/*      $NetBSD: hamming.c,v 1.2 2021/12/07 21:37:37 andvar Exp $       */

/*
* Copyright (c) 2008, Atmel Corporation
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* - Redistributions of source code must retain the above copyright notice,
* this list of conditions and the disclaimer below.
*
* Atmel's name may not be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* DISCLAIMER: THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hamming.c,v 1.2 2021/12/07 21:37:37 andvar Exp $");

#include <sys/param.h>
#include <lib/libkern/libkern.h>
#include "hamming.h"

/**
* Calculates the 22-bit hamming code for a 256-bytes block of data.
* \param data  Data buffer to calculate code for.
* \param code  Pointer to a buffer where the code should be stored.
*/
void
hamming_compute_256(const uint8_t *data, uint8_t *code)
{
       unsigned int i;
       uint8_t column_sum = 0;
       uint8_t even_line_code = 0;
       uint8_t odd_line_code = 0;
       uint8_t even_column_code = 0;
       uint8_t odd_column_code = 0;

       /*-
        * Xor all bytes together to get the column sum;
        * At the same time, calculate the even and odd line codes
        */
       for (i = 0; i < 256; i++) {
               column_sum ^= data[i];

               /*-
                * If the xor sum of the byte is 0, then this byte has no
                * incidence on the computed code; so check if the sum is 1.
                */
               if ((popcount(data[i]) & 1) == 1) {
                       /*-
                        * Parity groups are formed by forcing a particular
                        * index bit to 0 (even) or 1 (odd).
                        * Example on one byte:
                        *
                        * bits (dec)  7   6   5   4   3   2   1   0
                        *      (bin) 111 110 101 100 011 010 001 000
                        *                            '---'---'---'----------.
                        *                                                   |
                        * groups P4' ooooooooooooooo eeeeeeeeeeeeeee P4     |
                        *        P2' ooooooo eeeeeee ooooooo eeeeeee P2     |
                        *        P1' ooo eee ooo eee ooo eee ooo eee P1     |
                        *                                                   |
                        * We can see that:                                  |
                        *  - P4  -> bit 2 of index is 0 --------------------'
                        *  - P4' -> bit 2 of index is 1.
                        *  - P2  -> bit 1 of index if 0.
                        *  - etc...
                        * We deduce that a bit position has an impact on all
                        * even Px if the log2(x)nth bit of its index is 0
                        *     ex: log2(4) = 2,
                        * bit2 of the index must be 0 (-> 0 1 2 3)
                        * and on all odd Px' if the log2(x)nth bit
                        * of its index is 1
                        *     ex: log2(2) = 1,
                        * bit1 of the index must be 1 (-> 0 1 4 5)
                        *
                        * As such, we calculate all the possible Px and Px'
                        * values at the same time in two variables,
                        * even_line_code and odd_line_code, such as
                        *     even_line_code bits: P128  P64  P32
                        *                        P16  P8  P4  P2  P1
                        *     odd_line_code  bits: P128' P64' P32' P16'
                        *                        P8' P4' P2' P1'
                        */
                       even_line_code ^= (255 - i);
                       odd_line_code ^= i;
               }
       }

       /*-
        * At this point, we have the line parities, and the column sum.
        * First, We must calculate the parity group values on the column sum.
        */
       for (i = 0; i < 8; i++) {
               if (column_sum & 1) {
                       even_column_code ^= (7 - i);
                       odd_column_code ^= i;
               }
               column_sum >>= 1;
       }

       /*-
        * Now, we must interleave the parity values,
        * to obtain the following layout:
        * Code[0] = Line1
        * Code[1] = Line2
        * Code[2] = Column
        * Line = Px' Px P(x-1)- P(x-1) ...
        * Column = P4' P4 P2' P2 P1' P1 PadBit PadBit
        */
       code[0] = 0;
       code[1] = 0;
       code[2] = 0;

       for (i = 0; i < 4; i++) {
               code[0] <<= 2;
               code[1] <<= 2;
               code[2] <<= 2;

               /* Line 1 */
               if ((odd_line_code & 0x80) != 0) {

                       code[0] |= 2;
               }
               if ((even_line_code & 0x80) != 0) {

                       code[0] |= 1;
               }

               /* Line 2 */
               if ((odd_line_code & 0x08) != 0) {

                       code[1] |= 2;
               }
               if ((even_line_code & 0x08) != 0) {

                       code[1] |= 1;
               }

               /* Column */
               if ((odd_column_code & 0x04) != 0) {

                       code[2] |= 2;
               }
               if ((even_column_code & 0x04) != 0) {

                       code[2] |= 1;
               }

               odd_line_code <<= 1;
               even_line_code <<= 1;
               odd_column_code <<= 1;
               even_column_code <<= 1;
       }

       /* Invert codes (linux compatibility) */
       code[0] = ~code[0];
       code[1] = ~code[1];
       code[2] = ~code[2];
}

/**
* Verifies and corrects a 256-bytes block of data using the given 22-bits
* hamming code.
* Returns 0 if there is no error, otherwise returns a HAMMING_ERROR code.
* param data  Data buffer to check.
* \param original_code  Hamming code to use for verifying the data.
*/
uint8_t
hamming_correct_256(uint8_t *data, const uint8_t *original_code,
   const uint8_t *computed_code)
{
       /* Calculate new code */
       /* we allocate 4 bytes so we can use popcount32 in one step */
       uint8_t correction_code[4];

       /* this byte should remain zero all the time */
       correction_code[3] = 0;

       /* Xor both codes together */
       correction_code[0] = computed_code[0] ^ original_code[0];
       correction_code[1] = computed_code[1] ^ original_code[1];
       correction_code[2] = computed_code[2] ^ original_code[2];

       /* If all bytes are 0, there is no error */
       if (*(uint32_t *)correction_code == 0) {
               return 0;
       }
       /* If there is a single bit error, there are 11 bits set to 1 */
       if (popcount32(*(uint32_t *)correction_code) == 11) {
               /* Get byte and bit indexes */
               uint8_t byte = correction_code[0] & 0x80;
               byte |= (correction_code[0] << 1) & 0x40;
               byte |= (correction_code[0] << 2) & 0x20;
               byte |= (correction_code[0] << 3) & 0x10;

               byte |= (correction_code[1] >> 4) & 0x08;
               byte |= (correction_code[1] >> 3) & 0x04;
               byte |= (correction_code[1] >> 2) & 0x02;
               byte |= (correction_code[1] >> 1) & 0x01;

               uint8_t bit = (correction_code[2] >> 5) & 0x04;
               bit |= (correction_code[2] >> 4) & 0x02;
               bit |= (correction_code[2] >> 3) & 0x01;

               /* Correct bit */
               data[byte] ^= (1 << bit);

               return HAMMING_ERROR_SINGLEBIT;
       }
       /* Check if ECC has been corrupted */
       if (popcount32(*(uint32_t *)correction_code) == 1) {
               return HAMMING_ERROR_ECC;
       } else {
               /* Otherwise, this is a multi-bit error */
               return HAMMING_ERROR_MULTIPLEBITS;
       }
}