/*      $NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $        */

/*-
* Copyright (c) 2010 Department of Software Engineering,
*                    University of Szeged, Hungary
* Copyright (c) 2010 Adam Hoka <[email protected]>
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by the Department of Software Engineering, University of Szeged, Hungary
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/* Common driver for NAND chips implementing the ONFI 2.2 specification */

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $");

#include "locators.h"

#include <sys/param.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/atomic.h>

#include <dev/flash/flash.h>
#include <dev/flash/flash_io.h>
#include <dev/nand/nand.h>
#include <dev/nand/onfi.h>
#include <dev/nand/hamming.h>
#include <dev/nand/nand_bbt.h>
#include <dev/nand/nand_crc.h>

#include "opt_nand.h"

int nand_match(device_t, cfdata_t, void *);
void nand_attach(device_t, device_t, void *);
int nand_detach(device_t, int);
bool nand_shutdown(device_t, int);

int nand_print(void *, const char *);

static int nand_search(device_t, cfdata_t, const int *, void *);
static void nand_address_row(device_t, size_t);
static inline uint8_t nand_get_status(device_t);
static void nand_address_column(device_t, size_t, size_t);
static int nand_fill_chip_structure(device_t, struct nand_chip *);
static int nand_scan_media(device_t, struct nand_chip *);
static bool nand_check_wp(device_t);

CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
   nand_match, nand_attach, nand_detach, NULL);

#ifdef NAND_DEBUG
int     nanddebug = NAND_DEBUG;
#endif

struct flash_interface nand_flash_if = {
       .type = FLASH_TYPE_NAND,

       .read = nand_flash_read,
       .write = nand_flash_write,
       .erase = nand_flash_erase,
       .block_isbad = nand_flash_isbad,
       .block_markbad = nand_flash_markbad,

       .submit = nand_flash_submit
};

const struct nand_manufacturer nand_mfrs[] = {
       { NAND_MFR_AMD,         "AMD" },
       { NAND_MFR_FUJITSU,     "Fujitsu" },
       { NAND_MFR_RENESAS,     "Renesas" },
       { NAND_MFR_STMICRO,     "ST Micro" },
       { NAND_MFR_MICRON,      "Micron" },
       { NAND_MFR_NATIONAL,    "National" },
       { NAND_MFR_TOSHIBA,     "Toshiba" },
       { NAND_MFR_HYNIX,       "Hynix" },
       { NAND_MFR_SAMSUNG,     "Samsung" },
       { NAND_MFR_UNKNOWN,     "Unknown" }
};

static const char *
nand_midtoname(int id)
{
       int i;

       for (i = 0; nand_mfrs[i].id != 0; i++) {
               if (nand_mfrs[i].id == id)
                       return nand_mfrs[i].name;
       }

       KASSERT(nand_mfrs[i].id == 0);

       return nand_mfrs[i].name;
}

/* ARGSUSED */
int
nand_match(device_t parent, cfdata_t match, void *aux)
{
       /* pseudo device, always attaches */
       return 1;
}

void
nand_attach(device_t parent, device_t self, void *aux)
{
       struct nand_softc *sc = device_private(self);
       struct nand_attach_args *naa = aux;
       struct nand_chip *chip = &sc->sc_chip;

       sc->sc_dev = self;
       sc->controller_dev = parent;
       sc->nand_if = naa->naa_nand_if;

       aprint_naive("\n");

       if (nand_check_wp(self)) {
               aprint_error("NAND chip is write protected!\n");
               return;
       }

       if (nand_scan_media(self, chip)) {
               return;
       }

       nand_flash_if.erasesize = chip->nc_block_size;
       nand_flash_if.page_size = chip->nc_page_size;
       nand_flash_if.writesize = chip->nc_page_size;

       /* allocate cache */
       chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
       chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);

       mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);

       if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
               goto error;
       }

       if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
               aprint_error_dev(sc->sc_dev,
                   "couldn't establish power handler\n");

#ifdef NAND_BBT
       nand_bbt_init(self);
       nand_bbt_scan(self);
#endif

       /*
        * Attach all our devices
        */
       config_search(self, NULL,
           CFARGS(.search = nand_search));

       return;
error:
       kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
       kmem_free(chip->nc_page_cache, chip->nc_page_size);
       mutex_destroy(&sc->sc_device_lock);
}

static int
nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
       struct nand_softc *sc = device_private(parent);
       struct nand_chip *chip = &sc->sc_chip;
       struct flash_attach_args faa;

       if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0)
               return 0;

       faa.flash_if = &nand_flash_if;

       faa.partinfo.part_name = NULL;
       faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];

       if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
               faa.partinfo.part_size = chip->nc_size -
                   faa.partinfo.part_offset;
       } else {
               faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
       }

       if (cf->cf_loc[FLASHBUSCF_READONLY])
               faa.partinfo.part_flags = FLASH_PART_READONLY;
       else
               faa.partinfo.part_flags = 0;

       if (config_probe(parent, cf, &faa)) {
               if (config_attach(parent, cf, &faa, nand_print,
                                 CFARGS_NONE) != NULL) {
                       return 0;
               } else {
                       return 1;
               }
       }

       return 1;
}

void
nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline)
{
       struct nand_softc *sc = device_private(parent);
       struct nand_chip *chip = &sc->sc_chip;

       flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size,
           mtd_id, cmdline);
}

int
nand_detach(device_t self, int flags)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       int error = 0;

       error = config_detach_children(self, flags);
       if (error) {
               return error;
       }

       flash_sync_thread_destroy(&sc->sc_flash_io);
#ifdef NAND_BBT
       nand_bbt_detach(self);
#endif
       /* free oob cache */
       kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
       kmem_free(chip->nc_page_cache, chip->nc_page_size);
       kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);

       mutex_destroy(&sc->sc_device_lock);

       pmf_device_deregister(sc->sc_dev);

       return error;
}

int
nand_print(void *aux, const char *pnp)
{
       if (pnp != NULL)
               aprint_normal("nand at %s\n", pnp);

       return UNCONF;
}

/* ask for a nand driver to attach to the controller */
device_t
nand_attach_mi(struct nand_interface *nand_if, device_t parent)
{
       struct nand_attach_args arg;

       KASSERT(nand_if != NULL);

       /* fill the defaults if we have null pointers */
       if (nand_if->program_page == NULL) {
               nand_if->program_page = &nand_default_program_page;
       }

       if (nand_if->read_page == NULL) {
               nand_if->read_page = &nand_default_read_page;
       }

       arg.naa_nand_if = nand_if;
       return config_found(parent, &arg, nand_print,
           CFARGS(.iattr = "nandbus"));
}

/* default everything to reasonable values, to ease future api changes */
void
nand_init_interface(struct nand_interface *interface)
{
       interface->select = &nand_default_select;
       interface->command = NULL;
       interface->address = NULL;
       interface->read_buf_1 = NULL;
       interface->read_buf_2 = NULL;
       interface->read_1 = NULL;
       interface->read_2 = NULL;
       interface->write_buf_1 = NULL;
       interface->write_buf_2 = NULL;
       interface->write_1 = NULL;
       interface->write_2 = NULL;
       interface->busy = NULL;

       /*-
        * most drivers dont want to change this, but some implement
        * read/program in one step
        */
       interface->program_page = &nand_default_program_page;
       interface->read_page = &nand_default_read_page;

       /* default to soft ecc, that should work everywhere */
       interface->ecc_compute = &nand_default_ecc_compute;
       interface->ecc_correct = &nand_default_ecc_correct;
       interface->ecc_prepare = NULL;
       interface->ecc.necc_code_size = 3;
       interface->ecc.necc_block_size = 256;
       interface->ecc.necc_type = NAND_ECC_TYPE_SW;
}

#if 0
/* handle quirks here */
static void
nand_quirks(device_t self, struct nand_chip *chip)
{
       /* this is an example only! */
       switch (chip->nc_manf_id) {
       case NAND_MFR_SAMSUNG:
               if (chip->nc_dev_id == 0x00) {
                       /* do something only samsung chips need */
                       /* or */
                       /* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
               }
       }

       return;
}
#endif

static int
nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
{
       switch (chip->nc_manf_id) {
       case NAND_MFR_MICRON:
               return nand_read_parameters_micron(self, chip);
       case NAND_MFR_SAMSUNG:
               return nand_read_parameters_samsung(self, chip);
       case NAND_MFR_TOSHIBA:
               return nand_read_parameters_toshiba(self, chip);
       default:
               return 1;
       }

       return 0;
}

/**
* scan media to determine the chip's properties
* this function resets the device
*/
static int
nand_scan_media(device_t self, struct nand_chip *chip)
{
       struct nand_softc *sc = device_private(self);
       struct nand_ecc *ecc;
       uint8_t onfi_signature[4];

       nand_select(self, true);
       nand_command(self, ONFI_RESET);
       KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
       nand_select(self, false);

       /* check if the device implements the ONFI standard */
       nand_select(self, true);
       nand_command(self, ONFI_READ_ID);
       nand_address(self, 0x20);
       nand_read_1(self, &onfi_signature[0]);
       nand_read_1(self, &onfi_signature[1]);
       nand_read_1(self, &onfi_signature[2]);
       nand_read_1(self, &onfi_signature[3]);
       nand_select(self, false);

#ifdef NAND_DEBUG
       device_printf(self, "signature: %02x %02x %02x %02x\n",
           onfi_signature[0], onfi_signature[1],
           onfi_signature[2], onfi_signature[3]);
#endif

       if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
           onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
               chip->nc_isonfi = false;

               aprint_normal(": Legacy NAND Flash\n");

               nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);

               if (nand_fill_chip_structure_legacy(self, chip)) {
                       aprint_error_dev(self,
                           "can't read device parameters for legacy chip\n");
                       return 1;
               }
       } else {
               chip->nc_isonfi = true;

               aprint_normal(": ONFI NAND Flash\n");

               nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);

               if (nand_fill_chip_structure(self, chip)) {
                       aprint_error_dev(self,
                           "can't read device parameters\n");
                       return 1;
               }
       }

       aprint_normal_dev(self,
           "manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
           chip->nc_manf_id,
           nand_midtoname(chip->nc_manf_id),
           chip->nc_dev_id);

       aprint_normal_dev(self,
           "page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
           "block size: %" PRIu32 " bytes\n",
           chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);

       aprint_normal_dev(self,
           "LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
           ", total storage size: %" PRIu64 " MB\n",
           chip->nc_lun_blocks, chip->nc_num_luns,
           chip->nc_size / 1024 / 1024);

       aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
           PRIu8 ", width: %s\n",
           chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
           (chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");

       ecc = chip->nc_ecc = &sc->nand_if->ecc;

       /*
        * calculate the place of ecc data in oob
        * we try to be compatible with Linux here
        */
       switch (chip->nc_spare_size) {
       case 8:
               ecc->necc_offset = 0;
               break;
       case 16:
               ecc->necc_offset = 0;
               break;
       case 32:
               ecc->necc_offset = 0;
               break;
       case 64:
               ecc->necc_offset = 40;
               break;
       case 128:
               ecc->necc_offset = 80;
               break;
       default:
               panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
       }

       ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
       ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;

       /* check if we fit in oob */
       if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
               panic("NAND ECC bits dont fit in OOB");
       }

       /* TODO: mark free oob area available for file systems */

       chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);

       /*
        * calculate badblock marker offset in oob
        * we try to be compatible with linux here
        */
       if (chip->nc_page_size > 512)
               chip->nc_badmarker_offs = 0;
       else
               chip->nc_badmarker_offs = 5;

       /* Calculate page shift and mask */
       chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
       chip->nc_page_mask = ~(chip->nc_page_size - 1);
       /* same for block */
       chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
       chip->nc_block_mask = ~(chip->nc_block_size - 1);

       /* look for quirks here if needed in future */
       /* nand_quirks(self, chip); */

       return 0;
}

void
nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
{
       nand_select(self, true);
       nand_command(self, ONFI_READ_ID);
       nand_address(self, 0x00);

       nand_read_1(self, manf);
       nand_read_1(self, dev);

       nand_select(self, false);
}

int
nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
{
       uint8_t *bufp;
       uint16_t crc;
       int i;//, tries = 0;

       KASSERT(sizeof(*params) == 256);

//read_params:
//      tries++;

       nand_select(self, true);
       nand_command(self, ONFI_READ_PARAMETER_PAGE);
       nand_address(self, 0x00);

       nand_busy(self);

       /* TODO check the signature if it contains at least 2 letters */

       bufp = (uint8_t *)params;
       /* XXX why i am not using read_buf? */
       for (i = 0; i < 256; i++) {
               nand_read_1(self, &bufp[i]);
       }
       nand_select(self, false);

       /* validate the parameter page with the crc */
       crc = nand_crc16(bufp, 254);

       if (crc != params->param_integrity_crc) {
               aprint_error_dev(self, "parameter page crc check failed\n");
               /* TODO: we should read the next parameter page copy */
               return 1;
       }

       return 0;
}

static int
nand_fill_chip_structure(device_t self, struct nand_chip *chip)
{
       struct onfi_parameter_page params;
       uint8_t vendor[13], model[21];
       int i;

       if (nand_read_parameter_page(self, &params)) {
               return 1;
       }

       /* strip manufacturer and model string */
       strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
       for (i = 11; i > 0 && vendor[i] == ' '; i--)
               vendor[i] = 0;
       strlcpy(model, params.param_model, sizeof(model));
       for (i = 19; i > 0 && model[i] == ' '; i--)
               model[i] = 0;

       aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);

       chip->nc_page_size = le32toh(params.param_pagesize);
       chip->nc_block_size =
           le32toh(params.param_blocksize) * chip->nc_page_size;
       chip->nc_spare_size = le16toh(params.param_sparesize);
       chip->nc_lun_blocks = le32toh(params.param_lunsize);
       chip->nc_num_luns = params.param_numluns;

       chip->nc_size =
           chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;

       /* the lower 4 bits contain the row address cycles */
       chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
       /* the upper 4 bits contain the column address cycles */
       chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;

       uint16_t features = le16toh(params.param_features);
       if (features & ONFI_FEATURE_16BIT) {
               chip->nc_flags |= NC_BUSWIDTH_16;
       }

       if (features & ONFI_FEATURE_EXTENDED_PARAM) {
               chip->nc_flags |= NC_EXTENDED_PARAM;
       }

       return 0;
}

/* ARGSUSED */
bool
nand_shutdown(device_t self, int howto)
{
       return true;
}

static void
nand_address_column(device_t self, size_t row, size_t column)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       uint8_t i;

       DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
               (uintmax_t )row, column));

       /* XXX TODO */
       row >>= chip->nc_page_shift;

       /* Write the column (subpage) address */
       if (chip->nc_flags & NC_BUSWIDTH_16)
               column >>= 1;
       for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
               nand_address(self, column & 0xff);

       /* Write the row (page) address */
       for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
               nand_address(self, row & 0xff);
}

static void
nand_address_row(device_t self, size_t row)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       int i;

       /* XXX TODO */
       row >>= chip->nc_page_shift;

       /* Write the row (page) address */
       for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
               nand_address(self, row & 0xff);
}

static inline uint8_t
nand_get_status(device_t self)
{
       uint8_t status;

       nand_command(self, ONFI_READ_STATUS);
       nand_busy(self);
       nand_read_1(self, &status);

       return status;
}

static bool
nand_check_wp(device_t self)
{
       if (nand_get_status(self) & ONFI_STATUS_WP)
               return false;
       else
               return true;
}

static void
nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
{
       nand_command(self, ONFI_READ);
       nand_address_column(self, row, column);
       nand_command(self, ONFI_READ_START);

       nand_busy(self);
}

/* read a page with ecc correction, default implementation */
int
nand_default_read_page(device_t self, size_t offset, uint8_t *data)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       size_t b, bs, e, cs;
       uint8_t *ecc;
       int result;

       nand_prepare_read(self, offset, 0);

       bs = chip->nc_ecc->necc_block_size;
       cs = chip->nc_ecc->necc_code_size;

       /* decide if we access by 8 or 16 bits */
       if (chip->nc_flags & NC_BUSWIDTH_16) {
               for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
                       nand_ecc_prepare(self, NAND_ECC_READ);
                       nand_read_buf_2(self, data + b, bs);
                       nand_ecc_compute(self, data + b,
                           chip->nc_ecc_cache + e);
               }
       } else {
               for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
                       nand_ecc_prepare(self, NAND_ECC_READ);
                       nand_read_buf_1(self, data + b, bs);
                       nand_ecc_compute(self, data + b,
                           chip->nc_ecc_cache + e);
               }
       }

       /* for debugging new drivers */
#if 0
       nand_dump_data("page", data, chip->nc_page_size);
#endif

       nand_read_oob(self, offset, chip->nc_oob_cache);
       ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;

       /* useful for debugging new ecc drivers */
#if 0
       printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
       for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
               printf("0x");
               for (b = 0; b < cs; b++) {
                       printf("%.2hhx", ecc[e+b]);
               }
               printf(" 0x");
               for (b = 0; b < cs; b++) {
                       printf("%.2hhx", chip->nc_ecc_cache[e+b]);
               }
               printf("\n");
       }
       printf("--------------\n");
#endif

       for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
               result = nand_ecc_correct(self, data + b, ecc + e,
                   chip->nc_ecc_cache + e);

               switch (result) {
               case NAND_ECC_OK:
                       break;
               case NAND_ECC_CORRECTED:
                       aprint_error_dev(self,
                           "data corrected with ECC at page offset 0x%jx "
                           "block %zu\n", (uintmax_t)offset, b);
                       break;
               case NAND_ECC_TWOBIT:
                       aprint_error_dev(self,
                           "uncorrectable ECC error at page offset 0x%jx "
                           "block %zu\n", (uintmax_t)offset, b);
                       return EIO;
                       break;
               case NAND_ECC_INVALID:
                       aprint_error_dev(self,
                           "invalid ECC in oob at page offset 0x%jx "
                           "block %zu\n", (uintmax_t)offset, b);
                       return EIO;
                       break;
               default:
                       panic("invalid ECC correction errno");
               }
       }

       return 0;
}

int
nand_default_program_page(device_t self, size_t page, const uint8_t *data)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       size_t bs, cs, e, b;
       uint8_t status;
       uint8_t *ecc;

       nand_command(self, ONFI_PAGE_PROGRAM);
       nand_address_column(self, page, 0);

       nand_busy(self);

       bs = chip->nc_ecc->necc_block_size;
       cs = chip->nc_ecc->necc_code_size;
       ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;

       /* XXX code duplication */
       /* decide if we access by 8 or 16 bits */
       if (chip->nc_flags & NC_BUSWIDTH_16) {
               for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
                       nand_ecc_prepare(self, NAND_ECC_WRITE);
                       nand_write_buf_2(self, data + b, bs);
                       nand_ecc_compute(self, data + b, ecc + e);
               }
               /* write oob with ecc correction code */
               nand_write_buf_2(self, chip->nc_oob_cache,
                   chip->nc_spare_size);
       } else {
               for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
                       nand_ecc_prepare(self, NAND_ECC_WRITE);
                       nand_write_buf_1(self, data + b, bs);
                       nand_ecc_compute(self, data + b, ecc + e);
               }
               /* write oob with ecc correction code */
               nand_write_buf_1(self, chip->nc_oob_cache,
                   chip->nc_spare_size);
       }

       nand_command(self, ONFI_PAGE_PROGRAM_START);

       nand_busy(self);

       /* for debugging ecc */
#if 0
       printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
       for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
               printf("0x");
               for (b = 0; b < cs; b++) {
                       printf("%.2hhx", ecc[e+b]);
               }
               printf("\n");
       }
       printf("--------------\n");
#endif

       status = nand_get_status(self);
       KASSERT(status & ONFI_STATUS_RDY);
       if (status & ONFI_STATUS_FAIL) {
               aprint_error_dev(self, "page program failed!\n");
               return EIO;
       }

       return 0;
}

/* read the OOB of a page */
int
nand_read_oob(device_t self, size_t page, uint8_t *oob)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;

       nand_prepare_read(self, page, chip->nc_page_size);

       if (chip->nc_flags & NC_BUSWIDTH_16)
               nand_read_buf_2(self, oob, chip->nc_spare_size);
       else
               nand_read_buf_1(self, oob, chip->nc_spare_size);

       /* for debugging drivers */
#if 0
       nand_dump_data("oob", oob, chip->nc_spare_size);
#endif

       return 0;
}

static int
nand_write_oob(device_t self, size_t offset, const void *oob)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       uint8_t status;

       nand_command(self, ONFI_PAGE_PROGRAM);
       nand_address_column(self, offset, chip->nc_page_size);
       nand_command(self, ONFI_PAGE_PROGRAM_START);

       nand_busy(self);

       if (chip->nc_flags & NC_BUSWIDTH_16)
               nand_write_buf_2(self, oob, chip->nc_spare_size);
       else
               nand_write_buf_1(self, oob, chip->nc_spare_size);

       status = nand_get_status(self);
       KASSERT(status & ONFI_STATUS_RDY);
       if (status & ONFI_STATUS_FAIL)
               return EIO;
       else
               return 0;
}

void
nand_markbad(device_t self, size_t offset)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       flash_off_t blockoffset;
#ifdef NAND_BBT
       flash_off_t block;

       block = offset / chip->nc_block_size;

       nand_bbt_block_markbad(self, block);
#endif
       blockoffset = offset & chip->nc_block_mask;

       /* check if it is already marked bad */
       if (nand_isbad(self, blockoffset))
               return;

       nand_read_oob(self, blockoffset, chip->nc_oob_cache);

       chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
       chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;

       nand_write_oob(self, blockoffset, chip->nc_oob_cache);
}

bool
nand_isfactorybad(device_t self, flash_off_t offset)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       flash_off_t block, first_page, last_page, page;
       int i;

       /* Check for factory bad blocks first
        * Factory bad blocks are marked in the first or last
        * page of the blocks, see: ONFI 2.2, 3.2.2.
        */
       block = offset / chip->nc_block_size;
       first_page = block * chip->nc_block_size;
       last_page = (block + 1) * chip->nc_block_size
           - chip->nc_page_size;

       for (i = 0, page = first_page; i < 2; i++, page = last_page) {
               /* address OOB */
               nand_prepare_read(self, page, chip->nc_page_size);

               if (chip->nc_flags & NC_BUSWIDTH_16) {
                       uint16_t word;
                       nand_read_2(self, &word);
                       if (word == 0x0000)
                               return true;
               } else {
                       uint8_t byte;
                       nand_read_1(self, &byte);
                       if (byte == 0x00)
                               return true;
               }
       }

       return false;
}

bool
nand_iswornoutbad(device_t self, flash_off_t offset)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       flash_off_t block;

       /* we inspect the first page of the block */
       block = offset & chip->nc_block_mask;

       /* Linux/u-boot compatible badblock handling */
       if (chip->nc_flags & NC_BUSWIDTH_16) {
               uint16_t word, mark;

               nand_prepare_read(self, block,
                   chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));

               nand_read_2(self, &word);
               mark = htole16(word);
               if (chip->nc_badmarker_offs & 0x01)
                       mark >>= 8;
               if ((mark & 0xff) != 0xff)
                       return true;
       } else {
               uint8_t byte;

               nand_prepare_read(self, block,
                   chip->nc_page_size + chip->nc_badmarker_offs);

               nand_read_1(self, &byte);
               if (byte != 0xff)
                       return true;
       }

       return false;
}

bool
nand_isbad(device_t self, flash_off_t offset)
{
#ifdef NAND_BBT
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       flash_off_t block;

       block = offset / chip->nc_block_size;

       return nand_bbt_block_isbad(self, block);
#else
       /* ONFI host requirement */
       if (nand_isfactorybad(self, offset))
               return true;

       /* Look for Linux/U-Boot compatible bad marker */
       if (nand_iswornoutbad(self, offset))
               return true;

       return false;
#endif
}

int
nand_erase_block(device_t self, size_t offset)
{
       uint8_t status;

       /* xxx calculate first page of block for address? */

       nand_command(self, ONFI_BLOCK_ERASE);
       nand_address_row(self, offset);
       nand_command(self, ONFI_BLOCK_ERASE_START);

       nand_busy(self);

       status = nand_get_status(self);
       KASSERT(status & ONFI_STATUS_RDY);
       if (status & ONFI_STATUS_FAIL) {
               aprint_error_dev(self, "block erase failed!\n");
               nand_markbad(self, offset);
               return EIO;
       } else {
               return 0;
       }
}

/* default functions for driver development */

/* default ECC using hamming code of 256 byte chunks */
int
nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
{
       hamming_compute_256(data, code);

       return 0;
}

int
nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
       const uint8_t *compcode)
{
       return hamming_correct_256(data, origcode, compcode);
}

void
nand_default_select(device_t self, bool enable)
{
       /* do nothing */
       return;
}

/* implementation of the block device API */

int
nand_flash_submit(device_t self, struct buf * const bp)
{
       struct nand_softc *sc = device_private(self);

       return flash_io_submit(&sc->sc_flash_io, bp);
}

/*
* handle (page) unaligned write to nand
*/
static int
nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
   size_t *retlen, const uint8_t *buf)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       flash_off_t first, last, firstoff;
       const uint8_t *bufp;
       flash_off_t addr;
       size_t left, count;
       int error = 0, i;

       first = offset & chip->nc_page_mask;
       firstoff = offset & ~chip->nc_page_mask;
       /* XXX check if this should be len - 1 */
       last = (offset + len) & chip->nc_page_mask;
       count = last - first + 1;

       addr = first;
       *retlen = 0;

       mutex_enter(&sc->sc_device_lock);
       if (count == 1) {
               if (nand_isbad(self, addr)) {
                       aprint_error_dev(self,
                           "nand_flash_write_unaligned: "
                           "bad block encountered\n");
                       error = EIO;
                       goto out;
               }

               error = nand_read_page(self, addr, chip->nc_page_cache);
               if (error) {
                       goto out;
               }

               memcpy(chip->nc_page_cache + firstoff, buf, len);

               error = nand_program_page(self, addr, chip->nc_page_cache);
               if (error) {
                       goto out;
               }

               *retlen = len;
               goto out;
       }

       bufp = buf;
       left = len;

       for (i = 0; i < count && left != 0; i++) {
               if (nand_isbad(self, addr)) {
                       aprint_error_dev(self,
                           "nand_flash_write_unaligned: "
                           "bad block encountered\n");
                       error = EIO;
                       goto out;
               }

               if (i == 0) {
                       error = nand_read_page(self,
                           addr, chip->nc_page_cache);
                       if (error) {
                               goto out;
                       }

                       memcpy(chip->nc_page_cache + firstoff,
                           bufp, chip->nc_page_size - firstoff);

                       printf("program page: %s: %d\n", __FILE__, __LINE__);
                       error = nand_program_page(self,
                           addr, chip->nc_page_cache);
                       if (error) {
                               goto out;
                       }

                       bufp += chip->nc_page_size - firstoff;
                       left -= chip->nc_page_size - firstoff;
                       *retlen += chip->nc_page_size - firstoff;

               } else if (i == count - 1) {
                       error = nand_read_page(self,
                           addr, chip->nc_page_cache);
                       if (error) {
                               goto out;
                       }

                       memcpy(chip->nc_page_cache, bufp, left);

                       error = nand_program_page(self,
                           addr, chip->nc_page_cache);
                       if (error) {
                               goto out;
                       }

                       *retlen += left;
                       KASSERT(left < chip->nc_page_size);

               } else {
                       /* XXX debug */
                       if (left > chip->nc_page_size) {
                               printf("left: %zu, i: %d, count: %zu\n",
                                   left, i, count);
                       }
                       KASSERT(left > chip->nc_page_size);

                       error = nand_program_page(self, addr, bufp);
                       if (error) {
                               goto out;
                       }

                       bufp += chip->nc_page_size;
                       left -= chip->nc_page_size;
                       *retlen += chip->nc_page_size;
               }

               addr += chip->nc_page_size;
       }

       KASSERT(*retlen == len);
out:
       mutex_exit(&sc->sc_device_lock);

       return error;
}

int
nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   const uint8_t *buf)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       const uint8_t *bufp;
       size_t pages, page;
       daddr_t addr;
       int error = 0;

       if ((offset + len) > chip->nc_size) {
               DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
                       " is over device size (0x%jx)\n",
                       (uintmax_t)offset, (uintmax_t)len,
                       (uintmax_t)chip->nc_size));
               return EINVAL;
       }

       if (len % chip->nc_page_size != 0 ||
           offset % chip->nc_page_size != 0) {
               return nand_flash_write_unaligned(self,
                   offset, len, retlen, buf);
       }

       pages = len / chip->nc_page_size;
       KASSERT(pages != 0);
       *retlen = 0;

       addr = offset;
       bufp = buf;

       mutex_enter(&sc->sc_device_lock);
       for (page = 0; page < pages; page++) {
               /* do we need this check here? */
               if (nand_isbad(self, addr)) {
                       aprint_error_dev(self,
                           "nand_flash_write: bad block encountered\n");

                       error = EIO;
                       goto out;
               }

               error = nand_program_page(self, addr, bufp);
               if (error) {
                       goto out;
               }

               addr += chip->nc_page_size;
               bufp += chip->nc_page_size;
               *retlen += chip->nc_page_size;
       }
out:
       mutex_exit(&sc->sc_device_lock);
       DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));

       return error;
}

/*
* handle (page) unaligned read from nand
*/
static int
nand_flash_read_unaligned(device_t self, size_t offset,
   size_t len, size_t *retlen, uint8_t *buf)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       daddr_t first, last, count, firstoff;
       uint8_t *bufp;
       daddr_t addr;
       size_t left;
       int error = 0, i;

       first = offset & chip->nc_page_mask;
       firstoff = offset & ~chip->nc_page_mask;
       last = (offset + len) & chip->nc_page_mask;
       count = (last - first) / chip->nc_page_size + 1;

       addr = first;
       bufp = buf;
       left = len;
       *retlen = 0;

       mutex_enter(&sc->sc_device_lock);
       if (count == 1) {
               error = nand_read_page(self, addr, chip->nc_page_cache);
               if (error) {
                       goto out;
               }

               memcpy(bufp, chip->nc_page_cache + firstoff, len);

               *retlen = len;
               goto out;
       }

       for (i = 0; i < count && left != 0; i++) {
               error = nand_read_page(self, addr, chip->nc_page_cache);
               if (error) {
                       goto out;
               }

               if (i == 0) {
                       memcpy(bufp, chip->nc_page_cache + firstoff,
                           chip->nc_page_size - firstoff);

                       bufp += chip->nc_page_size - firstoff;
                       left -= chip->nc_page_size - firstoff;
                       *retlen += chip->nc_page_size - firstoff;

               } else if (i == count - 1) {
                       memcpy(bufp, chip->nc_page_cache, left);
                       *retlen += left;
                       KASSERT(left < chip->nc_page_size);

               } else {
                       memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);

                       bufp += chip->nc_page_size;
                       left -= chip->nc_page_size;
                       *retlen += chip->nc_page_size;
               }

               addr += chip->nc_page_size;
       }
       KASSERT(*retlen == len);
out:
       mutex_exit(&sc->sc_device_lock);

       return error;
}

int
nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
   uint8_t *buf)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       uint8_t *bufp;
       size_t addr;
       size_t i, pages;
       int error = 0;

       *retlen = 0;

       DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
               (uintmax_t)offset, len));

       if (__predict_false((offset + len) > chip->nc_size)) {
               DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
                       " is over device size (%ju)\n", (uintmax_t)offset,
                       len, (uintmax_t)chip->nc_size));
               return EINVAL;
       }

       /* Handle unaligned access, shouldnt be needed when using the
        * block device, as strategy handles it, so only low level
        * accesses will use this path
        */
       /* XXX^2 */
#if 0
       if (len < chip->nc_page_size)
               panic("TODO page size is larger than read size");
#endif

       if (len % chip->nc_page_size != 0 ||
           offset % chip->nc_page_size != 0) {
               return nand_flash_read_unaligned(self,
                   offset, len, retlen, buf);
       }

       bufp = buf;
       addr = offset;
       pages = len / chip->nc_page_size;

       mutex_enter(&sc->sc_device_lock);
       for (i = 0; i < pages; i++) {
               /* XXX do we need this check here? */
               if (nand_isbad(self, addr)) {
                       aprint_error_dev(self, "bad block encountered\n");
                       error = EIO;
                       goto out;
               }
               error = nand_read_page(self, addr, bufp);
               if (error)
                       goto out;

               bufp += chip->nc_page_size;
               addr += chip->nc_page_size;
               *retlen += chip->nc_page_size;
       }
out:
       mutex_exit(&sc->sc_device_lock);

       return error;
}

int
nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       bool result;

       if (ofs > chip->nc_size) {
               DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
                       " device size (0x%jx)\n", (uintmax_t)ofs,
                       (uintmax_t)chip->nc_size));
               return EINVAL;
       }

       if (ofs % chip->nc_block_size != 0) {
               DPRINTF(("offset (0x%jx) is not a multiple of block size "
                       "(%ju)",
                       (uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
               return EINVAL;
       }

       mutex_enter(&sc->sc_device_lock);
       result = nand_isbad(self, ofs);
       mutex_exit(&sc->sc_device_lock);

       *is_bad = result;

       return 0;
}

int
nand_flash_markbad(device_t self, flash_off_t ofs)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;

       if (ofs > chip->nc_size) {
               DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
                       " device size (0x%jx)\n", ofs,
                       (uintmax_t)chip->nc_size));
               return EINVAL;
       }

       if (ofs % chip->nc_block_size != 0) {
               panic("offset (%ju) is not a multiple of block size (%ju)",
                   (uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
       }

       mutex_enter(&sc->sc_device_lock);
       nand_markbad(self, ofs);
       mutex_exit(&sc->sc_device_lock);

       return 0;
}

int
nand_flash_erase(device_t self,
   struct flash_erase_instruction *ei)
{
       struct nand_softc *sc = device_private(self);
       struct nand_chip *chip = &sc->sc_chip;
       flash_off_t addr;
       int error = 0;

       if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
               return EINVAL;

       if (ei->ei_addr + ei->ei_len > chip->nc_size) {
               DPRINTF(("nand_flash_erase: erase address is over the end"
                       " of the device\n"));
               return EINVAL;
       }

       if (ei->ei_addr % chip->nc_block_size != 0) {
               aprint_error_dev(self,
                   "nand_flash_erase: ei_addr (%ju) is not"
                   " a multiple of block size (%ju)",
                   (uintmax_t)ei->ei_addr,
                   (uintmax_t)chip->nc_block_size);
               return EINVAL;
       }

       if (ei->ei_len % chip->nc_block_size != 0) {
               aprint_error_dev(self,
                   "nand_flash_erase: ei_len (%ju) is not"
                   " a multiple of block size (%ju)",
                   (uintmax_t)ei->ei_len,
                   (uintmax_t)chip->nc_block_size);
               return EINVAL;
       }

       mutex_enter(&sc->sc_device_lock);
       addr = ei->ei_addr;
       while (addr < ei->ei_addr + ei->ei_len) {
               if (nand_isbad(self, addr)) {
                       aprint_error_dev(self, "bad block encountered\n");
                       ei->ei_state = FLASH_ERASE_FAILED;
                       error = EIO;
                       goto out;
               }

               error = nand_erase_block(self, addr);
               if (error) {
                       ei->ei_state = FLASH_ERASE_FAILED;
                       goto out;
               }

               addr += chip->nc_block_size;
       }
       mutex_exit(&sc->sc_device_lock);

       ei->ei_state = FLASH_ERASE_DONE;
       if (ei->ei_callback != NULL) {
               ei->ei_callback(ei);
       }

       return 0;
out:
       mutex_exit(&sc->sc_device_lock);

       return error;
}

MODULE(MODULE_CLASS_DRIVER, nand, "flash");

#ifdef _MODULE
#include "ioconf.c"
#endif

static int
nand_modcmd(modcmd_t cmd, void *opaque)
{
       switch (cmd) {
       case MODULE_CMD_INIT:
#ifdef _MODULE
               return config_init_component(cfdriver_ioconf_nand,
                   cfattach_ioconf_nand, cfdata_ioconf_nand);
#else
               return 0;
#endif
       case MODULE_CMD_FINI:
#ifdef _MODULE
               return config_fini_component(cfdriver_ioconf_nand,
                   cfattach_ioconf_nand, cfdata_ioconf_nand);
#else
               return 0;
#endif
       default:
               return ENOTTY;
       }
}