/*      $NetBSD: auich.c,v 1.161 2023/05/10 00:11:24 riastradh Exp $    */

/*-
* Copyright (c) 2000, 2004, 2005, 2008 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe and by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 2000 Michael Shalayeff
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR HIS RELATIVES BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF MIND, USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*
*      from OpenBSD: ich.c,v 1.3 2000/08/11 06:17:18 mickey Exp
*/

/*
* Copyright (c) 2000 Katsurajima Naoto <[email protected]>
* Copyright (c) 2001 Cameron Grant <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHERIN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THEPOSSIBILITY OF
* SUCH DAMAGE.
*
* auich_calibrate() was from FreeBSD: ich.c,v 1.22 2002/06/27 22:36:01 scottl Exp
*/


/* #define      AUICH_DEBUG */
/*
* AC'97 audio found on Intel 810/820/440MX chipsets.
*      http://developer.intel.com/design/chipsets/datashts/290655.htm
*      http://developer.intel.com/design/chipsets/manuals/298028.htm
* ICH3:http://www.intel.com/design/chipsets/datashts/290716.htm
* ICH4:http://www.intel.com/design/chipsets/datashts/290744.htm
* ICH5:http://www.intel.com/design/chipsets/datashts/252516.htm
* AMD8111:
*      http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24674.pdf
*      http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/25720.pdf
*
* TODO:
*      - Add support for the dedicated microphone input.
*
* NOTE:
*      - The 440MX B-stepping at running 100MHz has a hardware erratum.
*        It causes PCI master abort and hangups until cold reboot.
*        http://www.intel.com/design/chipsets/specupdt/245051.htm
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: auich.c,v 1.161 2023/05/10 00:11:24 riastradh Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/device.h>
#include <sys/fcntl.h>
#include <sys/proc.h>
#include <sys/sysctl.h>
#include <sys/audioio.h>
#include <sys/bus.h>
#include <sys/rndsource.h>

#include <dev/pci/pcidevs.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/auichreg.h>

#include <dev/audio/audio_if.h>

#include <dev/ic/ac97reg.h>
#include <dev/ic/ac97var.h>

struct auich_dma {
       bus_dmamap_t map;
       void *addr;
       bus_dma_segment_t segs[1];
       int nsegs;
       size_t size;
       struct auich_dma *next;
};

#define DMAADDR(p)      ((p)->map->dm_segs[0].ds_addr)
#define KERNADDR(p)     ((void *)((p)->addr))

struct auich_cdata {
       struct auich_dmalist ic_dmalist_pcmo[ICH_DMALIST_MAX];
       struct auich_dmalist ic_dmalist_pcmi[ICH_DMALIST_MAX];
       struct auich_dmalist ic_dmalist_mici[ICH_DMALIST_MAX];
};

#define ICH_CDOFF(x)            offsetof(struct auich_cdata, x)
#define ICH_PCMO_OFF(x)         ICH_CDOFF(ic_dmalist_pcmo[(x)])
#define ICH_PCMI_OFF(x)         ICH_CDOFF(ic_dmalist_pcmi[(x)])
#define ICH_MICI_OFF(x)         ICH_CDOFF(ic_dmalist_mici[(x)])

struct auich_softc {
       device_t sc_dev;
       void *sc_ih;
       kmutex_t sc_lock;
       kmutex_t sc_intr_lock;

       device_t sc_audiodev;
       audio_device_t sc_audev;

       pci_chipset_tag_t sc_pc;
       pcitag_t sc_pt;
       bus_space_tag_t iot;
       bus_space_handle_t mix_ioh;
       bus_size_t mix_size;
       bus_space_handle_t aud_ioh;
       bus_size_t aud_size;
       bus_dma_tag_t dmat;
       pci_intr_handle_t intrh;

       struct ac97_codec_if *codec_if;
       struct ac97_host_if host_if;
       int sc_codecnum;
       int sc_codectype;
       int sc_fixedrate;
       enum ac97_host_flags sc_codecflags;
       bool sc_spdif;

       /* multi-channel control bits */
       int sc_pcm246_mask;
       int sc_pcm2;
       int sc_pcm4;
       int sc_pcm6;

       /* DMA scatter-gather lists. */
       bus_dmamap_t sc_cddmamap;
#define sc_cddma        sc_cddmamap->dm_segs[0].ds_addr

       struct auich_cdata *sc_cdata;

       struct auich_ring {
               int qptr;
               struct auich_dmalist *dmalist;

               uint32_t start, p, end;
               int blksize;

               void (*intr)(void *);
               void *arg;
       } pcmo, pcmi, mici;

       struct auich_dma *sc_dmas;

       /* SiS 7012 hack */
       int  sc_sample_shift;
       int  sc_sts_reg;
       /* 440MX workaround */
       int  sc_dmamap_flags;
       /* flags */
       u_int  sc_iose  :1,
                       :31;

       /* sysctl */
       struct sysctllog *sc_log;
       uint32_t sc_ac97_clock;
       int sc_ac97_clock_mib;

       int     sc_modem_offset;

#define AUICH_AUDIO_NFORMATS    3
#define AUICH_MODEM_NFORMATS    1
       struct audio_format sc_audio_formats[AUICH_AUDIO_NFORMATS];
       struct audio_format sc_modem_formats[AUICH_MODEM_NFORMATS];

       int sc_cas_been_used;
};

/* Debug */
#ifdef AUICH_DEBUG
#define DPRINTF(l,x)    do { if (auich_debug & (l)) aprint_normal_dev x; } while(0)
int auich_debug = 0xfffe;
#define ICH_DEBUG_CODECIO       0x0001
#define ICH_DEBUG_DMA           0x0002
#define ICH_DEBUG_INTR          0x0004
#else
#define DPRINTF(x,y)    /* nothing */
#endif

static int      auich_match(device_t, cfdata_t, void *);
static void     auich_attach(device_t, device_t, void *);
static int      auich_detach(device_t, int);
static void     auich_childdet(device_t, device_t);
static int      auich_intr(void *);

CFATTACH_DECL2_NEW(auich, sizeof(struct auich_softc),
   auich_match, auich_attach, auich_detach, NULL, NULL, auich_childdet);

static int      auich_open(void *, int);
static void     auich_close(void *);
static int      auich_query_format(void *, struct audio_format_query *);
static int      auich_set_format(void *, int,
                   const audio_params_t *, const audio_params_t *,
                   audio_filter_reg_t *, audio_filter_reg_t *);
static void     auich_halt_pipe(struct auich_softc *, int);
static int      auich_halt_output(void *);
static int      auich_halt_input(void *);
static int      auich_getdev(void *, struct audio_device *);
static int      auich_set_port(void *, mixer_ctrl_t *);
static int      auich_get_port(void *, mixer_ctrl_t *);
static int      auich_query_devinfo(void *, mixer_devinfo_t *);
static void     *auich_allocm(void *, int, size_t);
static void     auich_freem(void *, void *, size_t);
static size_t   auich_round_buffersize(void *, int, size_t);
static int      auich_get_props(void *);
static void     auich_trigger_pipe(struct auich_softc *, int, struct auich_ring *);
static void     auich_intr_pipe(struct auich_softc *, int, struct auich_ring *);
static int      auich_trigger_output(void *, void *, void *, int,
                   void (*)(void *), void *, const audio_params_t *);
static int      auich_trigger_input(void *, void *, void *, int,
                   void (*)(void *), void *, const audio_params_t *);
static void     auich_get_locks(void *, kmutex_t **, kmutex_t **);

static int      auich_alloc_cdata(struct auich_softc *);

static int      auich_allocmem(struct auich_softc *, size_t, size_t,
                   struct auich_dma *);
static int      auich_freemem(struct auich_softc *, struct auich_dma *);

static bool     auich_resume(device_t, const pmf_qual_t *);
static int      auich_set_rate(struct auich_softc *, int, u_long);
static int      auich_sysctl_verify(SYSCTLFN_ARGS);
static void     auich_finish_attach(device_t);
static void     auich_calibrate(struct auich_softc *);
static void     auich_clear_cas(struct auich_softc *);

static int      auich_attach_codec(void *, struct ac97_codec_if *);
static int      auich_read_codec(void *, uint8_t, uint16_t *);
static int      auich_write_codec(void *, uint8_t, uint16_t);
static int      auich_reset_codec(void *);
static enum ac97_host_flags     auich_flags_codec(void *);
static void     auich_spdif_event(void *, bool);

static const struct audio_hw_if auich_hw_if = {
       .open                   = auich_open,
       .close                  = auich_close,
       .query_format           = auich_query_format,
       .set_format             = auich_set_format,
       .halt_output            = auich_halt_output,
       .halt_input             = auich_halt_input,
       .getdev                 = auich_getdev,
       .set_port               = auich_set_port,
       .get_port               = auich_get_port,
       .query_devinfo          = auich_query_devinfo,
       .allocm                 = auich_allocm,
       .freem                  = auich_freem,
       .round_buffersize       = auich_round_buffersize,
       .get_props              = auich_get_props,
       .trigger_output         = auich_trigger_output,
       .trigger_input          = auich_trigger_input,
       .get_locks              = auich_get_locks,
};

#define AUICH_FORMATS_1CH       0
#define AUICH_FORMATS_4CH       1
#define AUICH_FORMATS_6CH       2
#define AUICH_FORMAT(aumode, ch, chmask) \
       { \
               .mode           = (aumode), \
               .encoding       = AUDIO_ENCODING_SLINEAR_LE, \
               .validbits      = 16, \
               .precision      = 16, \
               .channels       = (ch), \
               .channel_mask   = (chmask), \
               .frequency_type = 0, \
               .frequency      = { 8000, 48000 }, \
       }
static const struct audio_format auich_audio_formats[AUICH_AUDIO_NFORMATS] = {
       AUICH_FORMAT(AUMODE_PLAY | AUMODE_RECORD, 2, AUFMT_STEREO),
       AUICH_FORMAT(AUMODE_PLAY                , 4, AUFMT_SURROUND4),
       AUICH_FORMAT(AUMODE_PLAY                , 6, AUFMT_DOLBY_5_1),
};

#define AUICH_SPDIF_NFORMATS    1
static const struct audio_format auich_spdif_formats[AUICH_SPDIF_NFORMATS] = {
       {
               .mode           = AUMODE_PLAY | AUMODE_RECORD,
               .encoding       = AUDIO_ENCODING_SLINEAR_LE,
               .validbits      = 16,
               .precision      = 16,
               .channels       = 2,
               .channel_mask   = AUFMT_STEREO,
               .frequency_type = 1,
               .frequency      = { 48000 },
       },
};

static const struct audio_format auich_modem_formats[AUICH_MODEM_NFORMATS] = {
       {
               .mode           = AUMODE_PLAY | AUMODE_RECORD,
               .encoding       = AUDIO_ENCODING_SLINEAR_LE,
               .validbits      = 16,
               .precision      = 16,
               .channels       = 1,
               .channel_mask   = AUFMT_MONAURAL,
               .frequency_type = 2,
               .frequency      = { 8000, 16000 },
       },
};

#define PCI_ID_CODE0(v, p)      PCI_ID_CODE(PCI_VENDOR_##v, PCI_PRODUCT_##v##_##p)
#define PCIID_ICH               PCI_ID_CODE0(INTEL, 82801AA_ACA)
#define PCIID_ICH0              PCI_ID_CODE0(INTEL, 82801AB_ACA)
#define PCIID_ICH2              PCI_ID_CODE0(INTEL, 82801BA_ACA)
#define PCIID_440MX             PCI_ID_CODE0(INTEL, 82440MX_ACA)
#define PCIID_ICH3              PCI_ID_CODE0(INTEL, 82801CA_AC)
#define PCIID_ICH4              PCI_ID_CODE0(INTEL, 82801DB_AC)
#define PCIID_ICH5              PCI_ID_CODE0(INTEL, 82801EB_AC)
#define PCIID_ICH6              PCI_ID_CODE0(INTEL, 82801FB_AC)
#define PCIID_ICH7              PCI_ID_CODE0(INTEL, 82801G_ACA)
#define PCIID_I6300ESB          PCI_ID_CODE0(INTEL, 6300ESB_ACA)
#define PCIID_SIS7012           PCI_ID_CODE0(SIS, 7012_AC)
#define PCIID_NFORCE            PCI_ID_CODE0(NVIDIA, NFORCE_MCP_AC)
#define PCIID_NFORCE2           PCI_ID_CODE0(NVIDIA, NFORCE2_MCPT_AC)
#define PCIID_NFORCE2_400       PCI_ID_CODE0(NVIDIA, NFORCE2_400_MCPT_AC)
#define PCIID_NFORCE3           PCI_ID_CODE0(NVIDIA, NFORCE3_MCPT_AC)
#define PCIID_NFORCE3_250       PCI_ID_CODE0(NVIDIA, NFORCE3_250_MCPT_AC)
#define PCIID_NFORCE4           PCI_ID_CODE0(NVIDIA, NFORCE4_AC)
#define PCIID_NFORCE430         PCI_ID_CODE0(NVIDIA, NFORCE430_AC)
#define PCIID_AMD768            PCI_ID_CODE0(AMD, PBC768_AC)
#define PCIID_AMD8111           PCI_ID_CODE0(AMD, PBC8111_AC)

#define PCIID_ICH3MODEM         PCI_ID_CODE0(INTEL, 82801CA_MOD)
#define PCIID_ICH4MODEM         PCI_ID_CODE0(INTEL, 82801DB_MOD)
#define PCIID_ICH6MODEM         PCI_ID_CODE0(INTEL, 82801FB_ACM)

struct auich_devtype {
       pcireg_t        id;
       const char      *name;
       const char      *shortname;     /* must be less than 11 characters */
};

static const struct auich_devtype auich_audio_devices[] = {
       { PCIID_ICH,    "i82801AA (ICH) AC-97 Audio",   "ICH" },
       { PCIID_ICH0,   "i82801AB (ICH0) AC-97 Audio",  "ICH0" },
       { PCIID_ICH2,   "i82801BA (ICH2) AC-97 Audio",  "ICH2" },
       { PCIID_440MX,  "i82440MX AC-97 Audio",         "440MX" },
       { PCIID_ICH3,   "i82801CA (ICH3) AC-97 Audio",  "ICH3" },
       { PCIID_ICH4,   "i82801DB/DBM (ICH4/ICH4M) AC-97 Audio", "ICH4" },
       { PCIID_ICH5,   "i82801EB (ICH5) AC-97 Audio",  "ICH5" },
       { PCIID_ICH6,   "i82801FB (ICH6) AC-97 Audio",  "ICH6" },
       { PCIID_ICH7,   "i82801GB/GR (ICH7) AC-97 Audio",       "ICH7" },
       { PCIID_I6300ESB,       "Intel 6300ESB AC-97 Audio",    "I6300ESB" },
       { PCIID_SIS7012, "SiS 7012 AC-97 Audio",        "SiS7012" },
       { PCIID_NFORCE, "nForce MCP AC-97 Audio",       "nForce" },
       { PCIID_NFORCE2, "nForce2 MCP-T AC-97 Audio",   "nForce2" },
       { PCIID_NFORCE2_400, "nForce2 400 MCP-T AC-97 Audio",   "nForce2" },
       { PCIID_NFORCE3, "nForce3 MCP-T AC-97 Audio",   "nForce3" },
       { PCIID_NFORCE3_250, "nForce3 250 MCP-T AC-97 Audio", "nForce3" },
       { PCIID_NFORCE4, "nForce4 AC-97 Audio",         "nForce4" },
       { PCIID_NFORCE430, "nForce430 (MCP51) AC-97 Audio", "nForce430" },
       { PCIID_AMD768, "AMD768 AC-97 Audio",           "AMD768" },
       { PCIID_AMD8111,"AMD8111 AC-97 Audio",          "AMD8111" },
       { 0,            NULL,                           NULL },
};

static const struct auich_devtype auich_modem_devices[] = {
#ifdef AUICH_ATTACH_MODEM
       { PCIID_ICH3MODEM, "i82801CA (ICH3) AC-97 Modem", "ICH3MODEM" },
       { PCIID_ICH4MODEM, "i82801DB (ICH4) AC-97 Modem", "ICH4MODEM" },
       { PCIID_ICH6MODEM, "i82801FB (ICH6) AC-97 Modem", "ICH6MODEM" },
#endif
       { 0,            NULL,                           NULL },
};

static const struct auich_devtype *
auich_lookup(struct pci_attach_args *pa, const struct auich_devtype *auich_devices)
{
       const struct auich_devtype *d;

       for (d = auich_devices; d->name != NULL; d++) {
               if (pa->pa_id == d->id)
                       return d;
       }

       return NULL;
}

static int
auich_match(device_t parent, cfdata_t match, void *aux)
{
       struct pci_attach_args *pa;

       pa = aux;
       if (auich_lookup(pa, auich_audio_devices) != NULL)
               return 1;
       if (auich_lookup(pa, auich_modem_devices) != NULL)
               return 1;

       return 0;
}

static void
auich_attach(device_t parent, device_t self, void *aux)
{
       struct auich_softc *sc = device_private(self);
       struct pci_attach_args *pa;
       pcireg_t v, subdev;
       const char *intrstr;
       const struct auich_devtype *d;
       const struct sysctlnode *node, *node_ac97clock;
       int err, node_mib, i;
       char intrbuf[PCI_INTRSTR_LEN];

       sc->sc_dev = self;
       pa = aux;

       if ((d = auich_lookup(pa, auich_modem_devices)) != NULL) {
               sc->sc_modem_offset = 0x10;
               sc->sc_codectype = AC97_CODEC_TYPE_MODEM;
       } else if ((d = auich_lookup(pa, auich_audio_devices)) != NULL) {
               sc->sc_modem_offset = 0;
               sc->sc_codectype = AC97_CODEC_TYPE_AUDIO;
       } else
               panic("auich_attach: impossible");

       if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO)
               aprint_naive(": Audio controller\n");
       else
               aprint_naive(": Modem controller\n");

       sc->sc_pc = pa->pa_pc;
       sc->sc_pt = pa->pa_tag;

       aprint_normal(": %s\n", d->name);

       if (d->id == PCIID_ICH4 || d->id == PCIID_ICH5 || d->id == PCIID_ICH6
           || d->id == PCIID_ICH7 || d->id == PCIID_I6300ESB
           || d->id == PCIID_ICH4MODEM) {
               /*
                * Use native mode for Intel 6300ESB and ICH4/ICH5/ICH6/ICH7
                */

               if (pci_mapreg_map(pa, ICH_MMBAR, PCI_MAPREG_TYPE_MEM, 0,
                   &sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) {
                       goto retry_map;
               }
               if (pci_mapreg_map(pa, ICH_MBBAR, PCI_MAPREG_TYPE_MEM, 0,
                   &sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) {
                       goto retry_map;
               }
               goto map_done;
       } else
               goto non_native_map;

retry_map:
       sc->sc_iose = 1;
       v = pci_conf_read(pa->pa_pc, pa->pa_tag, ICH_CFG);
       pci_conf_write(pa->pa_pc, pa->pa_tag, ICH_CFG,
                      v | ICH_CFG_IOSE);

non_native_map:
       if (pci_mapreg_map(pa, ICH_NAMBAR, PCI_MAPREG_TYPE_IO, 0,
                          &sc->iot, &sc->mix_ioh, NULL, &sc->mix_size)) {
               aprint_error_dev(self, "can't map codec i/o space\n");
               return;
       }
       if (pci_mapreg_map(pa, ICH_NABMBAR, PCI_MAPREG_TYPE_IO, 0,
                          &sc->iot, &sc->aud_ioh, NULL, &sc->aud_size)) {
               aprint_error_dev(self, "can't map device i/o space\n");
               return;
       }

map_done:
       sc->dmat = pa->pa_dmat;

       /* enable bus mastering */
       v = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
       pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
           v | PCI_COMMAND_MASTER_ENABLE | PCI_COMMAND_BACKTOBACK_ENABLE);

       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
       mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);

       /* Map and establish the interrupt. */
       if (pci_intr_map(pa, &sc->intrh)) {
               aprint_error_dev(self, "can't map interrupt\n");
               return;
       }
       intrstr = pci_intr_string(pa->pa_pc, sc->intrh, intrbuf, sizeof(intrbuf));
       sc->sc_ih = pci_intr_establish_xname(pa->pa_pc, sc->intrh, IPL_AUDIO,
           auich_intr, sc, device_xname(sc->sc_dev));
       if (sc->sc_ih == NULL) {
               aprint_error_dev(self, "can't establish interrupt");
               if (intrstr != NULL)
                       aprint_error(" at %s", intrstr);
               aprint_error("\n");
               return;
       }
       aprint_normal_dev(self, "interrupting at %s\n", intrstr);

       snprintf(sc->sc_audev.name, MAX_AUDIO_DEV_LEN, "%s AC97", d->shortname);
       snprintf(sc->sc_audev.version, MAX_AUDIO_DEV_LEN,
                "0x%02x", PCI_REVISION(pa->pa_class));
       strlcpy(sc->sc_audev.config, device_xname(self), MAX_AUDIO_DEV_LEN);

       /* SiS 7012 needs special handling */
       if (d->id == PCIID_SIS7012) {
               sc->sc_sts_reg = ICH_PICB;
               sc->sc_sample_shift = 0;
               sc->sc_pcm246_mask = ICH_SIS_PCM246_MASK;
               sc->sc_pcm2 = ICH_SIS_PCM2;
               sc->sc_pcm4 = ICH_SIS_PCM4;
               sc->sc_pcm6 = ICH_SIS_PCM6;
               /* Un-mute output. From Linux. */
               bus_space_write_4(sc->iot, sc->aud_ioh, ICH_SIS_NV_CTL,
                   bus_space_read_4(sc->iot, sc->aud_ioh, ICH_SIS_NV_CTL) |
                   ICH_SIS_CTL_UNMUTE);
       } else {
               sc->sc_sts_reg = ICH_STS;
               sc->sc_sample_shift = 1;
               sc->sc_pcm246_mask = ICH_PCM246_MASK;
               sc->sc_pcm2 = ICH_PCM2;
               sc->sc_pcm4 = ICH_PCM4;
               sc->sc_pcm6 = ICH_PCM6;
       }

       /* Workaround for a 440MX B-stepping erratum */
       sc->sc_dmamap_flags = BUS_DMA_COHERENT;
       if (d->id == PCIID_440MX) {
               sc->sc_dmamap_flags |= BUS_DMA_NOCACHE;
               aprint_normal_dev(self, "DMA bug workaround enabled\n");
       }

       /* Set up DMA lists. */
       sc->pcmo.qptr = sc->pcmi.qptr = sc->mici.qptr = 0;
       auich_alloc_cdata(sc);

       DPRINTF(ICH_DEBUG_DMA, (sc->sc_dev, "%s: lists %p %p %p\n",
           __func__, sc->pcmo.dmalist, sc->pcmi.dmalist, sc->mici.dmalist));

       /* Modem codecs are always the secondary codec on ICH */
       sc->sc_codecnum = sc->sc_codectype == AC97_CODEC_TYPE_MODEM ? 1 : 0;

       sc->host_if.arg = sc;
       sc->host_if.attach = auich_attach_codec;
       sc->host_if.read = auich_read_codec;
       sc->host_if.write = auich_write_codec;
       sc->host_if.reset = auich_reset_codec;
       sc->host_if.flags = auich_flags_codec;
       sc->host_if.spdif_event = auich_spdif_event;

       subdev = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
       switch (subdev) {
       case 0x202f161f:        /* Gateway 7326GZ */
       case 0x203a161f:        /* Gateway 4028GZ */
       case 0x204c161f:        /* Kvazar-Micro Senator 3592XT */
       case 0x8144104d:        /* Sony VAIO PCG-TR* */
       case 0x8197104d:        /* Sony S1XP */
       case 0x81c0104d:        /* Sony VAIO type T */
       case 0x81c5104d:        /* Sony VAIO VGN-B1XP */
               sc->sc_codecflags = AC97_HOST_INVERTED_EAMP;
               break;
       default:
               sc->sc_codecflags = 0;
               break;
       }

       if (ac97_attach_type(&sc->host_if, self, sc->sc_codectype,
           &sc->sc_lock) != 0)
               return;

       mutex_enter(&sc->sc_lock);
       sc->codec_if->vtbl->unlock(sc->codec_if);
       sc->sc_fixedrate = AC97_IS_FIXED_RATE(sc->codec_if);

       /* setup audio_format */
       if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO) {
               memcpy(sc->sc_audio_formats, auich_audio_formats,
                   sizeof(auich_audio_formats));
               if (!AC97_IS_4CH(sc->codec_if))
                       AUFMT_INVALIDATE(&sc->sc_audio_formats[AUICH_FORMATS_4CH]);
               if (!AC97_IS_6CH(sc->codec_if))
                       AUFMT_INVALIDATE(&sc->sc_audio_formats[AUICH_FORMATS_6CH]);
               if (AC97_IS_FIXED_RATE(sc->codec_if)) {
                       for (i = 0; i < AUICH_AUDIO_NFORMATS; i++) {
                               sc->sc_audio_formats[i].frequency_type = 1;
                               sc->sc_audio_formats[i].frequency[0] = 48000;
                       }
               }
               mutex_exit(&sc->sc_lock);
       } else {
               mutex_exit(&sc->sc_lock);
               memcpy(sc->sc_modem_formats, auich_modem_formats,
                   sizeof(auich_modem_formats));
       }

       /* Watch for power change */
       if (!pmf_device_register(self, NULL, auich_resume))
               aprint_error_dev(self, "couldn't establish power handler\n");

       config_interrupts(self, auich_finish_attach);

       /* sysctl setup */
       if (sc->sc_fixedrate && sc->sc_codectype == AC97_CODEC_TYPE_AUDIO)
               return;

       err = sysctl_createv(&sc->sc_log, 0, NULL, &node, 0,
                            CTLTYPE_NODE, device_xname(self), NULL, NULL, 0,
                            NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
       if (err != 0)
               goto sysctl_err;
       node_mib = node->sysctl_num;

       if (!sc->sc_fixedrate) {
               /* passing the sc address instead of &sc->sc_ac97_clock */
               err = sysctl_createv(&sc->sc_log, 0, NULL, &node_ac97clock,
                                    CTLFLAG_READWRITE,
                                    CTLTYPE_INT, "ac97rate",
                                    SYSCTL_DESCR("AC'97 codec link rate"),
                                    auich_sysctl_verify, 0, (void *)sc, 0,
                                    CTL_HW, node_mib, CTL_CREATE, CTL_EOL);
               if (err != 0)
                       goto sysctl_err;
               sc->sc_ac97_clock_mib = node_ac97clock->sysctl_num;
       }

       return;

sysctl_err:
       aprint_error_dev(self, "failed to add sysctl nodes. (%d)\n", err);
       return;                 /* failure of sysctl is not fatal. */
}

static void
auich_childdet(device_t self, device_t child)
{
       struct auich_softc *sc = device_private(self);

       KASSERT(sc->sc_audiodev == child);
       sc->sc_audiodev = NULL;
}

static int
auich_detach(device_t self, int flags)
{
       struct auich_softc *sc = device_private(self);
       int error;

       /* audio */
       error = config_detach_children(self, flags);
       if (error)
               return error;

       /* sysctl */
       sysctl_teardown(&sc->sc_log);

       mutex_enter(&sc->sc_lock);

       /* ac97 */
       if (sc->codec_if != NULL)
               sc->codec_if->vtbl->detach(sc->codec_if);

       mutex_exit(&sc->sc_lock);
       mutex_destroy(&sc->sc_lock);
       mutex_destroy(&sc->sc_intr_lock);

       /* PCI */
       if (sc->sc_ih != NULL)
               pci_intr_disestablish(sc->sc_pc, sc->sc_ih);
       if (sc->mix_size != 0)
               bus_space_unmap(sc->iot, sc->mix_ioh, sc->mix_size);
       if (sc->aud_size != 0)
               bus_space_unmap(sc->iot, sc->aud_ioh, sc->aud_size);
       return 0;
}

static int
auich_sysctl_verify(SYSCTLFN_ARGS)
{
       int error, tmp;
       struct sysctlnode node;
       struct auich_softc *sc;

       node = *rnode;
       sc = rnode->sysctl_data;
       if (node.sysctl_num == sc->sc_ac97_clock_mib) {
               tmp = sc->sc_ac97_clock;
               node.sysctl_data = &tmp;
               error = sysctl_lookup(SYSCTLFN_CALL(&node));
               if (error || newp == NULL)
                       return error;

               if (tmp < 48000 || tmp > 96000)
                       return EINVAL;
               mutex_enter(&sc->sc_lock);
               sc->sc_ac97_clock = tmp;
               mutex_exit(&sc->sc_lock);
       }

       return 0;
}

static void
auich_finish_attach(device_t self)
{
       struct auich_softc *sc = device_private(self);

       mutex_enter(&sc->sc_lock);
       if (!AC97_IS_FIXED_RATE(sc->codec_if))
               auich_calibrate(sc);
       mutex_exit(&sc->sc_lock);

       sc->sc_audiodev = audio_attach_mi(&auich_hw_if, sc, sc->sc_dev);

       return;
}

#define ICH_CODECIO_INTERVAL    10
static int
auich_read_codec(void *v, uint8_t reg, uint16_t *val)
{
       struct auich_softc *sc;
       int i;
       uint32_t status;

       sc = v;
       /* wait for an access semaphore */
       for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
           bus_space_read_1(sc->iot, sc->aud_ioh,
               ICH_CAS + sc->sc_modem_offset) & 1;
           DELAY(ICH_CODECIO_INTERVAL));

       /*
        * Be permissive in first attempt. If previous instances of
        * this routine were interrupted precisely at this point (after
        * access is granted by CAS but before a command is sent),
        * they could have left hardware in an inconsistent state where
        * a command is expected and therefore semaphore wait would hit
        * the timeout.
        */
       if (!sc->sc_cas_been_used && i <= 0)
               i = 1;
       sc->sc_cas_been_used = 1;

       if (i > 0) {
               *val = bus_space_read_2(sc->iot, sc->mix_ioh,
                   reg + (sc->sc_codecnum * ICH_CODEC_OFFSET));
               DPRINTF(ICH_DEBUG_CODECIO,
                   (sc->sc_dev, "%s(%x, %x)\n", __func__, reg, *val));
               status = bus_space_read_4(sc->iot, sc->aud_ioh,
                   ICH_GSTS + sc->sc_modem_offset);
               if (status & ICH_RCS) {
                       bus_space_write_4(sc->iot, sc->aud_ioh,
                                         ICH_GSTS + sc->sc_modem_offset,
                                         status & ~(ICH_SRI|ICH_PRI|ICH_GSCI));
                       *val = 0xffff;
                       DPRINTF(ICH_DEBUG_CODECIO,
                           (sc->sc_dev, "%s: read_codec error\n", __func__));
                       if (reg == AC97_REG_GPIO_STATUS)
                               auich_clear_cas(sc);
                       return -1;
               }
               if (reg == AC97_REG_GPIO_STATUS)
                       auich_clear_cas(sc);
               return 0;
       } else {
               aprint_normal_dev(sc->sc_dev, "read_codec timeout\n");
               if (reg == AC97_REG_GPIO_STATUS)
                       auich_clear_cas(sc);
               return -1;
       }
}

static int
auich_write_codec(void *v, uint8_t reg, uint16_t val)
{
       struct auich_softc *sc;
       int i;

       sc = v;
       DPRINTF(ICH_DEBUG_CODECIO, (sc->sc_dev, "%s(%x, %x)\n",
           __func__, reg, val));
       /* wait for an access semaphore */
       for (i = ICH_SEMATIMO / ICH_CODECIO_INTERVAL; i-- &&
           bus_space_read_1(sc->iot, sc->aud_ioh,
               ICH_CAS + sc->sc_modem_offset) & 1;
           DELAY(ICH_CODECIO_INTERVAL));

       /* Be permissive in first attempt (see comments in auich_read_codec) */
       if (!sc->sc_cas_been_used && i <= 0)
               i = 1;
       sc->sc_cas_been_used = 1;

       if (i > 0) {
               bus_space_write_2(sc->iot, sc->mix_ioh,
                   reg + (sc->sc_codecnum * ICH_CODEC_OFFSET), val);
               return 0;
       } else {
               aprint_normal_dev(sc->sc_dev, "write_codec timeout\n");
               return -1;
       }
}

static int
auich_attach_codec(void *v, struct ac97_codec_if *cif)
{
       struct auich_softc *sc;

       sc = v;
       sc->codec_if = cif;

       return 0;
}

static int
auich_reset_codec(void *v)
{
       struct auich_softc *sc;
       int i;
       uint32_t control, status;

       sc = v;
       control = bus_space_read_4(sc->iot, sc->aud_ioh,
           ICH_GCTRL + sc->sc_modem_offset);
       if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO) {
               control &= ~(ICH_ACLSO | sc->sc_pcm246_mask);
       } else {
               control &= ~ICH_ACLSO;
               control |= ICH_GIE;
       }
       control |= (control & ICH_CRESET) ? ICH_WRESET : ICH_CRESET;
       bus_space_write_4(sc->iot, sc->aud_ioh,
           ICH_GCTRL + sc->sc_modem_offset, control);

       for (i = 500000; i >= 0; i--) {
               status = bus_space_read_4(sc->iot, sc->aud_ioh,
                   ICH_GSTS + sc->sc_modem_offset);
               if (status & (ICH_PCR | ICH_SCR | ICH_S2CR))
                       break;
               DELAY(1);
       }
       if (i <= 0) {
               aprint_error_dev(sc->sc_dev, "auich_reset_codec: time out\n");
               return ETIMEDOUT;
       }
#ifdef AUICH_DEBUG
       if (status & ICH_SCR)
               aprint_normal_dev(sc->sc_dev, "The 2nd codec is ready.\n");
       if (status & ICH_S2CR)
               aprint_normal_dev(sc->sc_dev, "The 3rd codec is ready.\n");
#endif
       return 0;
}

static enum ac97_host_flags
auich_flags_codec(void *v)
{
       struct auich_softc *sc = v;
       return sc->sc_codecflags;
}

static void
auich_spdif_event(void *addr, bool flag)
{
       struct auich_softc *sc;

       sc = addr;
       sc->sc_spdif = flag;
}

static int
auich_open(void *addr, int flags)
{
       struct auich_softc *sc;

       sc = (struct auich_softc *)addr;
       sc->codec_if->vtbl->lock(sc->codec_if);
       return 0;
}

static void
auich_close(void *addr)
{
       struct auich_softc *sc;

       sc = (struct auich_softc *)addr;
       sc->codec_if->vtbl->unlock(sc->codec_if);
}

static int
auich_query_format(void *v, struct audio_format_query *afp)
{
       struct auich_softc *sc;

       sc = (struct auich_softc *)v;
       if (sc->sc_spdif) {
               return audio_query_format(auich_spdif_formats,
                   AUICH_SPDIF_NFORMATS, afp);
       } else {
               return audio_query_format(sc->sc_audio_formats,
                   AUICH_AUDIO_NFORMATS, afp);
       }
}

static int
auich_set_rate(struct auich_softc *sc, int mode, u_long srate)
{
       int ret;
       u_int ratetmp;

       sc->codec_if->vtbl->set_clock(sc->codec_if, sc->sc_ac97_clock);
       ratetmp = srate;
       if (mode == AUMODE_RECORD)
               return sc->codec_if->vtbl->set_rate(sc->codec_if,
                   AC97_REG_PCM_LR_ADC_RATE, &ratetmp);
       ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
           AC97_REG_PCM_FRONT_DAC_RATE, &ratetmp);
       if (ret)
               return ret;
       ratetmp = srate;
       ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
           AC97_REG_PCM_SURR_DAC_RATE, &ratetmp);
       if (ret)
               return ret;
       ratetmp = srate;
       ret = sc->codec_if->vtbl->set_rate(sc->codec_if,
           AC97_REG_PCM_LFE_DAC_RATE, &ratetmp);
       return ret;
}

static int
auich_set_format(void *v, int setmode,
   const audio_params_t *play, const audio_params_t *rec,
   audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
       struct auich_softc *sc;
       const audio_params_t *p;
       int mode, index;
       uint32_t control;

       sc = v;
       for (mode = AUMODE_RECORD; mode != -1;
            mode = mode == AUMODE_RECORD ? AUMODE_PLAY : -1) {
               if ((setmode & mode) == 0)
                       continue;

               p = mode == AUMODE_PLAY ? play : rec;

               if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO) {
                       if (!sc->sc_spdif)
                               index = audio_indexof_format(
                                   sc->sc_audio_formats, AUICH_AUDIO_NFORMATS,
                                   mode, p);
                       else
                               index = audio_indexof_format(
                                   auich_spdif_formats, AUICH_SPDIF_NFORMATS,
                                   mode, p);
               } else {
                       index = audio_indexof_format(sc->sc_modem_formats,
                           AUICH_MODEM_NFORMATS, mode, p);
               }

               /* p represents HW encoding */
               if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO) {
                       if (sc->sc_audio_formats[index].frequency_type != 1
                           && auich_set_rate(sc, mode, p->sample_rate))
                               return EINVAL;
               } else {
                       if (sc->sc_modem_formats[index].frequency_type != 1
                           && auich_set_rate(sc, mode, p->sample_rate))
                               return EINVAL;
                       auich_write_codec(sc, AC97_REG_LINE1_RATE,
                                         p->sample_rate);
                       auich_write_codec(sc, AC97_REG_LINE1_LEVEL, 0);
               }
               if (mode == AUMODE_PLAY &&
                   sc->sc_codectype == AC97_CODEC_TYPE_AUDIO) {
                       control = bus_space_read_4(sc->iot, sc->aud_ioh,
                           ICH_GCTRL + sc->sc_modem_offset);
                       control &= ~sc->sc_pcm246_mask;
                       if (p->channels == 4) {
                               control |= sc->sc_pcm4;
                       } else if (p->channels == 6) {
                               control |= sc->sc_pcm6;
                       }
                       bus_space_write_4(sc->iot, sc->aud_ioh,
                           ICH_GCTRL + sc->sc_modem_offset, control);
               }
       }

       return 0;
}

static void
auich_halt_pipe(struct auich_softc *sc, int pipe)
{
       int i;
       uint32_t status;

       bus_space_write_1(sc->iot, sc->aud_ioh, pipe + ICH_CTRL, 0);
       for (i = 0; i < 100; i++) {
               status = bus_space_read_4(sc->iot, sc->aud_ioh, pipe + ICH_STS);
               if (status & ICH_DCH)
                       break;
               DELAY(1);
       }
       bus_space_write_1(sc->iot, sc->aud_ioh, pipe + ICH_CTRL, ICH_RR);

#if AUICH_DEBUG
       if (i > 0)
               aprint_normal_dev(sc->sc_dev, "%s: halt took %d cycles\n",
                   __func__, i);
#endif
}

static int
auich_halt_output(void *v)
{
       struct auich_softc *sc;

       sc = v;
       DPRINTF(ICH_DEBUG_DMA, (sc->sc_dev, "%s\n", __func__));

       auich_halt_pipe(sc, ICH_PCMO);
       sc->pcmo.intr = NULL;

       return 0;
}

static int
auich_halt_input(void *v)
{
       struct auich_softc *sc;

       sc = v;
       DPRINTF(ICH_DEBUG_DMA, (sc->sc_dev, "%s\n", __func__));

       auich_halt_pipe(sc, ICH_PCMI);
       sc->pcmi.intr = NULL;

       return 0;
}

static int
auich_getdev(void *v, struct audio_device *adp)
{
       struct auich_softc *sc;

       sc = v;
       *adp = sc->sc_audev;
       return 0;
}

static int
auich_set_port(void *v, mixer_ctrl_t *cp)
{
       struct auich_softc *sc;

       sc = v;
       return sc->codec_if->vtbl->mixer_set_port(sc->codec_if, cp);
}

static int
auich_get_port(void *v, mixer_ctrl_t *cp)
{
       struct auich_softc *sc;

       sc = v;
       return sc->codec_if->vtbl->mixer_get_port(sc->codec_if, cp);
}

static int
auich_query_devinfo(void *v, mixer_devinfo_t *dp)
{
       struct auich_softc *sc;

       sc = v;
       return sc->codec_if->vtbl->query_devinfo(sc->codec_if, dp);
}

static void *
auich_allocm(void *v, int direction, size_t size)
{
       struct auich_softc *sc;
       struct auich_dma *p;
       int error;

       if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
               return NULL;

       p = kmem_alloc(sizeof(*p), KM_SLEEP);

       sc = v;
       error = auich_allocmem(sc, size, 0, p);
       if (error) {
               kmem_free(p, sizeof(*p));
               return NULL;
       }

       p->next = sc->sc_dmas;
       sc->sc_dmas = p;

       return KERNADDR(p);
}

static void
auich_freem(void *v, void *ptr, size_t size)
{
       struct auich_softc *sc;
       struct auich_dma *p, **pp;

       sc = v;
       for (pp = &sc->sc_dmas; (p = *pp) != NULL; pp = &p->next) {
               if (KERNADDR(p) == ptr) {
                       auich_freemem(sc, p);
                       *pp = p->next;
                       kmem_free(p, sizeof(*p));
                       return;
               }
       }
}

static size_t
auich_round_buffersize(void *v, int direction, size_t size)
{

       if (size > (ICH_DMALIST_MAX * ICH_DMASEG_MAX))
               size = ICH_DMALIST_MAX * ICH_DMASEG_MAX;

       return size;
}

static int
auich_get_props(void *v)
{

       return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
           AUDIO_PROP_INDEPENDENT | AUDIO_PROP_FULLDUPLEX;
}

static int
auich_intr(void *v)
{
       struct auich_softc *sc;
       int ret, gsts;
#ifdef DIAGNOSTIC
       int csts;
#endif

       sc = v;

       if (!device_has_power(sc->sc_dev))
               return (0);

       mutex_spin_enter(&sc->sc_intr_lock);

       ret = 0;
#ifdef DIAGNOSTIC
       csts = pci_conf_read(sc->sc_pc, sc->sc_pt, PCI_COMMAND_STATUS_REG);
       if (csts & PCI_STATUS_MASTER_ABORT) {
               aprint_error_dev(sc->sc_dev, "%s: PCI master abort\n",
                   __func__);
       }
#endif

       gsts = bus_space_read_4(sc->iot, sc->aud_ioh,
           ICH_GSTS + sc->sc_modem_offset);
       DPRINTF(ICH_DEBUG_INTR, (sc->sc_dev, "%s: gsts=0x%x\n",
           __func__, gsts));

       if ((sc->sc_codectype == AC97_CODEC_TYPE_AUDIO && gsts & ICH_POINT) ||
           (sc->sc_codectype == AC97_CODEC_TYPE_MODEM && gsts & ICH_MOINT)) {
               int sts;

               sts = bus_space_read_2(sc->iot, sc->aud_ioh,
                   ICH_PCMO + sc->sc_sts_reg);
               DPRINTF(ICH_DEBUG_INTR,
                   (sc->sc_dev, "%s: osts=0x%x\n", __func__, sts));

               if (sts & ICH_FIFOE)
                       aprint_error_dev(sc->sc_dev, "%s: fifo underrun\n",
                           __func__);

               if (sts & ICH_BCIS)
                       auich_intr_pipe(sc, ICH_PCMO, &sc->pcmo);

               /* int ack */
               bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMO +
                   sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE));
               if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO)
                       bus_space_write_4(sc->iot, sc->aud_ioh,
                           ICH_GSTS + sc->sc_modem_offset, ICH_POINT);
               else
                       bus_space_write_4(sc->iot, sc->aud_ioh,
                           ICH_GSTS + sc->sc_modem_offset, ICH_MOINT);
               ret++;
       }

       if ((sc->sc_codectype == AC97_CODEC_TYPE_AUDIO && gsts & ICH_PIINT) ||
           (sc->sc_codectype == AC97_CODEC_TYPE_MODEM && gsts & ICH_MIINT)) {
               int sts;

               sts = bus_space_read_2(sc->iot, sc->aud_ioh,
                   ICH_PCMI + sc->sc_sts_reg);
               DPRINTF(ICH_DEBUG_INTR,
                   (sc->sc_dev, "%s: ists=0x%x\n", __func__, sts));

               if (sts & ICH_FIFOE)
                       aprint_error_dev(sc->sc_dev, "%s: fifo overrun\n",
                           __func__);

               if (sts & ICH_BCIS)
                       auich_intr_pipe(sc, ICH_PCMI, &sc->pcmi);

               /* int ack */
               bus_space_write_2(sc->iot, sc->aud_ioh, ICH_PCMI +
                   sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE));
               if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO)
                       bus_space_write_4(sc->iot, sc->aud_ioh,
                           ICH_GSTS + sc->sc_modem_offset, ICH_PIINT);
               else
                       bus_space_write_4(sc->iot, sc->aud_ioh,
                           ICH_GSTS + sc->sc_modem_offset, ICH_MIINT);
               ret++;
       }

       if (sc->sc_codectype == AC97_CODEC_TYPE_AUDIO && gsts & ICH_MINT) {
               int sts;

               sts = bus_space_read_2(sc->iot, sc->aud_ioh,
                   ICH_MICI + sc->sc_sts_reg);
               DPRINTF(ICH_DEBUG_INTR,
                   (sc->sc_dev, "%s: ists=0x%x\n", __func__, sts));

               if (sts & ICH_FIFOE)
                       aprint_error_dev(sc->sc_dev, "%s: fifo overrun\n",
                           __func__);

               if (sts & ICH_BCIS)
                       auich_intr_pipe(sc, ICH_MICI, &sc->mici);

               /* int ack */
               bus_space_write_2(sc->iot, sc->aud_ioh, ICH_MICI +
                   sc->sc_sts_reg, sts & (ICH_BCIS | ICH_FIFOE));
               bus_space_write_4(sc->iot, sc->aud_ioh,
                   ICH_GSTS + sc->sc_modem_offset, ICH_MINT);
               ret++;
       }

#ifdef AUICH_MODEM_DEBUG
       if (sc->sc_codectype == AC97_CODEC_TYPE_MODEM && gsts & ICH_GSCI) {
               aprint_normal_dev(sc->sc_dev, "gsts=0x%x\n", gsts);
               /* int ack */
               bus_space_write_4(sc->iot, sc->aud_ioh,
                   ICH_GSTS + sc->sc_modem_offset, ICH_GSCI);
               ret++;
       }
#endif

       mutex_spin_exit(&sc->sc_intr_lock);

       return ret;
}

static void
auich_trigger_pipe(struct auich_softc *sc, int pipe, struct auich_ring *ring)
{
       int blksize, qptr;
       struct auich_dmalist *q;

       blksize = ring->blksize;

       for (qptr = 0; qptr < ICH_DMALIST_MAX; qptr++) {
               q = &ring->dmalist[qptr];
               q->base = ring->p;
               q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC;

               ring->p += blksize;
               if (ring->p >= ring->end)
                       ring->p = ring->start;
       }
       ring->qptr = 0;

       bus_space_write_1(sc->iot, sc->aud_ioh, pipe + ICH_LVI,
           (qptr - 1) & ICH_LVI_MASK);
       bus_space_write_1(sc->iot, sc->aud_ioh, pipe + ICH_CTRL,
           ICH_IOCE | ICH_FEIE | ICH_RPBM);
}

static void
auich_intr_pipe(struct auich_softc *sc, int pipe, struct auich_ring *ring)
{
       int blksize, qptr, nqptr;
       struct auich_dmalist *q;

       blksize = ring->blksize;
       qptr = ring->qptr;
       nqptr = bus_space_read_1(sc->iot, sc->aud_ioh, pipe + ICH_CIV);

       while (qptr != nqptr) {
               q = &ring->dmalist[qptr];
               q->base = ring->p;
               q->len = (blksize >> sc->sc_sample_shift) | ICH_DMAF_IOC;

               DPRINTF(ICH_DEBUG_INTR,
                   (sc->sc_dev, "%s: %p, %p = %x @ 0x%x\n", __func__,
                   &ring->dmalist[qptr], q, q->len, q->base));

               ring->p += blksize;
               if (ring->p >= ring->end)
                       ring->p = ring->start;

               qptr = (qptr + 1) & ICH_LVI_MASK;
               if (ring->intr)
                       ring->intr(ring->arg);
       }
       ring->qptr = qptr;

       bus_space_write_1(sc->iot, sc->aud_ioh, pipe + ICH_LVI,
           (qptr - 1) & ICH_LVI_MASK);
}

static int
auich_trigger_output(void *v, void *start, void *end, int blksize,
   void (*intr)(void *), void *arg, const audio_params_t *param)
{
       struct auich_softc *sc;
       struct auich_dma *p;
       size_t size;

       sc = v;
       DPRINTF(ICH_DEBUG_DMA,
           (sc->sc_dev, "%s(%p, %p, %d, %p, %p, %p)\n", __func__,
           start, end, blksize, intr, arg, param));

       for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
               continue;
       if (!p) {
               aprint_error_dev(sc->sc_dev, "%s: bad addr %p\n", __func__,
                   start);
               return EINVAL;
       }

       size = (size_t)((char *)end - (char *)start);

       sc->pcmo.intr = intr;
       sc->pcmo.arg = arg;
       sc->pcmo.start = DMAADDR(p);
       sc->pcmo.p = sc->pcmo.start;
       sc->pcmo.end = sc->pcmo.start + size;
       sc->pcmo.blksize = blksize;

       bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMO + ICH_BDBAR,
           sc->sc_cddma + ICH_PCMO_OFF(0));
       auich_trigger_pipe(sc, ICH_PCMO, &sc->pcmo);

       return 0;
}

static int
auich_trigger_input(void *v, void *start, void *end, int blksize,
   void (*intr)(void *), void *arg, const audio_params_t *param)
{
       struct auich_softc *sc;
       struct auich_dma *p;
       size_t size;

       sc = v;
       DPRINTF(ICH_DEBUG_DMA,
           (sc->sc_dev, "%s(%p, %p, %d, %p, %p, %p)\n", __func__,
           start, end, blksize, intr, arg, param));

       for (p = sc->sc_dmas; p && KERNADDR(p) != start; p = p->next)
               continue;
       if (!p) {
               aprint_error_dev(sc->sc_dev, "%s: bad addr %p\n", __func__,
                   start);
               return EINVAL;
       }

       size = (size_t)((char *)end - (char *)start);

       sc->pcmi.intr = intr;
       sc->pcmi.arg = arg;
       sc->pcmi.start = DMAADDR(p);
       sc->pcmi.p = sc->pcmi.start;
       sc->pcmi.end = sc->pcmi.start + size;
       sc->pcmi.blksize = blksize;

       bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
           sc->sc_cddma + ICH_PCMI_OFF(0));
       auich_trigger_pipe(sc, ICH_PCMI, &sc->pcmi);

       return 0;
}

static int
auich_allocmem(struct auich_softc *sc, size_t size, size_t align,
   struct auich_dma *p)
{
       int error;

       p->size = size;
       error = bus_dmamem_alloc(sc->dmat, p->size, align, 0,
                                p->segs, sizeof(p->segs)/sizeof(p->segs[0]),
                                &p->nsegs, BUS_DMA_WAITOK);
       if (error)
               return error;

       error = bus_dmamem_map(sc->dmat, p->segs, p->nsegs, p->size,
                              &p->addr, BUS_DMA_WAITOK|sc->sc_dmamap_flags);
       if (error)
               goto free;

       error = bus_dmamap_create(sc->dmat, p->size, 1, p->size,
                                 0, BUS_DMA_WAITOK, &p->map);
       if (error)
               goto unmap;

       error = bus_dmamap_load(sc->dmat, p->map, p->addr, p->size, NULL,
                               BUS_DMA_WAITOK);
       if (error)
               goto destroy;
       return 0;

destroy:
       bus_dmamap_destroy(sc->dmat, p->map);
unmap:
       bus_dmamem_unmap(sc->dmat, p->addr, p->size);
free:
       bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
       return error;
}

static int
auich_freemem(struct auich_softc *sc, struct auich_dma *p)
{

       bus_dmamap_unload(sc->dmat, p->map);
       bus_dmamap_destroy(sc->dmat, p->map);
       bus_dmamem_unmap(sc->dmat, p->addr, p->size);
       bus_dmamem_free(sc->dmat, p->segs, p->nsegs);
       return 0;
}

static int
auich_alloc_cdata(struct auich_softc *sc)
{
       bus_dma_segment_t seg;
       int error, rseg;

       /*
        * Allocate the control data structure, and create and load the
        * DMA map for it.
        */
       if ((error = bus_dmamem_alloc(sc->dmat,
                                     sizeof(struct auich_cdata),
                                     PAGE_SIZE, 0, &seg, 1, &rseg, 0)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to allocate control data, error = %d\n", error);
               goto fail_0;
       }

       if ((error = bus_dmamem_map(sc->dmat, &seg, rseg,
                                   sizeof(struct auich_cdata),
                                   (void **) &sc->sc_cdata,
                                   sc->sc_dmamap_flags)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to map control data, error = %d\n", error);
               goto fail_1;
       }

       if ((error = bus_dmamap_create(sc->dmat, sizeof(struct auich_cdata), 1,
                                      sizeof(struct auich_cdata), 0, 0,
                                      &sc->sc_cddmamap)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to create control data DMA map, "
                   "error = %d\n", error);
               goto fail_2;
       }

       if ((error = bus_dmamap_load(sc->dmat, sc->sc_cddmamap,
                                    sc->sc_cdata, sizeof(struct auich_cdata),
                                    NULL, 0)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable tp load control data DMA map, "
                   "error = %d\n", error);
               goto fail_3;
       }

       sc->pcmo.dmalist = sc->sc_cdata->ic_dmalist_pcmo;
       sc->pcmi.dmalist = sc->sc_cdata->ic_dmalist_pcmi;
       sc->mici.dmalist = sc->sc_cdata->ic_dmalist_mici;

       return 0;

fail_3:
       bus_dmamap_destroy(sc->dmat, sc->sc_cddmamap);
fail_2:
       bus_dmamem_unmap(sc->dmat, (void *) sc->sc_cdata,
           sizeof(struct auich_cdata));
fail_1:
       bus_dmamem_free(sc->dmat, &seg, rseg);
fail_0:
       return error;
}

static bool
auich_resume(device_t dv, const pmf_qual_t *qual)
{
       struct auich_softc *sc = device_private(dv);
       pcireg_t v;

       mutex_enter(&sc->sc_lock);
       mutex_spin_enter(&sc->sc_intr_lock);

       if (sc->sc_iose) {
               v = pci_conf_read(sc->sc_pc, sc->sc_pt, ICH_CFG);
               pci_conf_write(sc->sc_pc, sc->sc_pt, ICH_CFG,
                              v | ICH_CFG_IOSE);
       }

       auich_reset_codec(sc);
       mutex_spin_exit(&sc->sc_intr_lock);
       DELAY(1000);
       (sc->codec_if->vtbl->restore_ports)(sc->codec_if);
       mutex_exit(&sc->sc_lock);

       return true;
}

/*
* Calibrate card (some boards are overclocked and need scaling)
*/
static void
auich_calibrate(struct auich_softc *sc)
{
       struct timeval t1, t2;
       uint8_t ociv, nciv;
       uint64_t wait_us;
       uint32_t actual_48k_rate, bytes, ac97rate;
       void *temp_buffer;
       struct auich_dma *p;
       u_int rate;

       /*
        * Grab audio from input for fixed interval and compare how
        * much we actually get with what we expect.  Interval needs
        * to be sufficiently short that no interrupts are
        * generated.
        */

       /* Force the codec to a known state first. */
       sc->codec_if->vtbl->set_clock(sc->codec_if, 48000);
       rate = sc->sc_ac97_clock = 48000;
       sc->codec_if->vtbl->set_rate(sc->codec_if, AC97_REG_PCM_LR_ADC_RATE,
           &rate);

       /* Setup a buffer */
       bytes = 64000;
       temp_buffer = auich_allocm(sc, AUMODE_RECORD, bytes);

       for (p = sc->sc_dmas; p && KERNADDR(p) != temp_buffer; p = p->next)
               continue;
       if (p == NULL) {
               aprint_error_dev(sc->sc_dev, "%s: bad address %p\n",
                   __func__, temp_buffer);
               return;
       }
       sc->pcmi.dmalist[0].base = DMAADDR(p);
       sc->pcmi.dmalist[0].len = (bytes >> sc->sc_sample_shift);

       /*
        * our data format is stereo, 16 bit so each sample is 4 bytes.
        * assuming we get 48000 samples per second, we get 192000 bytes/sec.
        * we're going to start recording with interrupts disabled and measure
        * the time taken for one block to complete.  we know the block size,
        * we know the time in microseconds, we calculate the sample rate:
        *
        * actual_rate [bps] = bytes / (time [s] * 4)
        * actual_rate [bps] = (bytes * 1000000) / (time [us] * 4)
        * actual_rate [Hz] = (bytes * 250000) / time [us]
        */

       /* prepare */
       ociv = bus_space_read_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CIV);
       bus_space_write_4(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_BDBAR,
                         sc->sc_cddma + ICH_PCMI_OFF(0));
       bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_LVI,
                         (0 - 1) & ICH_LVI_MASK);

       /* start */
       kpreempt_disable();
       microtime(&t1);
       bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RPBM);

       /* wait */
       nciv = ociv;
       do {
               microtime(&t2);
               if (t2.tv_sec - t1.tv_sec > 1)
                       break;
               nciv = bus_space_read_1(sc->iot, sc->aud_ioh,
                                       ICH_PCMI + ICH_CIV);
       } while (nciv == ociv);
       microtime(&t2);

       /* stop */
       bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, 0);
       kpreempt_enable();

       /* reset */
       DELAY(100);
       bus_space_write_1(sc->iot, sc->aud_ioh, ICH_PCMI + ICH_CTRL, ICH_RR);

       /* turn time delta into us */
       wait_us = ((t2.tv_sec - t1.tv_sec) * 1000000) + t2.tv_usec - t1.tv_usec;

       auich_freem(sc, temp_buffer, bytes);

       if (nciv == ociv) {
               aprint_error_dev(sc->sc_dev, "ac97 link rate calibration "
                   "timed out after %" PRIu64 " us\n", wait_us);
               return;
       }

       if (wait_us == 0) {
               /* Can happen with emulated hardware */
               aprint_error_dev(sc->sc_dev, "abnormal zero delay during "
                   "calibration\n");
               return;
       }

       rnd_add_data(NULL, &wait_us, sizeof(wait_us), 1);

       actual_48k_rate = (bytes * UINT64_C(250000)) / wait_us;

       if (actual_48k_rate < 50000)
               ac97rate = 48000;
       else
               ac97rate = ((actual_48k_rate + 500) / 1000) * 1000;

       aprint_verbose_dev(sc->sc_dev, "measured ac97 link rate at %d Hz",
              actual_48k_rate);
       if (ac97rate != actual_48k_rate)
               aprint_verbose(", will use %d Hz", ac97rate);
       aprint_verbose("\n");

       sc->sc_ac97_clock = ac97rate;
}

static void
auich_clear_cas(struct auich_softc *sc)
{
       /* Clear the codec access semaphore */
       (void)bus_space_read_2(sc->iot, sc->mix_ioh,
           AC97_REG_RESET * (sc->sc_codecnum * ICH_CODEC_OFFSET));

       return;
}

static void
auich_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
       struct auich_softc *sc;

       sc = addr;
       *intr = &sc->sc_intr_lock;
       *thread = &sc->sc_lock;
}