status & AGE_RRD_ERROR) != 0 &&
           (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
           AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
               /*
                * We want to pass the following frames to upper
                * layer regardless of error status of Rx return
                * ring.
                *
                *  o IP/TCP/UDP checksum is bad.
                *  o frame length and protocol specific length
                *     does not match.
                */
               sc->age_cdata.age_rx_cons += nsegs;
               sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
               return;
       }

       pktlen = 0;
       for (count = 0; count < nsegs; count++,
           AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
               rxd = &sc->age_cdata.age_rxdesc[rx_cons];
               mp = rxd->rx_m;
               desc = rxd->rx_desc;
               /* Add a new receive buffer to the ring. */
               if (age_newbuf(sc, rxd, 0) != 0) {
                       if_statinc(ifp, if_iqdrops);
                       /* Reuse Rx buffers. */
                       if (sc->age_cdata.age_rxhead != NULL) {
                               m_freem(sc->age_cdata.age_rxhead);
                               AGE_RXCHAIN_RESET(sc);
                       }
                       break;
               }

               /* The length of the first mbuf is computed last. */
               if (count != 0) {
                       mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
                       pktlen += mp->m_len;
               }

               /* Chain received mbufs. */
               if (sc->age_cdata.age_rxhead == NULL) {
                       sc->age_cdata.age_rxhead = mp;
                       sc->age_cdata.age_rxtail = mp;
               } else {
                       m_remove_pkthdr(mp);
                       sc->age_cdata.age_rxprev_tail =
                           sc->age_cdata.age_rxtail;
                       sc->age_cdata.age_rxtail->m_next = mp;
                       sc->age_cdata.age_rxtail = mp;
               }

               if (count == nsegs - 1) {
                       /*
                        * It seems that L1 controller has no way
                        * to tell hardware to strip CRC bytes.
                        */
                       sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
                       if (nsegs > 1) {
                               /* Remove the CRC bytes in chained mbufs. */
                               pktlen -= ETHER_CRC_LEN;
                               if (mp->m_len <= ETHER_CRC_LEN) {
                                       sc->age_cdata.age_rxtail =
                                           sc->age_cdata.age_rxprev_tail;
                                       sc->age_cdata.age_rxtail->m_len -=
                                           (ETHER_CRC_LEN - mp->m_len);
                                       sc->age_cdata.age_rxtail->m_next = NULL;
                                       m_freem(mp);
                               } else {
                                       mp->m_len -= ETHER_CRC_LEN;
                               }
                       }

                       m = sc->age_cdata.age_rxhead;
                       KASSERT(m->m_flags & M_PKTHDR);
                       m_set_rcvif(m, ifp);
                       m->m_pkthdr.len = sc->age_cdata.age_rxlen;
                       /* Set the first mbuf length. */
                       m->m_len = sc->age_cdata.age_rxlen - pktlen;

                       /*
                        * Set checksum information.
                        * It seems that L1 controller can compute partial
                        * checksum. The partial checksum value can be used
                        * to accelerate checksum computation for fragmented
                        * TCP/UDP packets. Upper network stack already
                        * takes advantage of the partial checksum value in
                        * IP reassembly stage. But I'm not sure the
                        * correctness of the partial hardware checksum
                        * assistance due to lack of data sheet. If it is
                        * proven to work on L1 I'll enable it.
                        */
                       if (status & AGE_RRD_IPV4) {
                               if (status & AGE_RRD_IPCSUM_NOK)
                                       m->m_pkthdr.csum_flags |=
                                           M_CSUM_IPv4_BAD;
                               if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
                                   (status & AGE_RRD_TCP_UDPCSUM_NOK)) {
                                       m->m_pkthdr.csum_flags |=
                                           M_CSUM_TCP_UDP_BAD;
                               }
                               /*
                                * Don't mark bad checksum for TCP/UDP frames
                                * as fragmented frames may always have set
                                * bad checksummed bit of descriptor status.
                                */
                       }
#if NVLAN > 0
                       /* Check for VLAN tagged frames. */
                       if (status & AGE_RRD_VLAN) {
                               uint32_t vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
                               vlan_set_tag(m, AGE_RX_VLAN_TAG(vtag));
                       }
#endif

                       /* Pass it on. */
                       if_percpuq_enqueue(ifp->if_percpuq, m);

                       /* Reset mbuf chains. */
                       AGE_RXCHAIN_RESET(sc);
               }
       }

       if (count != nsegs) {
               sc->age_cdata.age_rx_cons += nsegs;
               sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
       } else
               sc->age_cdata.age_rx_cons = rx_cons;
}

static void
age_rxintr(struct age_softc *sc, int rr_prod)
{
       struct rx_rdesc *rxrd;
       int rr_cons, nsegs, pktlen, prog;

       rr_cons = sc->age_cdata.age_rr_cons;
       if (rr_cons == rr_prod)
               return;

       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
           sc->age_cdata.age_rr_ring_map->dm_mapsize,
           BUS_DMASYNC_POSTREAD);

       for (prog = 0; rr_cons != rr_prod; prog++) {
               rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
               nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
               if (nsegs == 0)
                       break;
               /*
                * Check number of segments against received bytes
                * Non-matching value would indicate that hardware
                * is still trying to update Rx return descriptors.
                * I'm not sure whether this check is really needed.
                */
               pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
               if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
                   (MCLBYTES - ETHER_ALIGN)))
                       break;

               /* Received a frame. */
               age_rxeof(sc, rxrd);

               /* Clear return ring. */
               rxrd->index = 0;
               AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
       }

       if (prog > 0) {
               /* Update the consumer index. */
               sc->age_cdata.age_rr_cons = rr_cons;

               /* Sync descriptors. */
               bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
                   sc->age_cdata.age_rr_ring_map->dm_mapsize,
                   BUS_DMASYNC_PREWRITE);

               /* Notify hardware availability of new Rx buffers. */
               AGE_COMMIT_MBOX(sc);
       }
}

static void
age_tick(void *xsc)
{
       struct age_softc *sc = xsc;
       struct mii_data *mii = &sc->sc_miibus;
       int s;

       s = splnet();
       mii_tick(mii);
       splx(s);

       callout_schedule(&sc->sc_tick_ch, hz);
}

static void
age_reset(struct age_softc *sc)
{
       uint32_t reg;
       int i;

       CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
       CSR_READ_4(sc, AGE_MASTER_CFG);
       DELAY(1000);
       for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
               if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
                       break;
               DELAY(10);
       }

       if (i == 0)
               printf("%s: reset timeout(0x%08x)!\n", device_xname(sc->sc_dev),
                   reg);

       /* Initialize PCIe module. From Linux. */
       CSR_WRITE_4(sc, 0x12FC, 0x6500);
       CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
}

static int
age_init(struct ifnet *ifp)
{
       struct age_softc *sc = ifp->if_softc;
       struct mii_data *mii;
       uint8_t eaddr[ETHER_ADDR_LEN];
       bus_addr_t paddr;
       uint32_t reg, fsize;
       uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
       int error;

       /*
        * Cancel any pending I/O.
        */
       age_stop(ifp, 0);

       /*
        * Reset the chip to a known state.
        */
       age_reset(sc);

       /* Initialize descriptors. */
       error = age_init_rx_ring(sc);
       if (error != 0) {
               printf("%s: no memory for Rx buffers.\n", device_xname(sc->sc_dev));
               age_stop(ifp, 0);
               return error;
       }
       age_init_rr_ring(sc);
       age_init_tx_ring(sc);
       age_init_cmb_block(sc);
       age_init_smb_block(sc);

       /* Reprogram the station address. */
       memcpy(eaddr, CLLADDR(ifp->if_sadl), sizeof(eaddr));
       CSR_WRITE_4(sc, AGE_PAR0,
           eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
       CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);

       /* Set descriptor base addresses. */
       paddr = sc->age_rdata.age_tx_ring_paddr;
       CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
       paddr = sc->age_rdata.age_rx_ring_paddr;
       CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
       paddr = sc->age_rdata.age_rr_ring_paddr;
       CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
       paddr = sc->age_rdata.age_tx_ring_paddr;
       CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
       paddr = sc->age_rdata.age_cmb_block_paddr;
       CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
       paddr = sc->age_rdata.age_smb_block_paddr;
       CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));

       /* Set Rx/Rx return descriptor counter. */
       CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
           ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
           DESC_RRD_CNT_MASK) |
           ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));

       /* Set Tx descriptor counter. */
       CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
           (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);

       /* Tell hardware that we're ready to load descriptors. */
       CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);

       /*
        * Initialize mailbox register.
        * Updated producer/consumer index information is exchanged
        * through this mailbox register. However Tx producer and
        * Rx return consumer/Rx producer are all shared such that
        * it's hard to separate code path between Tx and Rx without
        * locking. If L1 hardware have a separate mail box register
        * for Tx and Rx consumer/producer management we could have
        * independent Tx/Rx handler which in turn Rx handler could have
        * been run without any locking.
       */
       AGE_COMMIT_MBOX(sc);

       /* Configure IPG/IFG parameters. */
       CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
           ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
           ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
           ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
           ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));

       /* Set parameters for half-duplex media. */
       CSR_WRITE_4(sc, AGE_HDPX_CFG,
           ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
           HDPX_CFG_LCOL_MASK) |
           ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
           HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
           ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
           HDPX_CFG_ABEBT_MASK) |
           ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
            HDPX_CFG_JAMIPG_MASK));

       /* Configure interrupt moderation timer. */
       sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
       CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
       reg = CSR_READ_4(sc, AGE_MASTER_CFG);
       reg &= ~MASTER_MTIMER_ENB;
       if (AGE_USECS(sc->age_int_mod) == 0)
               reg &= ~MASTER_ITIMER_ENB;
       else
               reg |= MASTER_ITIMER_ENB;
       CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
       if (agedebug)
               printf("%s: interrupt moderation is %d us.\n",
                   device_xname(sc->sc_dev), sc->age_int_mod);
       CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));

       /* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
       if (ifp->if_mtu < ETHERMTU)
               sc->age_max_frame_size = ETHERMTU;
       else
               sc->age_max_frame_size = ifp->if_mtu;
       sc->age_max_frame_size += ETHER_HDR_LEN +
           sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
       CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);

       /* Configure jumbo frame. */
       fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
       CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
           (((fsize / sizeof(uint64_t)) <<
           RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
           ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
           RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
           ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
           RXQ_JUMBO_CFG_RRD_TIMER_MASK));

       /* Configure flow-control parameters. From Linux. */
       if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
               /*
                * Magic workaround for old-L1.
                * Don't know which hw revision requires this magic.
                */
               CSR_WRITE_4(sc, 0x12FC, 0x6500);
               /*
                * Another magic workaround for flow-control mode
                * change. From Linux.
                */
               CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
       }
       /*
        * TODO
        *  Should understand pause parameter relationships between FIFO
        *  size and number of Rx descriptors and Rx return descriptors.
        *
        *  Magic parameters came from Linux.
        */
       switch (sc->age_chip_rev) {
       case 0x8001:
       case 0x9001:
       case 0x9002:
       case 0x9003:
               rxf_hi = AGE_RX_RING_CNT / 16;
               rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
               rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
               rrd_lo = AGE_RR_RING_CNT / 16;
               break;
       default:
               reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
               rxf_lo = reg / 16;
               if (rxf_lo < 192)
                       rxf_lo = 192;
               rxf_hi = (reg * 7) / 8;
               if (rxf_hi < rxf_lo)
                       rxf_hi = rxf_lo + 16;
               reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
               rrd_lo = reg / 8;
               rrd_hi = (reg * 7) / 8;
               if (rrd_lo < 2)
                       rrd_lo = 2;
               if (rrd_hi < rrd_lo)
                       rrd_hi = rrd_lo + 3;
               break;
       }
       CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
           ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
           RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
           ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
           RXQ_FIFO_PAUSE_THRESH_HI_MASK));
       CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
           ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
           RXQ_RRD_PAUSE_THRESH_LO_MASK) |
           ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
           RXQ_RRD_PAUSE_THRESH_HI_MASK));

       /* Configure RxQ. */
       CSR_WRITE_4(sc, AGE_RXQ_CFG,
           ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
           RXQ_CFG_RD_BURST_MASK) |
           ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
           RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
           ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
           RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
           RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);

       /* Configure TxQ. */
       CSR_WRITE_4(sc, AGE_TXQ_CFG,
           ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
           TXQ_CFG_TPD_BURST_MASK) |
           ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
           TXQ_CFG_TX_FIFO_BURST_MASK) |
           ((TXQ_CFG_TPD_FETCH_DEFAULT <<
           TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
           TXQ_CFG_ENB);

       /* Configure DMA parameters. */
       CSR_WRITE_4(sc, AGE_DMA_CFG,
           DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
           sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
           sc->age_dma_wr_burst | DMA_CFG_WR_ENB);

       /* Configure CMB DMA write threshold. */
       CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
           ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
           CMB_WR_THRESH_RRD_MASK) |
           ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
           CMB_WR_THRESH_TPD_MASK));

       /* Set CMB/SMB timer and enable them. */
       CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
           ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
           ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));

       /* Request SMB updates for every seconds. */
       CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
       CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);

       /*
        * Disable all WOL bits as WOL can interfere normal Rx
        * operation.
        */
       CSR_WRITE_4(sc, AGE_WOL_CFG, 0);

       /*
        * Configure Tx/Rx MACs.
        *  - Auto-padding for short frames.
        *  - Enable CRC generation.
        *  Start with full-duplex/1000Mbps media. Actual reconfiguration
        *  of MAC is followed after link establishment.
        */
       CSR_WRITE_4(sc, AGE_MAC_CFG,
           MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
           MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
           ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
           MAC_CFG_PREAMBLE_MASK));

       /* Set up the receive filter. */
       age_rxfilter(sc);
       age_rxvlan(sc);

       reg = CSR_READ_4(sc, AGE_MAC_CFG);
       reg |= MAC_CFG_RXCSUM_ENB;

       /* Ack all pending interrupts and clear it. */
       CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
       CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);

       /* Finally enable Tx/Rx MAC. */
       CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);

       sc->age_flags &= ~AGE_FLAG_LINK;

       /* Switch to the current media. */
       mii = &sc->sc_miibus;
       mii_mediachg(mii);

       callout_schedule(&sc->sc_tick_ch, hz);

       ifp->if_flags |= IFF_RUNNING;
       ifp->if_flags &= ~IFF_OACTIVE;

       return 0;
}

static void
age_stop(struct ifnet *ifp, int disable)
{
       struct age_softc *sc = ifp->if_softc;
       struct age_txdesc *txd;
       struct age_rxdesc *rxd;
       uint32_t reg;
       int i;

       callout_stop(&sc->sc_tick_ch);

       /*
        * Mark the interface down and cancel the watchdog timer.
        */
       ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
       ifp->if_timer = 0;

       sc->age_flags &= ~AGE_FLAG_LINK;

       mii_down(&sc->sc_miibus);

       /*
        * Disable interrupts.
        */
       CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
       CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);

       /* Stop CMB/SMB updates. */
       CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);

       /* Stop Rx/Tx MAC. */
       age_stop_rxmac(sc);
       age_stop_txmac(sc);

       /* Stop DMA. */
       CSR_WRITE_4(sc, AGE_DMA_CFG,
           CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));

       /* Stop TxQ/RxQ. */
       CSR_WRITE_4(sc, AGE_TXQ_CFG,
           CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
       CSR_WRITE_4(sc, AGE_RXQ_CFG,
           CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
       for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
               if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
                       break;
               DELAY(10);
       }
       if (i == 0)
               printf("%s: stopping Rx/Tx MACs timed out(0x%08x)!\n",
                   device_xname(sc->sc_dev), reg);

       /* Reclaim Rx buffers that have been processed. */
       if (sc->age_cdata.age_rxhead != NULL)
               m_freem(sc->age_cdata.age_rxhead);
       AGE_RXCHAIN_RESET(sc);

       /*
        * Free RX and TX mbufs still in the queues.
        */
       for (i = 0; i < AGE_RX_RING_CNT; i++) {
               rxd = &sc->age_cdata.age_rxdesc[i];
               if (rxd->rx_m != NULL) {
                       bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
                       m_freem(rxd->rx_m);
                       rxd->rx_m = NULL;
               }
       }
       for (i = 0; i < AGE_TX_RING_CNT; i++) {
               txd = &sc->age_cdata.age_txdesc[i];
               if (txd->tx_m != NULL) {
                       bus_dmamap_unload(sc->sc_dmat, txd->tx_dmamap);
                       m_freem(txd->tx_m);
                       txd->tx_m = NULL;
               }
       }
}

static void
age_stats_update(struct age_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct age_stats *stat;
       struct smb *smb;

       stat = &sc->age_stat;

       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
           sc->age_cdata.age_smb_block_map->dm_mapsize,
           BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);

       smb = sc->age_rdata.age_smb_block;
       if (smb->updated == 0)
               return;

       /* Rx stats. */
       stat->rx_frames += smb->rx_frames;
       stat->rx_bcast_frames += smb->rx_bcast_frames;
       stat->rx_mcast_frames += smb->rx_mcast_frames;
       stat->rx_pause_frames += smb->rx_pause_frames;
       stat->rx_control_frames += smb->rx_control_frames;
       stat->rx_crcerrs += smb->rx_crcerrs;
       stat->rx_lenerrs += smb->rx_lenerrs;
       stat->rx_bytes += smb->rx_bytes;
       stat->rx_runts += smb->rx_runts;
       stat->rx_fragments += smb->rx_fragments;
       stat->rx_pkts_64 += smb->rx_pkts_64;
       stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
       stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
       stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
       stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
       stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
       stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
       stat->rx_pkts_truncated += smb->rx_pkts_truncated;
       stat->rx_fifo_oflows += smb->rx_fifo_oflows;
       stat->rx_desc_oflows += smb->rx_desc_oflows;
       stat->rx_alignerrs += smb->rx_alignerrs;
       stat->rx_bcast_bytes += smb->rx_bcast_bytes;
       stat->rx_mcast_bytes += smb->rx_mcast_bytes;
       stat->rx_pkts_filtered += smb->rx_pkts_filtered;

       /* Tx stats. */
       stat->tx_frames += smb->tx_frames;
       stat->tx_bcast_frames += smb->tx_bcast_frames;
       stat->tx_mcast_frames += smb->tx_mcast_frames;
       stat->tx_pause_frames += smb->tx_pause_frames;
       stat->tx_excess_defer += smb->tx_excess_defer;
       stat->tx_control_frames += smb->tx_control_frames;
       stat->tx_deferred += smb->tx_deferred;
       stat->tx_bytes += smb->tx_bytes;
       stat->tx_pkts_64 += smb->tx_pkts_64;
       stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
       stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
       stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
       stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
       stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
       stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
       stat->tx_single_colls += smb->tx_single_colls;
       stat->tx_multi_colls += smb->tx_multi_colls;
       stat->tx_late_colls += smb->tx_late_colls;
       stat->tx_excess_colls += smb->tx_excess_colls;
       stat->tx_underrun += smb->tx_underrun;
       stat->tx_desc_underrun += smb->tx_desc_underrun;
       stat->tx_lenerrs += smb->tx_lenerrs;
       stat->tx_pkts_truncated += smb->tx_pkts_truncated;
       stat->tx_bcast_bytes += smb->tx_bcast_bytes;
       stat->tx_mcast_bytes += smb->tx_mcast_bytes;

       /* Update counters in ifnet. */
       net_stat_ref_t nsr = IF_STAT_GETREF(ifp);

       if_statadd_ref(ifp, nsr, if_opackets, smb->tx_frames);

       if_statadd_ref(ifp, nsr, if_collisions,
           smb->tx_single_colls +
           smb->tx_multi_colls + smb->tx_late_colls +
           smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);

       if_statadd_ref(ifp, nsr, if_oerrors,
           smb->tx_excess_colls +
           smb->tx_late_colls + smb->tx_underrun +
           smb->tx_pkts_truncated);

       if_statadd_ref(ifp, nsr, if_ierrors,
           smb->rx_crcerrs + smb->rx_lenerrs +
           smb->rx_runts + smb->rx_pkts_truncated +
           smb->rx_fifo_oflows + smb->rx_desc_oflows +
           smb->rx_alignerrs);

       IF_STAT_PUTREF(ifp);

       /* Update done, clear. */
       smb->updated = 0;

       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
           sc->age_cdata.age_smb_block_map->dm_mapsize,
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}

static void
age_stop_txmac(struct age_softc *sc)
{
       uint32_t reg;
       int i;

       reg = CSR_READ_4(sc, AGE_MAC_CFG);
       if ((reg & MAC_CFG_TX_ENB) != 0) {
               reg &= ~MAC_CFG_TX_ENB;
               CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
       }
       /* Stop Tx DMA engine. */
       reg = CSR_READ_4(sc, AGE_DMA_CFG);
       if ((reg & DMA_CFG_RD_ENB) != 0) {
               reg &= ~DMA_CFG_RD_ENB;
               CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
       }
       for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
               if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
                   (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
                       break;
               DELAY(10);
       }
       if (i == 0)
               printf("%s: stopping TxMAC timeout!\n", device_xname(sc->sc_dev));
}

static void
age_stop_rxmac(struct age_softc *sc)
{
       uint32_t reg;
       int i;

       reg = CSR_READ_4(sc, AGE_MAC_CFG);
       if ((reg & MAC_CFG_RX_ENB) != 0) {
               reg &= ~MAC_CFG_RX_ENB;
               CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
       }
       /* Stop Rx DMA engine. */
       reg = CSR_READ_4(sc, AGE_DMA_CFG);
       if ((reg & DMA_CFG_WR_ENB) != 0) {
               reg &= ~DMA_CFG_WR_ENB;
               CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
       }
       for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
               if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
                   (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
                       break;
               DELAY(10);
       }
       if (i == 0)
               printf("%s: stopping RxMAC timeout!\n", device_xname(sc->sc_dev));
}

static void
age_init_tx_ring(struct age_softc *sc)
{
       struct age_ring_data *rd;
       struct age_txdesc *txd;
       int i;

       sc->age_cdata.age_tx_prod = 0;
       sc->age_cdata.age_tx_cons = 0;
       sc->age_cdata.age_tx_cnt = 0;

       rd = &sc->age_rdata;
       memset(rd->age_tx_ring, 0, AGE_TX_RING_SZ);
       for (i = 0; i < AGE_TX_RING_CNT; i++) {
               txd = &sc->age_cdata.age_txdesc[i];
               txd->tx_desc = &rd->age_tx_ring[i];
               txd->tx_m = NULL;
       }
       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_tx_ring_map, 0,
           sc->age_cdata.age_tx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}

static int
age_init_rx_ring(struct age_softc *sc)
{
       struct age_ring_data *rd;
       struct age_rxdesc *rxd;
       int i;

       sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
       rd = &sc->age_rdata;
       memset(rd->age_rx_ring, 0, AGE_RX_RING_SZ);
       for (i = 0; i < AGE_RX_RING_CNT; i++) {
               rxd = &sc->age_cdata.age_rxdesc[i];
               rxd->rx_m = NULL;
               rxd->rx_desc = &rd->age_rx_ring[i];
               if (age_newbuf(sc, rxd, 1) != 0)
                       return ENOBUFS;
       }

       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rx_ring_map, 0,
           sc->age_cdata.age_rx_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);

       return 0;
}

static void
age_init_rr_ring(struct age_softc *sc)
{
       struct age_ring_data *rd;

       sc->age_cdata.age_rr_cons = 0;
       AGE_RXCHAIN_RESET(sc);

       rd = &sc->age_rdata;
       memset(rd->age_rr_ring, 0, AGE_RR_RING_SZ);
       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_rr_ring_map, 0,
           sc->age_cdata.age_rr_ring_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}

static void
age_init_cmb_block(struct age_softc *sc)
{
       struct age_ring_data *rd;

       rd = &sc->age_rdata;
       memset(rd->age_cmb_block, 0, AGE_CMB_BLOCK_SZ);
       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_cmb_block_map, 0,
           sc->age_cdata.age_cmb_block_map->dm_mapsize,
           BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
}

static void
age_init_smb_block(struct age_softc *sc)
{
       struct age_ring_data *rd;

       rd = &sc->age_rdata;
       memset(rd->age_smb_block, 0, AGE_SMB_BLOCK_SZ);
       bus_dmamap_sync(sc->sc_dmat, sc->age_cdata.age_smb_block_map, 0,
           sc->age_cdata.age_smb_block_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
}

static int
age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd, int init)
{
       struct rx_desc *desc;
       struct mbuf *m;
       bus_dmamap_t map;
       int error;

       MGETHDR(m, M_DONTWAIT, MT_DATA);
       if (m == NULL)
               return ENOBUFS;
       MCLGET(m, M_DONTWAIT);
       if (!(m->m_flags & M_EXT)) {
                m_freem(m);
                return ENOBUFS;
       }

       m->m_len = m->m_pkthdr.len = MCLBYTES;
       m_adj(m, ETHER_ALIGN);

       error = bus_dmamap_load_mbuf(sc->sc_dmat,
           sc->age_cdata.age_rx_sparemap, m, BUS_DMA_NOWAIT);

       if (error != 0) {
               m_freem(m);

               if (init)
                       printf("%s: can't load RX mbuf\n", device_xname(sc->sc_dev));
               return error;
       }

       if (rxd->rx_m != NULL) {
               bus_dmamap_sync(sc->sc_dmat, rxd->rx_dmamap, 0,
                   rxd->rx_dmamap->dm_mapsize, BUS_DMASYNC_POSTREAD);
               bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
       }
       map = rxd->rx_dmamap;
       rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
       sc->age_cdata.age_rx_sparemap = map;
       rxd->rx_m = m;

       desc = rxd->rx_desc;
       desc->addr = htole64(rxd->rx_dmamap->dm_segs[0].ds_addr);
       desc->len =
           htole32((rxd->rx_dmamap->dm_segs[0].ds_len & AGE_RD_LEN_MASK) <<
           AGE_RD_LEN_SHIFT);

       return 0;
}

static void
age_rxvlan(struct age_softc *sc)
{
       uint32_t reg;

       reg = CSR_READ_4(sc, AGE_MAC_CFG);
       reg &= ~MAC_CFG_VLAN_TAG_STRIP;
       if (sc->sc_ec.ec_capenable & ETHERCAP_VLAN_HWTAGGING)
               reg |= MAC_CFG_VLAN_TAG_STRIP;
       CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
}

static void
age_rxfilter(struct age_softc *sc)
{
       struct ethercom *ec = &sc->sc_ec;
       struct ifnet *ifp = &sc->sc_ec.ec_if;
       struct ether_multi *enm;
       struct ether_multistep step;
       uint32_t crc;
       uint32_t mchash[2];
       uint32_t rxcfg;

       rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
       rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
       ifp->if_flags &= ~IFF_ALLMULTI;

       /*
        * Always accept broadcast frames.
        */
       rxcfg |= MAC_CFG_BCAST;

       /* Program new filter. */
       if ((ifp->if_flags & IFF_PROMISC) != 0)
               goto update;

       memset(mchash, 0, sizeof(mchash));

       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                       /* XXX Use ETHER_F_ALLMULTI in future. */
                       ifp->if_flags |= IFF_ALLMULTI;
                       ETHER_UNLOCK(ec);
                       goto update;
               }
               crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);
               mchash[crc >> 31] |= 1U << ((crc >> 26) & 0x1f);
               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);

update:
       if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
               if (ifp->if_flags & IFF_PROMISC) {
                       rxcfg |= MAC_CFG_PROMISC;
                       /* XXX Use ETHER_F_ALLMULTI in future. */
                       ifp->if_flags |= IFF_ALLMULTI;
               } else
                       rxcfg |= MAC_CFG_ALLMULTI;
               mchash[0] = mchash[1] = 0xFFFFFFFF;
       }
       CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
       CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
       CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
}