/* $NetBSD: mcommphy.c,v 1.3 2024/10/23 05:55:45 skrll Exp $ */
/*
* Copyright (c) 2022 Jared McNeill <
[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Motorcomm YT8511C / YT8511H Integrated 10/100/1000 Gigabit Ethernet
* Transceiver.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: mcommphy.c,v 1.3 2024/10/23 05:55:45 skrll Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <sys/errno.h>
#include <net/if.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/miidevs.h>
#define YT85X1_MCOMMPHY_OUI 0x000000
#define YT8511_MCOMMPHY_MODEL 0x10
#define YT8521_MCOMMPHY_MODEL 0x11
#define YT85X1_MCOMMPHY_REV 0x0a
#define YTPHY_EXT_REG_ADDR 0x1e
#define YTPHY_EXT_REG_DATA 0x1f
/* Extended registers */
#define YT8511_CLOCK_GATING_REG 0x0c
#define YT8511_TX_CLK_DELAY_SEL __BITS(7,4)
#define YT8511_CLK_25M_SEL __BITS(2,1)
#define YT8511_CLK_25M_SEL_125M 3
#define YT8511_RX_CLK_DELAY_EN __BIT(0)
#define YT8511_DELAY_DRIVE_REG 0x0d
#define YT8511_FE_TX_CLK_DELAY_SEL __BITS(15,12)
#define YT8521_CLOCK_GATING_REG 0x0c
#define YT8521_RX_CLK_EN __BIT(12)
#define YT8511_SLEEP_CONTROL1_REG 0x27
#define YT8511_PLLON_IN_SLP __BIT(14)
#define YT8521_SLEEP_CONTROL1_REG 0x27
#define YT8521_PLLON_IN_SLP __BIT(14)
#define YT8521_EXT_CHIP_CONFIG 0xa001
#define YT8521_RXC_DLY_EN __BIT(8)
#define YT8521_CFG_LDO_MASK __BITS(5, 4)
#define YT8521_CFG_LDO_3V3 0
#define YT8521_CFG_LDO_2V5 1
#define YT8521_CFG_LDO_1V8 2 /* or 3 */
#define YT8521_EXT_SDS_CONFIG 0xa002
#define YT8521_EXT_RGMII_CONFIG1 0xa003
#define YT8521_TX_CLK_SEL_INV __BIT(14)
#define YT8521_RX_DELAY_SEL_MASK __BITS(13, 10)
#define YT8521_FE_TX_DELAY_SEL_MASK __BITS(7, 4)
#define YT8521_GE_TX_DELAY_SEL_MASK __BITS(3, 0)
#define YT8521_DELAY_PS(ps) ((ps) / 150)
#define YT8521_DELAY_DEFAULT 1950
#define YT8521_EXT_RGMII_CONFIG2 0xa004
#define YT8521_EXT_PAD_DRIVE_STRENGTH 0xa010
#define YT8531_RGMII_RXC_DS_MASK __BITS(15, 13)
#define YT8531_RGMII_RXD_DS_HIMASK __BIT(12)
#define YT8531_RGMII_RXD_DS_LOMASK __BITS(5, 4)
#define YT8531_RGMII_RXD_DS_MASK \
(YT8531_RGMII_RXD_DS_HIMASK | YT8531_RGMII_RXD_DS_LOMASK)
#define YT8531_RGMII_RXD_DS_HIBITS __BIT(2)
#define YT8531_RGMII_RXD_DS_LOBITS __BITS(1, 0)
CTASSERT(__SHIFTOUT_MASK(YT8531_RGMII_RXD_DS_HIMASK) ==
__SHIFTOUT_MASK(YT8531_RGMII_RXD_DS_HIBITS));
CTASSERT(__SHIFTOUT_MASK(YT8531_RGMII_RXD_DS_LOMASK) ==
__SHIFTOUT_MASK(YT8531_RGMII_RXD_DS_LOBITS));
#define YT8531_DEFAULT_DS 3
#define YT8521_EXT_SYNCE_CFG 0xa012
#define YT8531_EN_SYNC_E __BIT(6)
#define YT8531_CLK_FRE_SEL_125M __BIT(4)
#define YT8531_CLK_SRC_SEL_MASK __BITS(3, 1)
#define YT8531_CLK_SRC_SEL_PLL_125M 0
#define YT8531_CLK_SRC_SEL_REF_25M 4
typedef enum mcommtype {
YTUNK,
YT8511,
YT8521,
YT8531,
} mcommtype_t;
struct mcomm_softc {
struct mii_softc sc_miisc;
mcommtype_t sc_type;
bool sc_tx_clk_adj_enabled;
bool sc_tx_clk_10_inverted;
bool sc_tx_clk_100_inverted;
bool sc_tx_clk_1000_inverted;
u_int sc_clk_out_frequency_hz;
u_int sc_rx_clk_drv_microamp;
u_int sc_rx_data_drv_microamp;
u_int sc_rx_internal_delay_ps;
u_int sc_tx_internal_delay_ps;
};
static int mcommphymatch(device_t, cfdata_t, void *);
static void mcommphyattach(device_t, device_t, void *);
CFATTACH_DECL_NEW(mcommphy, sizeof(struct mcomm_softc),
mcommphymatch, mcommphyattach, mii_phy_detach, mii_phy_activate);
static int mcommphy_service(struct mii_softc *, struct mii_data *, int);
static void mcommphy_reset(struct mii_softc *);
static const struct mii_phy_funcs mcommphy_funcs = {
.pf_service = mcommphy_service,
.pf_status = ukphy_status,
.pf_reset = mcommphy_reset,
};
static const struct mii_phydesc mcommphys[] = {
MII_PHY_DESC(MOTORCOMM, YT8531),
MII_PHY_END,
};
static void
mcomm_yt8531properties(struct mcomm_softc *msc, prop_dictionary_t dict)
{
struct mii_softc * const sc = &msc->sc_miisc;
if (!prop_dictionary_get_bool(dict, "motorcomm,tx-clk-adj-enabled",
&msc->sc_tx_clk_adj_enabled)) {
msc->sc_tx_clk_adj_enabled = false;
} else {
aprint_verbose_dev(sc->mii_dev,
"motorcomm,tx-clk-adj-enabled is %s\n",
msc->sc_tx_clk_adj_enabled ? "true" : "false");
}
if (!prop_dictionary_get_bool(dict, "motorcomm,tx-clk-10-inverted",
&msc->sc_tx_clk_10_inverted)) {
msc->sc_tx_clk_10_inverted = false;
} else {
aprint_verbose_dev(sc->mii_dev,
"motorcomm,tx_clk_10_inverted is %s\n",
msc->sc_tx_clk_10_inverted ? "true" : "false");
}
if (!prop_dictionary_get_bool(dict, "motorcomm,tx-clk-100-inverted",
&msc->sc_tx_clk_100_inverted)) {
msc->sc_tx_clk_100_inverted = false;
} else {
aprint_verbose_dev(sc->mii_dev,
"motorcomm,tx-clk-100-inverted is %s\n",
msc->sc_tx_clk_100_inverted ? "true" : "false");
}
if (!prop_dictionary_get_bool(dict, "motorcomm,tx-clk-1000-inverted",
&msc->sc_tx_clk_1000_inverted)) {
msc->sc_tx_clk_1000_inverted = false;
} else {
aprint_verbose_dev(sc->mii_dev,
"motorcomm,tx-clk-1000-inverted is %s\n",
msc->sc_tx_clk_1000_inverted ? "true" : "false");
}
if (!prop_dictionary_get_uint32(dict, "motorcomm,clk-out-frequency-hz",
&msc->sc_clk_out_frequency_hz)) {
msc->sc_clk_out_frequency_hz = 0;
} else {
aprint_verbose_dev(sc->mii_dev,
"motorcomm,clk-out-frequency-hz is %u\n",
msc->sc_clk_out_frequency_hz);
}
if (!prop_dictionary_get_uint32(dict, "motorcomm,rx-clk-drv-microamp",
&msc->sc_rx_clk_drv_microamp)) {
aprint_debug_dev(sc->mii_dev,
"motorcomm,rx-clk-drv-microamp not found\n");
} else {
aprint_verbose_dev(sc->mii_dev,
"rx-clk-drv-microamp is %u\n",
msc->sc_rx_clk_drv_microamp);
}
if (!prop_dictionary_get_uint32(dict, "motorcomm,rx-data-drv-microamp",
&msc->sc_rx_data_drv_microamp)) {
aprint_debug_dev(sc->mii_dev,
"motorcomm,rx-data-drv-microamp not found\n");
} else {
aprint_verbose_dev(sc->mii_dev,
"motorcomm,rx-data-drv-microamp is %u\n",
msc->sc_rx_data_drv_microamp);
}
if (!prop_dictionary_get_uint32(dict, "rx-internal-delay-ps",
&msc->sc_rx_internal_delay_ps)) {
aprint_debug_dev(sc->mii_dev,
"rx-internal-delay-ps not found\n");
} else {
aprint_verbose_dev(sc->mii_dev,
"rx-internal-delay-ps is %u\n",
msc->sc_rx_internal_delay_ps);
}
if (!prop_dictionary_get_uint32(dict, "tx-internal-delay-ps",
&msc->sc_tx_internal_delay_ps)) {
aprint_debug_dev(sc->mii_dev,
"tx-internal-delay-ps not found\n");
} else {
aprint_verbose_dev(sc->mii_dev,
"tx-internal-delay-ps is %u\n",
msc->sc_tx_internal_delay_ps);
}
}
static bool
mcommphy_isyt8511(struct mii_attach_args *ma)
{
/*
* The YT8511C reports an OUI of 0. Best we can do here is to match
* exactly the contents of the PHY identification registers.
*/
if (MII_OUI(ma->mii_id1, ma->mii_id2) == YT85X1_MCOMMPHY_OUI &&
MII_MODEL(ma->mii_id2) == YT8511_MCOMMPHY_MODEL &&
MII_REV(ma->mii_id2) == YT85X1_MCOMMPHY_REV) {
return true;
}
return false;
}
static int
mcommphymatch(device_t parent, cfdata_t match, void *aux)
{
struct mii_attach_args *ma = aux;
if (mii_phy_match(ma, mcommphys) != NULL)
return 10;
if (mcommphy_isyt8511(ma))
return 10;
return 0;
}
static void
mcomm_yt8511_init(struct mcomm_softc *msc)
{
struct mii_softc *sc = &msc->sc_miisc;
uint16_t oldaddr, data;
PHY_READ(sc, YTPHY_EXT_REG_ADDR, &oldaddr);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8511_CLOCK_GATING_REG);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
data &= ~YT8511_CLK_25M_SEL;
data |= __SHIFTIN(YT8511_CLK_25M_SEL_125M, YT8511_CLK_25M_SEL);
if (ISSET(sc->mii_flags, MIIF_RXID)) {
data |= YT8511_RX_CLK_DELAY_EN;
} else {
data &= ~YT8511_RX_CLK_DELAY_EN;
}
data &= ~YT8511_TX_CLK_DELAY_SEL;
if (ISSET(sc->mii_flags, MIIF_TXID)) {
data |= __SHIFTIN(0xf, YT8511_TX_CLK_DELAY_SEL);
} else {
data |= __SHIFTIN(0x2, YT8511_TX_CLK_DELAY_SEL);
}
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8511_SLEEP_CONTROL1_REG);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
data |= YT8511_PLLON_IN_SLP;
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, oldaddr);
}
static void
mcomm_yt8521_init(struct mcomm_softc *msc)
{
struct mii_softc *sc = &msc->sc_miisc;
bool rx_delay_en = false;
u_int rx_delay_val;
u_int tx_delay_val;
uint16_t oldaddr, data;
PHY_READ(sc, YTPHY_EXT_REG_ADDR, &oldaddr);
u_int rx_delay = msc->sc_rx_internal_delay_ps;
if (rx_delay <= 15 * 150 && rx_delay % 150 == 0) {
rx_delay_val = YT8521_DELAY_PS(rx_delay);
} else {
/* It's OK if this underflows */
rx_delay -= 1900;
if (rx_delay <= 15 * 150 && rx_delay % 150 == 0) {
rx_delay_en = true;
rx_delay_val = YT8521_DELAY_PS(rx_delay);
} else {
rx_delay_val = YT8521_DELAY_PS(YT8521_DELAY_DEFAULT);
}
}
u_int tx_delay = msc->sc_tx_internal_delay_ps;
if (tx_delay <= 15 * 150 && tx_delay % 150 == 0) {
tx_delay_val = YT8521_DELAY_PS(tx_delay);
} else {
tx_delay_val = YT8521_DELAY_PS(YT8521_DELAY_DEFAULT);
}
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8521_EXT_CHIP_CONFIG);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
if (rx_delay_en)
data |= YT8521_RXC_DLY_EN;
else
data &= ~YT8521_RXC_DLY_EN;
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8521_EXT_RGMII_CONFIG1);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
data &= ~(YT8521_RX_DELAY_SEL_MASK | YT8521_GE_TX_DELAY_SEL_MASK);
// XXX FE?
data |=
__SHIFTIN(rx_delay_val, YT8521_RX_DELAY_SEL_MASK) |
__SHIFTIN(tx_delay_val, YT8521_GE_TX_DELAY_SEL_MASK);
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
/* Restore address register. */
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, oldaddr);
}
struct mcomm_ytphy_ds_map {
u_int microamps;
u_int ds;
};
struct mcomm_ytphy_ds_map mcomm_1d8v_ds_map[] = {
{ .microamps = 1200, .ds = 0 },
{ .microamps = 2100, .ds = 1 },
{ .microamps = 2700, .ds = 2 },
{ .microamps = 2910, .ds = 3 },
{ .microamps = 3110, .ds = 4 },
{ .microamps = 3600, .ds = 5 },
{ .microamps = 3970, .ds = 6 },
{ .microamps = 4350, .ds = 7 },
};
struct mcomm_ytphy_ds_map mcomm_3d3v_ds_map[] = {
{ .microamps = 3070, .ds = 0 },
{ .microamps = 4080, .ds = 1 },
{ .microamps = 4370, .ds = 2 },
{ .microamps = 4680, .ds = 3 },
{ .microamps = 5020, .ds = 4 },
{ .microamps = 5450, .ds = 5 },
{ .microamps = 5740, .ds = 6 },
{ .microamps = 6140, .ds = 7 },
};
static u_int
mcomm_yt8531_ds(struct mcomm_softc *msc,
struct mcomm_ytphy_ds_map *ds_map, size_t n,
u_int microamps, u_int millivolts)
{
for (size_t i = 0; i < n; i++) {
if (ds_map[i].microamps == microamps)
return ds_map[i].ds;
}
if (microamps) {
struct mii_softc *sc = &msc->sc_miisc;
aprint_error_dev(sc->mii_dev, "unknown drive strength "
"(%u uA at %u mV)", microamps, millivolts);
}
return YT8531_DEFAULT_DS;
}
static void
mcomm_yt8531_init(struct mcomm_softc *msc)
{
struct mii_softc *sc = &msc->sc_miisc;
uint16_t oldaddr, data;
mcomm_yt8521_init(msc);
/* Save address register. */
PHY_READ(sc, YTPHY_EXT_REG_ADDR, &oldaddr);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8521_EXT_CHIP_CONFIG);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
struct mcomm_ytphy_ds_map *ds_map = NULL;
size_t ds_mapsize;
u_int millivolts = 1800;
switch (__SHIFTOUT(data, YT8521_CFG_LDO_MASK)) {
case YT8521_CFG_LDO_3V3:
ds_map = mcomm_3d3v_ds_map;
ds_mapsize = __arraycount(mcomm_3d3v_ds_map);
millivolts = 3300;
break;
case YT8521_CFG_LDO_2V5:
millivolts = 2500;
break;
default:
ds_map = mcomm_1d8v_ds_map;
ds_mapsize = __arraycount(mcomm_1d8v_ds_map);
break;
}
if (ds_map) {
u_int rx_clk_ds = mcomm_yt8531_ds(msc, ds_map, ds_mapsize,
msc->sc_rx_clk_drv_microamp, millivolts);
u_int rx_data_ds = mcomm_yt8531_ds(msc, ds_map, ds_mapsize,
msc->sc_rx_data_drv_microamp, millivolts);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8521_EXT_PAD_DRIVE_STRENGTH);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
data &= ~(YT8531_RGMII_RXC_DS_MASK | YT8531_RGMII_RXD_DS_MASK);
u_int rx_data_ds_hi =
__SHIFTOUT(rx_data_ds, YT8531_RGMII_RXD_DS_HIBITS);
u_int rx_data_ds_lo =
__SHIFTOUT(rx_data_ds, YT8531_RGMII_RXD_DS_LOBITS);
data |=
__SHIFTIN(rx_clk_ds, YT8531_RGMII_RXC_DS_MASK) |
__SHIFTIN(rx_data_ds_hi, YT8531_RGMII_RXD_DS_HIMASK) |
__SHIFTIN(rx_data_ds_lo, YT8531_RGMII_RXD_DS_LOMASK);
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
}
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8521_EXT_SYNCE_CFG);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
data &= ~(YT8531_EN_SYNC_E | YT8531_CLK_SRC_SEL_MASK);
switch (msc->sc_clk_out_frequency_hz) {
case 125000000:
data |= YT8531_EN_SYNC_E;
data |= YT8531_CLK_FRE_SEL_125M;
data |= __SHIFTIN(YT8531_CLK_SRC_SEL_PLL_125M, YT8531_CLK_SRC_SEL_MASK);
break;
case 25000000:
data |= YT8531_EN_SYNC_E;
data |= __SHIFTIN(YT8531_CLK_SRC_SEL_REF_25M, YT8531_CLK_SRC_SEL_MASK);
break;
default:
break;
}
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
/* Restore address register. */
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, oldaddr);
}
static void
mcommphy_reset(struct mii_softc *sc)
{
struct mcomm_softc * const msc =
container_of(sc, struct mcomm_softc, sc_miisc);
KASSERT(mii_locked(sc->mii_pdata));
mii_phy_reset(sc);
switch (msc->sc_type) {
case YT8511:
mcomm_yt8511_init(msc);
break;
case YT8531:
mcomm_yt8531_init(msc);
break;
default:
return;
}
}
static void
mcommphyattach(device_t parent, device_t self, void *aux)
{
struct mcomm_softc *msc = device_private(self);
struct mii_softc *sc = &msc->sc_miisc;
struct mii_attach_args *ma = aux;
struct mii_data *mii = ma->mii_data;
msc->sc_type = YTUNK;
if (mcommphy_isyt8511(ma)) {
msc->sc_type = YT8511;
aprint_normal(": Motorcomm YT8511 GbE PHY\n");
} else {
KASSERT(mii_phy_match(ma, mcommphys) != NULL);
msc->sc_type = YT8531;
aprint_normal(": Motorcomm YT8531 GbE PHY\n");
}
aprint_naive(": Media interface\n");
sc->mii_dev = self;
sc->mii_inst = mii->mii_instance;
sc->mii_phy = ma->mii_phyno;
sc->mii_mpd_oui = MII_OUI(ma->mii_id1, ma->mii_id2);
sc->mii_mpd_model = MII_MODEL(ma->mii_id2);
sc->mii_mpd_rev = MII_REV(ma->mii_id2);
sc->mii_funcs = &mcommphy_funcs;
sc->mii_pdata = mii;
sc->mii_flags = ma->mii_flags;
prop_dictionary_t dict = device_properties(parent);
switch (msc->sc_type) {
case YT8521:
case YT8531:
/* Default values */
msc->sc_rx_internal_delay_ps = YT8521_DELAY_DEFAULT;
msc->sc_tx_internal_delay_ps = YT8521_DELAY_DEFAULT;
mcomm_yt8531properties(msc, dict);
break;
default:
break;
}
mii_lock(mii);
PHY_RESET(sc);
PHY_READ(sc, MII_BMSR, &sc->mii_capabilities);
sc->mii_capabilities &= ma->mii_capmask;
if (sc->mii_capabilities & BMSR_EXTSTAT)
PHY_READ(sc, MII_EXTSR, &sc->mii_extcapabilities);
mii_unlock(mii);
mii_phy_add_media(sc);
}
static void
ytphy_yt8521_update(struct mcomm_softc *msc)
{
struct mii_softc *sc = &msc->sc_miisc;
struct mii_data *mii = sc->mii_pdata;
bool tx_clk_inv = false;
uint16_t oldaddr, data;
if (sc->mii_media_active == mii->mii_media_active)
return;
if (!msc->sc_tx_clk_adj_enabled)
return;
switch (IFM_SUBTYPE(mii->mii_media_active)) {
case IFM_1000_T:
tx_clk_inv = msc->sc_tx_clk_1000_inverted;
break;
case IFM_100_TX:
tx_clk_inv = msc->sc_tx_clk_100_inverted;
break;
case IFM_10_T:
tx_clk_inv = msc->sc_tx_clk_10_inverted;
break;
}
/* Save address register. */
PHY_READ(sc, YTPHY_EXT_REG_ADDR, &oldaddr);
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, YT8521_EXT_RGMII_CONFIG1);
PHY_READ(sc, YTPHY_EXT_REG_DATA, &data);
if (tx_clk_inv)
data |= YT8521_TX_CLK_SEL_INV;
else
data &= ~YT8521_TX_CLK_SEL_INV;
PHY_WRITE(sc, YTPHY_EXT_REG_DATA, data);
/* Restore address register. */
PHY_WRITE(sc, YTPHY_EXT_REG_ADDR, oldaddr);
}
static int
mcommphy_service(struct mii_softc *sc, struct mii_data *mii, int cmd)
{
struct ifmedia_entry *ife = mii->mii_media.ifm_cur;
struct mcomm_softc * const msc =
container_of(sc, struct mcomm_softc, sc_miisc);
KASSERT(mii_locked(mii));
switch (cmd) {
case MII_POLLSTAT:
/* If we're not polling our PHY instance, just return. */
if (IFM_INST(ife->ifm_media) != sc->mii_inst)
return 0;
break;
case MII_MEDIACHG:
/* If the interface is not up, don't do anything. */
if ((mii->mii_ifp->if_flags & IFF_UP) == 0)
break;
mii_phy_setmedia(sc);
break;
case MII_TICK:
/* If we're not currently selected, just return. */
if (IFM_INST(ife->ifm_media) != sc->mii_inst)
return 0;
if (mii_phy_tick(sc) == EJUSTRETURN)
return 0;
break;
case MII_DOWN:
mii_phy_down(sc);
return 0;
}
/* Update the media status. */
mii_phy_status(sc);
/* Callback if something changed. */
if (msc->sc_type != YT8511)
ytphy_yt8521_update(msc);
mii_phy_update(sc, cmd);
return 0;
}