/*      $NetBSD: eso.c,v 1.75 2021/08/07 16:19:14 thorpej Exp $ */

/*-
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software developed for The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1999, 2000, 2004 Klaus J. Klein
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* ESS Technology Inc. Solo-1 PCI AudioDrive (ES1938/1946) device driver.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: eso.c,v 1.75 2021/08/07 16:19:14 thorpej Exp $");

#include "mpu.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/proc.h>

#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>

#include <sys/audioio.h>
#include <dev/audio/audio_if.h>

#include <dev/ic/mpuvar.h>
#include <dev/ic/i8237reg.h>
#include <dev/pci/esoreg.h>
#include <dev/pci/esovar.h>

#include <sys/bus.h>
#include <sys/intr.h>

/*
* XXX Work around the 24-bit implementation limit of the Audio 1 DMA
* XXX engine by allocating through the ISA DMA tag.
*/
#if defined(amd64) || defined(i386)
#include <dev/isa/isavar.h>
#endif

#if defined(AUDIO_DEBUG) || defined(DEBUG)
#define DPRINTF(x) printf x
#else
#define DPRINTF(x)
#endif

struct eso_dma {
       bus_dma_tag_t           ed_dmat;
       bus_dmamap_t            ed_map;
       void *                  ed_kva;
       bus_dma_segment_t       ed_segs[1];
       int                     ed_nsegs;
       size_t                  ed_size;
       SLIST_ENTRY(eso_dma)    ed_slist;
};

#define KVADDR(dma)     ((void *)(dma)->ed_kva)
#define DMAADDR(dma)    ((dma)->ed_map->dm_segs[0].ds_addr)

/* Autoconfiguration interface */
static int eso_match(device_t, cfdata_t, void *);
static void eso_attach(device_t, device_t, void *);
static void eso_defer(device_t);
static int eso_print(void *, const char *);

CFATTACH_DECL_NEW(eso, sizeof (struct eso_softc),
   eso_match, eso_attach, NULL, NULL);

/* PCI interface */
static int eso_intr(void *);

/* MI audio layer interface */
static int      eso_query_format(void *, audio_format_query_t *);
static int      eso_set_format(void *, int,
                   const audio_params_t *, const audio_params_t *,
                   audio_filter_reg_t *, audio_filter_reg_t *);
static int      eso_round_blocksize(void *, int, int, const audio_params_t *);
static int      eso_halt_output(void *);
static int      eso_halt_input(void *);
static int      eso_getdev(void *, struct audio_device *);
static int      eso_set_port(void *, mixer_ctrl_t *);
static int      eso_get_port(void *, mixer_ctrl_t *);
static int      eso_query_devinfo(void *, mixer_devinfo_t *);
static void *   eso_allocm(void *, int, size_t);
static void     eso_freem(void *, void *, size_t);
static size_t   eso_round_buffersize(void *, int, size_t);
static int      eso_get_props(void *);
static int      eso_trigger_output(void *, void *, void *, int,
                   void (*)(void *), void *, const audio_params_t *);
static int      eso_trigger_input(void *, void *, void *, int,
                   void (*)(void *), void *, const audio_params_t *);
static void     eso_get_locks(void *, kmutex_t **, kmutex_t **);

static const struct audio_hw_if eso_hw_if = {
       .query_format           = eso_query_format,
       .set_format             = eso_set_format,
       .round_blocksize        = eso_round_blocksize,
       .halt_output            = eso_halt_output,
       .halt_input             = eso_halt_input,
       .getdev                 = eso_getdev,
       .set_port               = eso_set_port,
       .get_port               = eso_get_port,
       .query_devinfo          = eso_query_devinfo,
       .allocm                 = eso_allocm,
       .freem                  = eso_freem,
       .round_buffersize       = eso_round_buffersize,
       .get_props              = eso_get_props,
       .trigger_output         = eso_trigger_output,
       .trigger_input          = eso_trigger_input,
       .get_locks              = eso_get_locks,
};

static const char * const eso_rev2model[] = {
       "ES1938",
       "ES1946",
       "ES1946 Revision E"
};

/*
* XXX The HW actually supports more frequencies but I select a few
* typical frequencies which does not include rounding error.
*/
static const struct audio_format eso_formats[] = {
       {
               .mode           = AUMODE_PLAY | AUMODE_RECORD,
               .encoding       = AUDIO_ENCODING_SLINEAR_LE,
               .validbits      = 16,
               .precision      = 16,
               .channels       = 2,
               .channel_mask   = AUFMT_STEREO,
               .frequency_type = 4,
               .frequency      = { 8000, 22050, 44100, 48000 },
       },
};
#define ESO_NFORMATS    __arraycount(eso_formats)


/*
* Utility routines
*/
/* Register access etc. */
static uint8_t  eso_read_ctlreg(struct eso_softc *, uint8_t);
static uint8_t  eso_read_mixreg(struct eso_softc *, uint8_t);
static uint8_t  eso_read_rdr(struct eso_softc *);
static void     eso_reload_master_vol(struct eso_softc *);
static int      eso_reset(struct eso_softc *);
static void     eso_set_gain(struct eso_softc *, unsigned int);
static int      eso_set_recsrc(struct eso_softc *, unsigned int);
static int      eso_set_monooutsrc(struct eso_softc *, unsigned int);
static int      eso_set_monoinbypass(struct eso_softc *, unsigned int);
static int      eso_set_preamp(struct eso_softc *, unsigned int);
static void     eso_write_cmd(struct eso_softc *, uint8_t);
static void     eso_write_ctlreg(struct eso_softc *, uint8_t, uint8_t);
static void     eso_write_mixreg(struct eso_softc *, uint8_t, uint8_t);
/* DMA memory allocation */
static int      eso_allocmem(struct eso_softc *, size_t, size_t, size_t,
                   int, struct eso_dma *);
static void     eso_freemem(struct eso_dma *);
static struct eso_dma * eso_kva2dma(const struct eso_softc *, const void *);


static int
eso_match(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa;

       pa = aux;
       if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_ESSTECH &&
           PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_ESSTECH_SOLO1)
               return 1;

       return 0;
}

static void
eso_attach(device_t parent, device_t self, void *aux)
{
       struct eso_softc *sc;
       struct pci_attach_args *pa;
       struct audio_attach_args aa;
       pci_intr_handle_t ih;
       bus_addr_t vcbase;
       const char *intrstring;
       int idx, error;
       uint8_t a2mode, mvctl;
       char intrbuf[PCI_INTRSTR_LEN];

       sc = device_private(self);
       sc->sc_dev = self;
       pa = aux;
       aprint_naive(": Audio controller\n");

       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
       mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);

       sc->sc_revision = PCI_REVISION(pa->pa_class);
       aprint_normal(": ESS Solo-1 PCI AudioDrive ");
       if (sc->sc_revision <
           sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
               aprint_normal("%s\n", eso_rev2model[sc->sc_revision]);
       else
               aprint_normal("(unknown rev. 0x%02x)\n", sc->sc_revision);

       /* Map I/O registers. */
       if (pci_mapreg_map(pa, ESO_PCI_BAR_IO, PCI_MAPREG_TYPE_IO, 0,
           &sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
               aprint_error_dev(sc->sc_dev, "can't map I/O space\n");
               return;
       }
       if (pci_mapreg_map(pa, ESO_PCI_BAR_SB, PCI_MAPREG_TYPE_IO, 0,
           &sc->sc_sb_iot, &sc->sc_sb_ioh, NULL, NULL)) {
               aprint_error_dev(sc->sc_dev, "can't map SB I/O space\n");
               return;
       }
       if (pci_mapreg_map(pa, ESO_PCI_BAR_VC, PCI_MAPREG_TYPE_IO, 0,
           &sc->sc_dmac_iot, &sc->sc_dmac_ioh, &vcbase, &sc->sc_vcsize)) {
               aprint_error_dev(sc->sc_dev, "can't map VC I/O space\n");
               /* Don't bail out yet: we can map it later, see below. */
               vcbase = 0;
               sc->sc_vcsize = 0x10; /* From the data sheet. */
       }
       if (pci_mapreg_map(pa, ESO_PCI_BAR_MPU, PCI_MAPREG_TYPE_IO, 0,
           &sc->sc_mpu_iot, &sc->sc_mpu_ioh, NULL, NULL)) {
               aprint_error_dev(sc->sc_dev, "can't map MPU I/O space\n");
               return;
       }
       if (pci_mapreg_map(pa, ESO_PCI_BAR_GAME, PCI_MAPREG_TYPE_IO, 0,
           &sc->sc_game_iot, &sc->sc_game_ioh, NULL, NULL)) {
               aprint_error_dev(sc->sc_dev, "can't map Game I/O space\n");
               return;
       }

       sc->sc_dmat = pa->pa_dmat;
       SLIST_INIT(&sc->sc_dmas);
       sc->sc_dmac_configured = 0;

       /* Enable bus mastering. */
       pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
           pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG) |
           PCI_COMMAND_MASTER_ENABLE);

       /* Reset the device; bail out upon failure. */
       mutex_spin_enter(&sc->sc_intr_lock);
       error = eso_reset(sc);
       mutex_spin_exit(&sc->sc_intr_lock);
       if (error != 0) {
               aprint_error_dev(sc->sc_dev, "can't reset\n");
               return;
       }

       /* Select the DMA/IRQ policy: DDMA, ISA IRQ emulation disabled. */
       pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C,
           pci_conf_read(pa->pa_pc, pa->pa_tag, ESO_PCI_S1C) &
           ~(ESO_PCI_S1C_IRQP_MASK | ESO_PCI_S1C_DMAP_MASK));

       /* Enable the relevant (DMA) interrupts. */
       bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL,
           ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ | ESO_IO_IRQCTL_HVIRQ |
           ESO_IO_IRQCTL_MPUIRQ);

       mutex_spin_enter(&sc->sc_intr_lock);

       /* Set up A1's sample rate generator for new-style parameters. */
       a2mode = eso_read_mixreg(sc, ESO_MIXREG_A2MODE);
       a2mode |= ESO_MIXREG_A2MODE_NEWA1 | ESO_MIXREG_A2MODE_ASYNC;
       eso_write_mixreg(sc, ESO_MIXREG_A2MODE, a2mode);

       /* Slave Master Volume to Hardware Volume Control Counter, unmask IRQ.*/
       mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
       mvctl &= ~ESO_MIXREG_MVCTL_SPLIT;
       mvctl |= ESO_MIXREG_MVCTL_HVIRQM;
       eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);

       /* Set mixer regs to something reasonable, needs work. */
       sc->sc_recmon = sc->sc_spatializer = sc->sc_mvmute = 0;
       eso_set_monooutsrc(sc, ESO_MIXREG_MPM_MOMUTE);
       eso_set_monoinbypass(sc, 0);
       eso_set_preamp(sc, 1);
       for (idx = 0; idx < ESO_NGAINDEVS; idx++) {
               int v;

               switch (idx) {
               case ESO_MIC_PLAY_VOL:
               case ESO_LINE_PLAY_VOL:
               case ESO_CD_PLAY_VOL:
               case ESO_MONO_PLAY_VOL:
               case ESO_AUXB_PLAY_VOL:
               case ESO_DAC_REC_VOL:
               case ESO_LINE_REC_VOL:
               case ESO_SYNTH_REC_VOL:
               case ESO_CD_REC_VOL:
               case ESO_MONO_REC_VOL:
               case ESO_AUXB_REC_VOL:
               case ESO_SPATIALIZER:
                       v = 0;
                       break;
               case ESO_MASTER_VOL:
                       v = ESO_GAIN_TO_6BIT(AUDIO_MAX_GAIN / 2);
                       break;
               default:
                       v = ESO_GAIN_TO_4BIT(AUDIO_MAX_GAIN / 2);
                       break;
               }
               sc->sc_gain[idx][ESO_LEFT] = sc->sc_gain[idx][ESO_RIGHT] = v;
               eso_set_gain(sc, idx);
       }

       eso_set_recsrc(sc, ESO_MIXREG_ERS_MIC);

       mutex_spin_exit(&sc->sc_intr_lock);

       /* Map and establish the interrupt. */
       if (pci_intr_map(pa, &ih)) {
               aprint_error_dev(sc->sc_dev, "couldn't map interrupt\n");
               return;
       }

       intrstring = pci_intr_string(pa->pa_pc, ih, intrbuf, sizeof(intrbuf));
       sc->sc_ih  = pci_intr_establish_xname(pa->pa_pc, ih, IPL_AUDIO,
           eso_intr, sc, device_xname(self));
       if (sc->sc_ih == NULL) {
               aprint_error_dev(sc->sc_dev, "couldn't establish interrupt");
               if (intrstring != NULL)
                       aprint_error(" at %s", intrstring);
               aprint_error("\n");
               mutex_destroy(&sc->sc_lock);
               mutex_destroy(&sc->sc_intr_lock);
               return;
       }
       aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstring);

       cv_init(&sc->sc_pcv, "esoho");
       cv_init(&sc->sc_rcv, "esohi");

       /*
        * Set up the DDMA Control register; a suitable I/O region has been
        * supposedly mapped in the VC base address register.
        *
        * The Solo-1 has an ... interesting silicon bug that causes it to
        * not respond to I/O space accesses to the Audio 1 DMA controller
        * if the latter's mapping base address is aligned on a 1K boundary.
        * As a consequence, it is quite possible for the mapping provided
        * in the VC BAR to be useless.  To work around this, we defer this
        * part until all autoconfiguration on our parent bus is completed
        * and then try to map it ourselves in fulfillment of the constraint.
        *
        * According to the register map we may write to the low 16 bits
        * only, but experimenting has shown we're safe.
        * -kjk
        */
       if (ESO_VALID_DDMAC_BASE(vcbase)) {
               pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
                   vcbase | ESO_PCI_DDMAC_DE);
               sc->sc_dmac_configured = 1;

               aprint_normal_dev(sc->sc_dev,
                   "mapping Audio 1 DMA using VC I/O space at 0x%lx\n",
                   (unsigned long)vcbase);
       } else {
               DPRINTF(("%s: VC I/O space at 0x%lx not suitable, deferring\n",
                   device_xname(sc->sc_dev), (unsigned long)vcbase));
               sc->sc_pa = *pa;
               config_defer(self, eso_defer);
       }

       audio_attach_mi(&eso_hw_if, sc, sc->sc_dev);

       aa.type = AUDIODEV_TYPE_OPL;
       aa.hwif = NULL;
       aa.hdl = NULL;
       (void)config_found(sc->sc_dev, &aa, audioprint,
           CFARGS(.iattr = "eso"));

       aa.type = AUDIODEV_TYPE_MPU;
       aa.hwif = NULL;
       aa.hdl = NULL;
       sc->sc_mpudev = config_found(sc->sc_dev, &aa, audioprint,
           CFARGS(.iattr = "eso"));
       if (sc->sc_mpudev != NULL) {
               /* Unmask the MPU irq. */
               mutex_spin_enter(&sc->sc_intr_lock);
               mvctl = eso_read_mixreg(sc, ESO_MIXREG_MVCTL);
               mvctl |= ESO_MIXREG_MVCTL_MPUIRQM;
               eso_write_mixreg(sc, ESO_MIXREG_MVCTL, mvctl);
               mutex_spin_exit(&sc->sc_intr_lock);
       }

       aa.type = AUDIODEV_TYPE_AUX;
       aa.hwif = NULL;
       aa.hdl = NULL;
       (void)config_found(sc->sc_dev, &aa, eso_print,
           CFARGS(.iattr = "eso"));
}

static void
eso_defer(device_t self)
{
       struct eso_softc *sc;
       struct pci_attach_args *pa;
       bus_addr_t addr, start;

       sc = device_private(self);
       pa = &sc->sc_pa;
       aprint_normal_dev(sc->sc_dev, "");

       /*
        * This is outright ugly, but since we must not make assumptions
        * on the underlying allocator's behaviour it's the most straight-
        * forward way to implement it.  Note that we skip over the first
        * 1K region, which is typically occupied by an attached ISA bus.
        */
       mutex_enter(&sc->sc_lock);
       for (start = 0x0400; start < 0xffff; start += 0x0400) {
               if (bus_space_alloc(sc->sc_iot,
                   start + sc->sc_vcsize, start + 0x0400 - 1,
                   sc->sc_vcsize, sc->sc_vcsize, 0, 0, &addr,
                   &sc->sc_dmac_ioh) != 0)
                       continue;

               mutex_spin_enter(&sc->sc_intr_lock);
               pci_conf_write(pa->pa_pc, pa->pa_tag, ESO_PCI_DDMAC,
                   addr | ESO_PCI_DDMAC_DE);
               mutex_spin_exit(&sc->sc_intr_lock);
               sc->sc_dmac_iot = sc->sc_iot;
               sc->sc_dmac_configured = 1;
               aprint_normal("mapping Audio 1 DMA using I/O space at 0x%lx\n",
                   (unsigned long)addr);

               mutex_exit(&sc->sc_lock);
               return;
       }
       mutex_exit(&sc->sc_lock);

       aprint_error("can't map Audio 1 DMA into I/O space\n");
}

/* ARGSUSED */
static int
eso_print(void *aux, const char *pnp)
{

       /* Only joys can attach via this; easy. */
       if (pnp)
               aprint_normal("joy at %s:", pnp);

       return UNCONF;
}

static void
eso_write_cmd(struct eso_softc *sc, uint8_t cmd)
{
       int i;

       /* Poll for busy indicator to become clear. */
       for (i = 0; i < ESO_WDR_TIMEOUT; i++) {
               if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RSR)
                   & ESO_SB_RSR_BUSY) == 0) {
                       bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh,
                           ESO_SB_WDR, cmd);
                       return;
               } else {
                       delay(10);
               }
       }

       printf("%s: WDR timeout\n", device_xname(sc->sc_dev));
       return;
}

/* Write to a controller register */
static void
eso_write_ctlreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
{

       /* DPRINTF(("ctlreg 0x%02x = 0x%02x\n", reg, val)); */

       eso_write_cmd(sc, reg);
       eso_write_cmd(sc, val);
}

/* Read out the Read Data Register */
static uint8_t
eso_read_rdr(struct eso_softc *sc)
{
       int i;

       for (i = 0; i < ESO_RDR_TIMEOUT; i++) {
               if (bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
                   ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) {
                       return (bus_space_read_1(sc->sc_sb_iot,
                           sc->sc_sb_ioh, ESO_SB_RDR));
               } else {
                       delay(10);
               }
       }

       printf("%s: RDR timeout\n", device_xname(sc->sc_dev));
       return (-1);
}

static uint8_t
eso_read_ctlreg(struct eso_softc *sc, uint8_t reg)
{

       eso_write_cmd(sc, ESO_CMD_RCR);
       eso_write_cmd(sc, reg);
       return eso_read_rdr(sc);
}

static void
eso_write_mixreg(struct eso_softc *sc, uint8_t reg, uint8_t val)
{

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       /* DPRINTF(("mixreg 0x%02x = 0x%02x\n", reg, val)); */

       bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
       bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA, val);
}

static uint8_t
eso_read_mixreg(struct eso_softc *sc, uint8_t reg)
{
       uint8_t val;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERADDR, reg);
       val = bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_MIXERDATA);

       return val;
}

static int
eso_intr(void *hdl)
{
       struct eso_softc *sc = hdl;
#if NMPU > 0
       struct mpu_softc *sc_mpu = device_private(sc->sc_mpudev);
#endif
       uint8_t irqctl;

       mutex_spin_enter(&sc->sc_intr_lock);

       irqctl = bus_space_read_1(sc->sc_iot, sc->sc_ioh, ESO_IO_IRQCTL);

       /* If it wasn't ours, that's all she wrote. */
       if ((irqctl & (ESO_IO_IRQCTL_A1IRQ | ESO_IO_IRQCTL_A2IRQ |
           ESO_IO_IRQCTL_HVIRQ | ESO_IO_IRQCTL_MPUIRQ)) == 0) {
               mutex_spin_exit(&sc->sc_intr_lock);
               return 0;
       }

       if (irqctl & ESO_IO_IRQCTL_A1IRQ) {
               /* Clear interrupt. */
               (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
                   ESO_SB_RBSR);

               if (sc->sc_rintr)
                       sc->sc_rintr(sc->sc_rarg);
               else
                       cv_broadcast(&sc->sc_rcv);
       }

       if (irqctl & ESO_IO_IRQCTL_A2IRQ) {
               /*
                * Clear the A2 IRQ latch: the cached value reflects the
                * current DAC settings with the IRQ latch bit not set.
                */
               eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);

               if (sc->sc_pintr)
                       sc->sc_pintr(sc->sc_parg);
               else
                       cv_broadcast(&sc->sc_pcv);
       }

       if (irqctl & ESO_IO_IRQCTL_HVIRQ) {
               /* Clear interrupt. */
               eso_write_mixreg(sc, ESO_MIXREG_CHVIR, ESO_MIXREG_CHVIR_CHVIR);

               /*
                * Raise a flag to cause a lazy update of the in-softc gain
                * values the next time the software mixer is read to keep
                * interrupt service cost low.  ~0 cannot occur otherwise
                * as the master volume has a precision of 6 bits only.
                */
               sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] = (uint8_t)~0;
       }

#if NMPU > 0
       if ((irqctl & ESO_IO_IRQCTL_MPUIRQ) && sc_mpu != NULL)
               mpu_intr(sc_mpu);
#endif

       mutex_spin_exit(&sc->sc_intr_lock);
       return 1;
}

/* Perform a software reset, including DMA FIFOs. */
static int
eso_reset(struct eso_softc *sc)
{
       int i;

       bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET,
           ESO_SB_RESET_SW | ESO_SB_RESET_FIFO);
       /* `Delay' suggested in the data sheet. */
       (void)bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_STATUS);
       bus_space_write_1(sc->sc_sb_iot, sc->sc_sb_ioh, ESO_SB_RESET, 0);

       /* Wait for reset to take effect. */
       for (i = 0; i < ESO_RESET_TIMEOUT; i++) {
               /* Poll for data to become available. */
               if ((bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
                   ESO_SB_RBSR) & ESO_SB_RBSR_RDAV) != 0 &&
                   bus_space_read_1(sc->sc_sb_iot, sc->sc_sb_ioh,
                       ESO_SB_RDR) == ESO_SB_RDR_RESETMAGIC) {

                       /* Activate Solo-1 extension commands. */
                       eso_write_cmd(sc, ESO_CMD_EXTENB);
                       /* Reset mixer registers. */
                       eso_write_mixreg(sc, ESO_MIXREG_RESET,
                           ESO_MIXREG_RESET_RESET);

                       return 0;
               } else {
                       delay(1000);
               }
       }

       printf("%s: reset timeout\n", device_xname(sc->sc_dev));
       return -1;
}

static int
eso_query_format(void *hdl, audio_format_query_t *afp)
{

       return audio_query_format(eso_formats, ESO_NFORMATS, afp);
}

static int
eso_set_format(void *hdl, int setmode,
   const audio_params_t *play, const audio_params_t *rec,
   audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
       struct eso_softc *sc;
       const struct audio_params *p;
       int mode;
       unsigned int srg, fltdiv;

       sc = hdl;
       for (mode = AUMODE_RECORD; mode != -1;
            mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
               if ((setmode & mode) == 0)
                       continue;

               p = (mode == AUMODE_PLAY) ? play : rec;

               /* We use a few fixed rate which doesn't have rounding error. */
               switch (p->sample_rate) {
               case  8000:
               case 48000:
                       srg = (128 - ESO_CLK1 / p->sample_rate);
                       srg |= ESO_CLK1_SELECT;
                       break;
               case 22050:
               case 44100:
                       srg = (128 - ESO_CLK0 / p->sample_rate);
                       break;
               default:
                       /* NOTREACHED */
                       return EINVAL;
               }
               /* Roll-off frequency of 87%, as in the ES1888 driver. */
               fltdiv = 256 - 200279L / p->sample_rate;

               mutex_spin_enter(&sc->sc_intr_lock);
               if (mode == AUMODE_RECORD) {
                       /* Audio 1 */
                       DPRINTF(("A1 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
                       eso_write_ctlreg(sc, ESO_CTLREG_SRG, srg);
                       eso_write_ctlreg(sc, ESO_CTLREG_FLTDIV, fltdiv);
               } else {
                       /* Audio 2 */
                       DPRINTF(("A2 srg 0x%02x fdiv 0x%02x\n", srg, fltdiv));
                       eso_write_mixreg(sc, ESO_MIXREG_A2SRG, srg);
                       eso_write_mixreg(sc, ESO_MIXREG_A2FLTDIV, fltdiv);
               }
               mutex_spin_exit(&sc->sc_intr_lock);
       }

       return 0;
}

static int
eso_round_blocksize(void *hdl, int blk, int mode,
   const audio_params_t *param)
{

       return blk & -32;       /* keep good alignment; at least 16 req'd */
}

static int
eso_halt_output(void *hdl)
{
       struct eso_softc *sc;
       int error;

       sc = hdl;
       DPRINTF(("%s: halt_output\n", device_xname(sc->sc_dev)));

       /*
        * Disable auto-initialize DMA, allowing the FIFO to drain and then
        * stop.  The interrupt callback pointer is cleared at this
        * point so that an outstanding FIFO interrupt for the remaining data
        * will be acknowledged without further processing.
        *
        * This does not immediately `abort' an operation in progress (c.f.
        * audio(9)) but is the method to leave the FIFO behind in a clean
        * state with the least hair.  (Besides, that item needs to be
        * rephrased for trigger_*()-based DMA environments.)
        */
       eso_write_mixreg(sc, ESO_MIXREG_A2C1,
           ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB);
       bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
           ESO_IO_A2DMAM_DMAENB);

       sc->sc_pintr = NULL;
       error = cv_timedwait_sig(&sc->sc_pcv, &sc->sc_intr_lock, sc->sc_pdrain);

       /* Shut down DMA completely. */
       eso_write_mixreg(sc, ESO_MIXREG_A2C1, 0);
       bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM, 0);

       return error == EWOULDBLOCK ? 0 : error;
}

static int
eso_halt_input(void *hdl)
{
       struct eso_softc *sc;
       int error;

       sc = hdl;
       DPRINTF(("%s: halt_input\n", device_xname(sc->sc_dev)));

       /* Just like eso_halt_output(), but for Audio 1. */
       eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
           ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC |
           ESO_CTLREG_A1C2_DMAENB);
       bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
           DMA37MD_WRITE | DMA37MD_DEMAND);

       sc->sc_rintr = NULL;
       error = cv_timedwait_sig(&sc->sc_rcv, &sc->sc_intr_lock, sc->sc_rdrain);

       /* Shut down DMA completely. */
       eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
           ESO_CTLREG_A1C2_READ | ESO_CTLREG_A1C2_ADC);
       bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
           ESO_DMAC_MASK_MASK);

       return error == EWOULDBLOCK ? 0 : error;
}

static int
eso_getdev(void *hdl, struct audio_device *retp)
{
       struct eso_softc *sc;

       sc = hdl;
       strncpy(retp->name, "ESS Solo-1", sizeof (retp->name));
       snprintf(retp->version, sizeof (retp->version), "0x%02x",
           sc->sc_revision);
       if (sc->sc_revision <
           sizeof (eso_rev2model) / sizeof (eso_rev2model[0]))
               strncpy(retp->config, eso_rev2model[sc->sc_revision],
                   sizeof (retp->config));
       else
               strncpy(retp->config, "unknown", sizeof (retp->config));

       return 0;
}

static int
eso_set_port(void *hdl, mixer_ctrl_t *cp)
{
       struct eso_softc *sc;
       unsigned int lgain, rgain;
       uint8_t tmp;
       int error;

       sc = hdl;
       error = 0;

       mutex_spin_enter(&sc->sc_intr_lock);

       switch (cp->dev) {
       case ESO_DAC_PLAY_VOL:
       case ESO_MIC_PLAY_VOL:
       case ESO_LINE_PLAY_VOL:
       case ESO_SYNTH_PLAY_VOL:
       case ESO_CD_PLAY_VOL:
       case ESO_AUXB_PLAY_VOL:
       case ESO_RECORD_VOL:
       case ESO_DAC_REC_VOL:
       case ESO_MIC_REC_VOL:
       case ESO_LINE_REC_VOL:
       case ESO_SYNTH_REC_VOL:
       case ESO_CD_REC_VOL:
       case ESO_AUXB_REC_VOL:
               if (cp->type != AUDIO_MIXER_VALUE) {
                       error = EINVAL;
                       break;
               }

               /*
                * Stereo-capable mixer ports: if we get a single-channel
                * gain value passed in, then we duplicate it to both left
                * and right channels.
                */
               switch (cp->un.value.num_channels) {
               case 1:
                       lgain = rgain = ESO_GAIN_TO_4BIT(
                           cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
                       break;
               case 2:
                       lgain = ESO_GAIN_TO_4BIT(
                           cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
                       rgain = ESO_GAIN_TO_4BIT(
                           cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
                       break;
               default:
                       error = EINVAL;
                       break;
               }

               if (!error) {
                       sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
                       sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
                       eso_set_gain(sc, cp->dev);
               }
               break;

       case ESO_MASTER_VOL:
               if (cp->type != AUDIO_MIXER_VALUE) {
                       error = EINVAL;
                       break;
               }

               /* Like above, but a precision of 6 bits. */
               switch (cp->un.value.num_channels) {
               case 1:
                       lgain = rgain = ESO_GAIN_TO_6BIT(
                           cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
                       break;
               case 2:
                       lgain = ESO_GAIN_TO_6BIT(
                           cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
                       rgain = ESO_GAIN_TO_6BIT(
                           cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
                       break;
               default:
                       error = EINVAL;
                       break;
               }

               if (!error) {
                       sc->sc_gain[cp->dev][ESO_LEFT] = lgain;
                       sc->sc_gain[cp->dev][ESO_RIGHT] = rgain;
                       eso_set_gain(sc, cp->dev);
               }
               break;

       case ESO_SPATIALIZER:
               if (cp->type != AUDIO_MIXER_VALUE ||
                   cp->un.value.num_channels != 1) {
                       error = EINVAL;
                       break;
               }

               sc->sc_gain[cp->dev][ESO_LEFT] =
                   sc->sc_gain[cp->dev][ESO_RIGHT] =
                   ESO_GAIN_TO_6BIT(
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
               eso_set_gain(sc, cp->dev);
               break;

       case ESO_MONO_PLAY_VOL:
       case ESO_MONO_REC_VOL:
               if (cp->type != AUDIO_MIXER_VALUE ||
                   cp->un.value.num_channels != 1) {
                       error = EINVAL;
                       break;
               }

               sc->sc_gain[cp->dev][ESO_LEFT] =
                   sc->sc_gain[cp->dev][ESO_RIGHT] =
                   ESO_GAIN_TO_4BIT(
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
               eso_set_gain(sc, cp->dev);
               break;

       case ESO_PCSPEAKER_VOL:
               if (cp->type != AUDIO_MIXER_VALUE ||
                   cp->un.value.num_channels != 1) {
                       error = EINVAL;
                       break;
               }

               sc->sc_gain[cp->dev][ESO_LEFT] =
                   sc->sc_gain[cp->dev][ESO_RIGHT] =
                   ESO_GAIN_TO_3BIT(
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
               eso_set_gain(sc, cp->dev);
               break;

       case ESO_SPATIALIZER_ENABLE:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               sc->sc_spatializer = (cp->un.ord != 0);

               tmp = eso_read_mixreg(sc, ESO_MIXREG_SPAT);
               if (sc->sc_spatializer)
                       tmp |= ESO_MIXREG_SPAT_ENB;
               else
                       tmp &= ~ESO_MIXREG_SPAT_ENB;
               eso_write_mixreg(sc, ESO_MIXREG_SPAT,
                   tmp | ESO_MIXREG_SPAT_RSTREL);
               break;

       case ESO_MASTER_MUTE:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               sc->sc_mvmute = (cp->un.ord != 0);

               if (sc->sc_mvmute) {
                       eso_write_mixreg(sc, ESO_MIXREG_LMVM,
                           eso_read_mixreg(sc, ESO_MIXREG_LMVM) |
                           ESO_MIXREG_LMVM_MUTE);
                       eso_write_mixreg(sc, ESO_MIXREG_RMVM,
                           eso_read_mixreg(sc, ESO_MIXREG_RMVM) |
                           ESO_MIXREG_RMVM_MUTE);
               } else {
                       eso_write_mixreg(sc, ESO_MIXREG_LMVM,
                           eso_read_mixreg(sc, ESO_MIXREG_LMVM) &
                           ~ESO_MIXREG_LMVM_MUTE);
                       eso_write_mixreg(sc, ESO_MIXREG_RMVM,
                           eso_read_mixreg(sc, ESO_MIXREG_RMVM) &
                           ~ESO_MIXREG_RMVM_MUTE);
               }
               break;

       case ESO_MONOOUT_SOURCE:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               error = eso_set_monooutsrc(sc, cp->un.ord);
               break;

       case ESO_MONOIN_BYPASS:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               error = (eso_set_monoinbypass(sc, cp->un.ord));
               break;

       case ESO_RECORD_MONITOR:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               sc->sc_recmon = (cp->un.ord != 0);

               tmp = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
               if (sc->sc_recmon)
                       tmp |= ESO_CTLREG_ACTL_RECMON;
               else
                       tmp &= ~ESO_CTLREG_ACTL_RECMON;
               eso_write_ctlreg(sc, ESO_CTLREG_ACTL, tmp);
               break;

       case ESO_RECORD_SOURCE:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               error = eso_set_recsrc(sc, cp->un.ord);
               break;

       case ESO_MIC_PREAMP:
               if (cp->type != AUDIO_MIXER_ENUM) {
                       error = EINVAL;
                       break;
               }

               error = eso_set_preamp(sc, cp->un.ord);
               break;

       default:
               error = EINVAL;
               break;
       }

       mutex_spin_exit(&sc->sc_intr_lock);
       return error;
}

static int
eso_get_port(void *hdl, mixer_ctrl_t *cp)
{
       struct eso_softc *sc;

       sc = hdl;

       mutex_spin_enter(&sc->sc_intr_lock);

       switch (cp->dev) {
       case ESO_MASTER_VOL:
               /* Reload from mixer after hardware volume control use. */
               if (sc->sc_gain[cp->dev][ESO_LEFT] == (uint8_t)~0)
                       eso_reload_master_vol(sc);
               /* FALLTHROUGH */
       case ESO_DAC_PLAY_VOL:
       case ESO_MIC_PLAY_VOL:
       case ESO_LINE_PLAY_VOL:
       case ESO_SYNTH_PLAY_VOL:
       case ESO_CD_PLAY_VOL:
       case ESO_AUXB_PLAY_VOL:
       case ESO_RECORD_VOL:
       case ESO_DAC_REC_VOL:
       case ESO_MIC_REC_VOL:
       case ESO_LINE_REC_VOL:
       case ESO_SYNTH_REC_VOL:
       case ESO_CD_REC_VOL:
       case ESO_AUXB_REC_VOL:
               /*
                * Stereo-capable ports: if a single-channel query is made,
                * just return the left channel's value (since single-channel
                * settings themselves are applied to both channels).
                */
               switch (cp->un.value.num_channels) {
               case 1:
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                           sc->sc_gain[cp->dev][ESO_LEFT];
                       break;
               case 2:
                       cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
                           sc->sc_gain[cp->dev][ESO_LEFT];
                       cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
                           sc->sc_gain[cp->dev][ESO_RIGHT];
                       break;
               default:
                       break;
               }
               break;

       case ESO_MONO_PLAY_VOL:
       case ESO_PCSPEAKER_VOL:
       case ESO_MONO_REC_VOL:
       case ESO_SPATIALIZER:
               if (cp->un.value.num_channels != 1) {
                       break;
               }
               cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                   sc->sc_gain[cp->dev][ESO_LEFT];
               break;

       case ESO_RECORD_MONITOR:
               cp->un.ord = sc->sc_recmon;
               break;

       case ESO_RECORD_SOURCE:
               cp->un.ord = sc->sc_recsrc;
               break;

       case ESO_MONOOUT_SOURCE:
               cp->un.ord = sc->sc_monooutsrc;
               break;

       case ESO_MONOIN_BYPASS:
               cp->un.ord = sc->sc_monoinbypass;
               break;

       case ESO_SPATIALIZER_ENABLE:
               cp->un.ord = sc->sc_spatializer;
               break;

       case ESO_MIC_PREAMP:
               cp->un.ord = sc->sc_preamp;
               break;

       case ESO_MASTER_MUTE:
               /* Reload from mixer after hardware volume control use. */
               if (sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] == (uint8_t)~0)
                       eso_reload_master_vol(sc);
               cp->un.ord = sc->sc_mvmute;
               break;

       default:
               break;
       }

       mutex_spin_exit(&sc->sc_intr_lock);
       return 0;
}

static int
eso_query_devinfo(void *hdl, mixer_devinfo_t *dip)
{

       switch (dip->index) {
       case ESO_DAC_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNdac);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_MIC_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmicrophone);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_LINE_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNline);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_SYNTH_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNfmsynth);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_MONO_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "mono_in");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_CD_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNcd);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_AUXB_PLAY_VOL:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "auxb");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;

       case ESO_MIC_PREAMP:
               dip->mixer_class = ESO_MICROPHONE_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNpreamp);
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               break;
       case ESO_MICROPHONE_CLASS:
               dip->mixer_class = ESO_MICROPHONE_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmicrophone);
               dip->type = AUDIO_MIXER_CLASS;
               break;

       case ESO_INPUT_CLASS:
               dip->mixer_class = ESO_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCinputs);
               dip->type = AUDIO_MIXER_CLASS;
               break;

       case ESO_MASTER_VOL:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->prev = AUDIO_MIXER_LAST;
               dip->next = ESO_MASTER_MUTE;
               strcpy(dip->label.name, AudioNmaster);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_MASTER_MUTE:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->prev = ESO_MASTER_VOL;
               dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmute);
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               break;

       case ESO_PCSPEAKER_VOL:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "pc_speaker");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_MONOOUT_SOURCE:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "mono_out");
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 3;
               strcpy(dip->un.e.member[0].label.name, AudioNmute);
               dip->un.e.member[0].ord = ESO_MIXREG_MPM_MOMUTE;
               strcpy(dip->un.e.member[1].label.name, AudioNdac);
               dip->un.e.member[1].ord = ESO_MIXREG_MPM_MOA2R;
               strcpy(dip->un.e.member[2].label.name, AudioNmixerout);
               dip->un.e.member[2].ord = ESO_MIXREG_MPM_MOREC;
               break;

       case ESO_MONOIN_BYPASS:
               dip->mixer_class = ESO_MONOIN_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "bypass");
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               break;
       case ESO_MONOIN_CLASS:
               dip->mixer_class = ESO_MONOIN_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "mono_in");
               dip->type = AUDIO_MIXER_CLASS;
               break;

       case ESO_SPATIALIZER:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->prev = AUDIO_MIXER_LAST;
               dip->next = ESO_SPATIALIZER_ENABLE;
               strcpy(dip->label.name, AudioNspatial);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, "level");
               break;
       case ESO_SPATIALIZER_ENABLE:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->prev = ESO_SPATIALIZER;
               dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "enable");
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               break;

       case ESO_OUTPUT_CLASS:
               dip->mixer_class = ESO_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCoutputs);
               dip->type = AUDIO_MIXER_CLASS;
               break;

       case ESO_RECORD_MONITOR:
               dip->mixer_class = ESO_MONITOR_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmute);
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               break;
       case ESO_MONITOR_CLASS:
               dip->mixer_class = ESO_MONITOR_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCmonitor);
               dip->type = AUDIO_MIXER_CLASS;
               break;

       case ESO_RECORD_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNrecord);
               dip->type = AUDIO_MIXER_VALUE;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_RECORD_SOURCE:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNsource);
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 4;
               strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
               dip->un.e.member[0].ord = ESO_MIXREG_ERS_MIC;
               strcpy(dip->un.e.member[1].label.name, AudioNline);
               dip->un.e.member[1].ord = ESO_MIXREG_ERS_LINE;
               strcpy(dip->un.e.member[2].label.name, AudioNcd);
               dip->un.e.member[2].ord = ESO_MIXREG_ERS_CD;
               strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
               dip->un.e.member[3].ord = ESO_MIXREG_ERS_MIXER;
               break;
       case ESO_DAC_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNdac);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_MIC_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmicrophone);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_LINE_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNline);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_SYNTH_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNfmsynth);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_MONO_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "mono_in");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 1; /* No lies */
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_CD_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNcd);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_AUXB_REC_VOL:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "auxb");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case ESO_RECORD_CLASS:
               dip->mixer_class = ESO_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCrecord);
               dip->type = AUDIO_MIXER_CLASS;
               break;

       default:
               return ENXIO;
       }

       return 0;
}

static int
eso_allocmem(struct eso_softc *sc, size_t size, size_t align,
   size_t boundary, int direction, struct eso_dma *ed)
{
       int error;

       ed->ed_size = size;

       error = bus_dmamem_alloc(ed->ed_dmat, ed->ed_size, align, boundary,
           ed->ed_segs, sizeof (ed->ed_segs) / sizeof (ed->ed_segs[0]),
           &ed->ed_nsegs, BUS_DMA_WAITOK);
       if (error)
               goto out;

       error = bus_dmamem_map(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs,
           ed->ed_size, &ed->ed_kva, BUS_DMA_WAITOK | BUS_DMA_COHERENT);
       if (error)
               goto free;

       error = bus_dmamap_create(ed->ed_dmat, ed->ed_size, 1, ed->ed_size, 0,
           BUS_DMA_WAITOK, &ed->ed_map);
       if (error)
               goto unmap;

       error = bus_dmamap_load(ed->ed_dmat, ed->ed_map, ed->ed_kva,
           ed->ed_size, NULL, BUS_DMA_WAITOK |
           ((direction == AUMODE_RECORD) ? BUS_DMA_READ : BUS_DMA_WRITE));
       if (error)
               goto destroy;

       return 0;

destroy:
       bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
unmap:
       bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
free:
       bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
out:
       return error;
}

static void
eso_freemem(struct eso_dma *ed)
{

       bus_dmamap_unload(ed->ed_dmat, ed->ed_map);
       bus_dmamap_destroy(ed->ed_dmat, ed->ed_map);
       bus_dmamem_unmap(ed->ed_dmat, ed->ed_kva, ed->ed_size);
       bus_dmamem_free(ed->ed_dmat, ed->ed_segs, ed->ed_nsegs);
}

static struct eso_dma *
eso_kva2dma(const struct eso_softc *sc, const void *kva)
{
       struct eso_dma *p;

       SLIST_FOREACH(p, &sc->sc_dmas, ed_slist) {
               if (KVADDR(p) == kva)
                       return p;
       }

       panic("%s: kva2dma: bad kva: %p", device_xname(sc->sc_dev), kva);
       /* NOTREACHED */
}

static void *
eso_allocm(void *hdl, int direction, size_t size)
{
       struct eso_softc *sc;
       struct eso_dma *ed;
       size_t boundary;
       int error;

       sc = hdl;
       ed = kmem_alloc(sizeof (*ed), KM_SLEEP);

       /*
        * Apparently the Audio 1 DMA controller's current address
        * register can't roll over a 64K address boundary, so we have to
        * take care of that ourselves.  Similarly, the Audio 2 DMA
        * controller needs a 1M address boundary.
        */
       if (direction == AUMODE_RECORD)
               boundary = 0x10000;
       else
               boundary = 0x100000;

       /*
        * XXX Work around allocation problems for Audio 1, which
        * XXX implements the 24 low address bits only, with
        * XXX machine-specific DMA tag use.
        */
#ifdef alpha
       /*
        * XXX Force allocation through the (ISA) SGMAP.
        */
       if (direction == AUMODE_RECORD)
               ed->ed_dmat = alphabus_dma_get_tag(sc->sc_dmat, ALPHA_BUS_ISA);
       else
#elif defined(amd64) || defined(i386)
       /*
        * XXX Force allocation through the ISA DMA tag.
        */
       if (direction == AUMODE_RECORD)
               ed->ed_dmat = &isa_bus_dma_tag;
       else
#endif
               ed->ed_dmat = sc->sc_dmat;

       error = eso_allocmem(sc, size, 32, boundary, direction, ed);
       if (error) {
               kmem_free(ed, sizeof(*ed));
               return NULL;
       }
       SLIST_INSERT_HEAD(&sc->sc_dmas, ed, ed_slist);

       return KVADDR(ed);
}

static void
eso_freem(void *hdl, void *addr, size_t size)
{
       struct eso_softc *sc;
       struct eso_dma *p;

       sc = hdl;
       p = eso_kva2dma(sc, addr);

       SLIST_REMOVE(&sc->sc_dmas, p, eso_dma, ed_slist);
       eso_freemem(p);
       kmem_free(p, sizeof(*p));
}

static size_t
eso_round_buffersize(void *hdl, int direction, size_t bufsize)
{
       size_t maxsize;

       /*
        * The playback DMA buffer size on the Solo-1 is limited to 0xfff0
        * bytes.  This is because IO_A2DMAC is a two byte value
        * indicating the literal byte count, and the 4 least significant
        * bits are read-only.  Zero is not used as a special case for
        * 0x10000.
        *
        * For recording, DMAC_DMAC is the byte count - 1, so 0x10000 can
        * be represented.
        */
       maxsize = (direction == AUMODE_PLAY) ? 0xfff0 : 0x10000;

       if (bufsize > maxsize)
               bufsize = maxsize;

       return bufsize;
}

/* ARGSUSED */
static int
eso_get_props(void *hdl)
{

       return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
           AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
}

static int
eso_trigger_output(void *hdl, void *start, void *end, int blksize,
   void (*intr)(void *), void *arg, const audio_params_t *param)
{
       struct eso_softc *sc;
       struct eso_dma *ed;
       uint8_t a2c1;

       sc = hdl;
       DPRINTF((
           "%s: trigger_output: start %p, end %p, blksize %d, intr %p(%p)\n",
           device_xname(sc->sc_dev), start, end, blksize, intr, arg));
       DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
           device_xname(sc->sc_dev), param->sample_rate, param->encoding,
           param->precision, param->channels));

       /* Find DMA buffer. */
       ed = eso_kva2dma(sc, start);
       DPRINTF(("%s: dmaaddr %lx\n",
           device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));

       sc->sc_pintr = intr;
       sc->sc_parg = arg;

       /* Compute drain timeout. */
       sc->sc_pdrain = (blksize * NBBY * hz) /
           (param->sample_rate * param->channels *
            param->precision) + 2;     /* slop */

       /* DMA transfer count (in `words'!) reload using 2's complement. */
       blksize = -(blksize >> 1);
       eso_write_mixreg(sc, ESO_MIXREG_A2TCRLO, blksize & 0xff);
       eso_write_mixreg(sc, ESO_MIXREG_A2TCRHI, blksize >> 8);

       /* Update DAC to reflect DMA count and audio parameters. */
       /* Note: we cache A2C2 in order to avoid r/m/w at interrupt time. */
       if (param->precision == 16)
               sc->sc_a2c2 |= ESO_MIXREG_A2C2_16BIT;
       else
               sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_16BIT;
       if (param->channels == 2)
               sc->sc_a2c2 |= ESO_MIXREG_A2C2_STEREO;
       else
               sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_STEREO;
       if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
           param->encoding == AUDIO_ENCODING_SLINEAR_LE)
               sc->sc_a2c2 |= ESO_MIXREG_A2C2_SIGNED;
       else
               sc->sc_a2c2 &= ~ESO_MIXREG_A2C2_SIGNED;
       /* Unmask IRQ. */
       sc->sc_a2c2 |= ESO_MIXREG_A2C2_IRQM;
       eso_write_mixreg(sc, ESO_MIXREG_A2C2, sc->sc_a2c2);

       /* Set up DMA controller. */
       bus_space_write_4(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAA,
           DMAADDR(ed));
       bus_space_write_2(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAC,
           (uint8_t *)end - (uint8_t *)start);
       bus_space_write_1(sc->sc_iot, sc->sc_ioh, ESO_IO_A2DMAM,
           ESO_IO_A2DMAM_DMAENB | ESO_IO_A2DMAM_AUTO);

       /* Start DMA. */
       a2c1 = eso_read_mixreg(sc, ESO_MIXREG_A2C1);
       a2c1 &= ~ESO_MIXREG_A2C1_RESV0; /* Paranoia? XXX bit 5 */
       a2c1 |= ESO_MIXREG_A2C1_FIFOENB | ESO_MIXREG_A2C1_DMAENB |
           ESO_MIXREG_A2C1_AUTO;
       eso_write_mixreg(sc, ESO_MIXREG_A2C1, a2c1);

       return 0;
}

static int
eso_trigger_input(void *hdl, void *start, void *end, int blksize,
   void (*intr)(void *), void *arg, const audio_params_t *param)
{
       struct eso_softc *sc;
       struct eso_dma *ed;
       uint8_t actl, a1c1;

       sc = hdl;
       DPRINTF((
           "%s: trigger_input: start %p, end %p, blksize %d, intr %p(%p)\n",
           device_xname(sc->sc_dev), start, end, blksize, intr, arg));
       DPRINTF(("%s: param: rate %u, encoding %u, precision %u, channels %u\n",
           device_xname(sc->sc_dev), param->sample_rate, param->encoding,
           param->precision, param->channels));

       /*
        * If we failed to configure the Audio 1 DMA controller, bail here
        * while retaining availability of the DAC direction (in Audio 2).
        */
       if (!sc->sc_dmac_configured)
               return EIO;

       /* Find DMA buffer. */
       ed = eso_kva2dma(sc, start);
       DPRINTF(("%s: dmaaddr %lx\n",
           device_xname(sc->sc_dev), (unsigned long)DMAADDR(ed)));

       sc->sc_rintr = intr;
       sc->sc_rarg = arg;

       /* Compute drain timeout. */
       sc->sc_rdrain = (blksize * NBBY * hz) /
           (param->sample_rate * param->channels *
            param->precision) + 2;     /* slop */

       /* Set up ADC DMA converter parameters. */
       actl = eso_read_ctlreg(sc, ESO_CTLREG_ACTL);
       if (param->channels == 2) {
               actl &= ~ESO_CTLREG_ACTL_MONO;
               actl |= ESO_CTLREG_ACTL_STEREO;
       } else {
               actl &= ~ESO_CTLREG_ACTL_STEREO;
               actl |= ESO_CTLREG_ACTL_MONO;
       }
       eso_write_ctlreg(sc, ESO_CTLREG_ACTL, actl);

       /* Set up Transfer Type: maybe move to attach time? */
       eso_write_ctlreg(sc, ESO_CTLREG_A1TT, ESO_CTLREG_A1TT_DEMAND4);

       /* DMA transfer count reload using 2's complement. */
       blksize = -blksize;
       eso_write_ctlreg(sc, ESO_CTLREG_A1TCRLO, blksize & 0xff);
       eso_write_ctlreg(sc, ESO_CTLREG_A1TCRHI, blksize >> 8);

       /* Set up and enable Audio 1 DMA FIFO. */
       a1c1 = ESO_CTLREG_A1C1_RESV1 | ESO_CTLREG_A1C1_FIFOENB;
       if (param->precision == 16)
               a1c1 |= ESO_CTLREG_A1C1_16BIT;
       if (param->channels == 2)
               a1c1 |= ESO_CTLREG_A1C1_STEREO;
       else
               a1c1 |= ESO_CTLREG_A1C1_MONO;
       if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
           param->encoding == AUDIO_ENCODING_SLINEAR_LE)
               a1c1 |= ESO_CTLREG_A1C1_SIGNED;
       eso_write_ctlreg(sc, ESO_CTLREG_A1C1, a1c1);

       /* Set up ADC IRQ/DRQ parameters. */
       eso_write_ctlreg(sc, ESO_CTLREG_LAIC,
           ESO_CTLREG_LAIC_PINENB | ESO_CTLREG_LAIC_EXTENB);
       eso_write_ctlreg(sc, ESO_CTLREG_DRQCTL,
           ESO_CTLREG_DRQCTL_ENB1 | ESO_CTLREG_DRQCTL_EXTENB);

       /* Set up and enable DMA controller. */
       bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_CLEAR, 0);
       bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK,
           ESO_DMAC_MASK_MASK);
       bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MODE,
           DMA37MD_WRITE | DMA37MD_LOOP | DMA37MD_DEMAND);
       bus_space_write_4(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAA,
           DMAADDR(ed));
       bus_space_write_2(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_DMAC,
           (uint8_t *)end - (uint8_t *)start - 1);
       bus_space_write_1(sc->sc_dmac_iot, sc->sc_dmac_ioh, ESO_DMAC_MASK, 0);

       /* Start DMA. */
       eso_write_ctlreg(sc, ESO_CTLREG_A1C2,
           ESO_CTLREG_A1C2_DMAENB | ESO_CTLREG_A1C2_READ |
           ESO_CTLREG_A1C2_AUTO | ESO_CTLREG_A1C2_ADC);

       return 0;
}


static void
eso_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
       struct eso_softc *sc;

       sc = addr;
       *intr = &sc->sc_intr_lock;
       *thread = &sc->sc_lock;
}

/*
* Mixer utility functions.
*/
static int
eso_set_recsrc(struct eso_softc *sc, unsigned int recsrc)
{
       mixer_devinfo_t di;
       int i;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       di.index = ESO_RECORD_SOURCE;
       if (eso_query_devinfo(sc, &di) != 0)
               panic("eso_set_recsrc: eso_query_devinfo failed");

       for (i = 0; i < di.un.e.num_mem; i++) {
               if (recsrc == di.un.e.member[i].ord) {
                       eso_write_mixreg(sc, ESO_MIXREG_ERS, recsrc);
                       sc->sc_recsrc = recsrc;
                       return 0;
               }
       }

       return EINVAL;
}

static int
eso_set_monooutsrc(struct eso_softc *sc, unsigned int monooutsrc)
{
       mixer_devinfo_t di;
       int i;
       uint8_t mpm;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       di.index = ESO_MONOOUT_SOURCE;
       if (eso_query_devinfo(sc, &di) != 0)
               panic("eso_set_monooutsrc: eso_query_devinfo failed");

       for (i = 0; i < di.un.e.num_mem; i++) {
               if (monooutsrc == di.un.e.member[i].ord) {
                       mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
                       mpm &= ~ESO_MIXREG_MPM_MOMASK;
                       mpm |= monooutsrc;
                       eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
                       sc->sc_monooutsrc = monooutsrc;
                       return 0;
               }
       }

       return EINVAL;
}

static int
eso_set_monoinbypass(struct eso_softc *sc, unsigned int monoinbypass)
{
       mixer_devinfo_t di;
       int i;
       uint8_t mpm;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       di.index = ESO_MONOIN_BYPASS;
       if (eso_query_devinfo(sc, &di) != 0)
               panic("eso_set_monoinbypass: eso_query_devinfo failed");

       for (i = 0; i < di.un.e.num_mem; i++) {
               if (monoinbypass == di.un.e.member[i].ord) {
                       mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
                       mpm &= ~(ESO_MIXREG_MPM_MOMASK | ESO_MIXREG_MPM_RESV0);
                       mpm |= (monoinbypass ? ESO_MIXREG_MPM_MIBYPASS : 0);
                       eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
                       sc->sc_monoinbypass = monoinbypass;
                       return 0;
               }
       }

       return EINVAL;
}

static int
eso_set_preamp(struct eso_softc *sc, unsigned int preamp)
{
       mixer_devinfo_t di;
       int i;
       uint8_t mpm;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       di.index = ESO_MIC_PREAMP;
       if (eso_query_devinfo(sc, &di) != 0)
               panic("eso_set_preamp: eso_query_devinfo failed");

       for (i = 0; i < di.un.e.num_mem; i++) {
               if (preamp == di.un.e.member[i].ord) {
                       mpm = eso_read_mixreg(sc, ESO_MIXREG_MPM);
                       mpm &= ~(ESO_MIXREG_MPM_PREAMP | ESO_MIXREG_MPM_RESV0);
                       mpm |= (preamp ? ESO_MIXREG_MPM_PREAMP : 0);
                       eso_write_mixreg(sc, ESO_MIXREG_MPM, mpm);
                       sc->sc_preamp = preamp;
                       return 0;
               }
       }

       return EINVAL;
}

/*
* Reload Master Volume and Mute values in softc from mixer; used when
* those have previously been invalidated by use of hardware volume controls.
*/
static void
eso_reload_master_vol(struct eso_softc *sc)
{
       uint8_t mv;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
       sc->sc_gain[ESO_MASTER_VOL][ESO_LEFT] =
           (mv & ~ESO_MIXREG_LMVM_MUTE) << 2;
       mv = eso_read_mixreg(sc, ESO_MIXREG_LMVM);
       sc->sc_gain[ESO_MASTER_VOL][ESO_RIGHT] =
           (mv & ~ESO_MIXREG_RMVM_MUTE) << 2;
       /* Currently both channels are muted simultaneously; either is OK. */
       sc->sc_mvmute = (mv & ESO_MIXREG_RMVM_MUTE) != 0;
}

static void
eso_set_gain(struct eso_softc *sc, unsigned int port)
{
       uint8_t mixreg, tmp;

       KASSERT(mutex_owned(&sc->sc_intr_lock));

       switch (port) {
       case ESO_DAC_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_A2;
               break;
       case ESO_MIC_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_MIC;
               break;
       case ESO_LINE_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_LINE;
               break;
       case ESO_SYNTH_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_SYNTH;
               break;
       case ESO_CD_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_CD;
               break;
       case ESO_AUXB_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_AUXB;
               break;

       case ESO_DAC_REC_VOL:
               mixreg = ESO_MIXREG_RVR_A2;
               break;
       case ESO_MIC_REC_VOL:
               mixreg = ESO_MIXREG_RVR_MIC;
               break;
       case ESO_LINE_REC_VOL:
               mixreg = ESO_MIXREG_RVR_LINE;
               break;
       case ESO_SYNTH_REC_VOL:
               mixreg = ESO_MIXREG_RVR_SYNTH;
               break;
       case ESO_CD_REC_VOL:
               mixreg = ESO_MIXREG_RVR_CD;
               break;
       case ESO_AUXB_REC_VOL:
               mixreg = ESO_MIXREG_RVR_AUXB;
               break;
       case ESO_MONO_PLAY_VOL:
               mixreg = ESO_MIXREG_PVR_MONO;
               break;
       case ESO_MONO_REC_VOL:
               mixreg = ESO_MIXREG_RVR_MONO;
               break;

       case ESO_PCSPEAKER_VOL:
               /* Special case - only 3-bit, mono, and reserved bits. */
               tmp = eso_read_mixreg(sc, ESO_MIXREG_PCSVR);
               tmp &= ESO_MIXREG_PCSVR_RESV;
               /* Map bits 7:5 -> 2:0. */
               tmp |= (sc->sc_gain[port][ESO_LEFT] >> 5);
               eso_write_mixreg(sc, ESO_MIXREG_PCSVR, tmp);
               return;

       case ESO_MASTER_VOL:
               /* Special case - separate regs, and 6-bit precision. */
               /* Map bits 7:2 -> 5:0, reflect mute settings. */
               eso_write_mixreg(sc, ESO_MIXREG_LMVM,
                   (sc->sc_gain[port][ESO_LEFT] >> 2) |
                   (sc->sc_mvmute ? ESO_MIXREG_LMVM_MUTE : 0x00));
               eso_write_mixreg(sc, ESO_MIXREG_RMVM,
                   (sc->sc_gain[port][ESO_RIGHT] >> 2) |
                   (sc->sc_mvmute ? ESO_MIXREG_RMVM_MUTE : 0x00));
               return;

       case ESO_SPATIALIZER:
               /* Special case - only `mono', and higher precision. */
               eso_write_mixreg(sc, ESO_MIXREG_SPATLVL,
                   sc->sc_gain[port][ESO_LEFT]);
               return;

       case ESO_RECORD_VOL:
               /* Very Special case, controller register. */
               eso_write_ctlreg(sc, ESO_CTLREG_RECLVL,ESO_4BIT_GAIN_TO_STEREO(
                  sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
               return;

       default:
#ifdef DIAGNOSTIC
               panic("eso_set_gain: bad port %u", port);
               /* NOTREACHED */
#else
               return;
#endif
       }

       eso_write_mixreg(sc, mixreg, ESO_4BIT_GAIN_TO_STEREO(
           sc->sc_gain[port][ESO_LEFT], sc->sc_gain[port][ESO_RIGHT]));
}