/*      $NetBSD: ess.c,v 1.91 2024/02/09 22:08:35 andvar Exp $  */

/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
*    and retain this copyright notice and list of conditions as
*    they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
*    Digital Equipment Corporation. Neither the "Digital Equipment
*    Corporation" name nor any trademark or logo of Digital Equipment
*    Corporation may be used to endorse or promote products derived
*    from this software without the prior written permission of
*    Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
*    warranties, including but not limited to, any implied warranties
*    of merchantability, fitness for a particular purpose, or
*    non-infringement are disclaimed. In no event shall DIGITAL be
*    liable for any damages whatsoever, and in particular, DIGITAL
*    shall not be liable for special, indirect, consequential, or
*    incidental damages or damages for lost profits, loss of
*    revenue or loss of use, whether such damages arise in contract,
*    negligence, tort, under statute, in equity, at law or otherwise,
*    even if advised of the possibility of such damage.
*/

/*
**++
**
**  ess.c
**
**  FACILITY:
**
**      DIGITAL Network Appliance Reference Design (DNARD)
**
**  MODULE DESCRIPTION:
**
**      This module contains the device driver for the ESS
**      Technologies 1888/1887/888 sound chip. The code in sbdsp.c was
**      used as a reference point when implementing this driver.
**
**  AUTHORS:
**
**      Blair Fidler    Software Engineering Australia
**                      Gold Coast, Australia.
**
**  CREATION DATE:
**
**      March 10, 1997.
**
**  MODIFICATION HISTORY:
**
**      Heavily modified by Lennart Augustsson and Charles M. Hannum for
**      bus_dma, changes to audio interface, and many bug fixes.
**      ESS1788 support by Nathan J. Williams and Charles M. Hannum.
**--
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ess.c,v 1.91 2024/02/09 22:08:35 andvar Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/bus.h>
#include <sys/audioio.h>
#include <sys/malloc.h>

#include <dev/audio/audio_if.h>

#include <dev/isa/isavar.h>
#include <dev/isa/isadmavar.h>

#include <dev/isa/essvar.h>
#include <dev/isa/essreg.h>

#include "joy_ess.h"

#ifdef AUDIO_DEBUG
#define DPRINTF(x)      if (essdebug) printf x
#define DPRINTFN(n,x)   if (essdebug>(n)) printf x
int     essdebug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n,x)
#endif

#if 0
unsigned uuu;
#define EREAD1(t, h, a) (uuu=bus_space_read_1(t, h, a),printf("EREAD  %02x=%02x\n", ((int)h&0xfff)+a, uuu),uuu)
#define EWRITE1(t, h, a, d) (printf("EWRITE %02x=%02x\n", ((int)h & 0xfff)+a, d), bus_space_write_1(t, h, a, d))
#else
#define EREAD1(t, h, a) bus_space_read_1(t, h, a)
#define EWRITE1(t, h, a, d) bus_space_write_1(t, h, a, d)
#endif


int     ess_setup_sc(struct ess_softc *, int);

void    ess_close(void *);
int     ess_getdev(void *, struct audio_device *);

int     ess_query_format(void *, audio_format_query_t *);

int     ess_set_format(void *, int,
           const audio_params_t *, const audio_params_t *,
           audio_filter_reg_t *, audio_filter_reg_t *);

int     ess_round_blocksize(void *, int, int, const audio_params_t *);

int     ess_audio1_trigger_output(void *, void *, void *, int,
           void (*)(void *), void *, const audio_params_t *);
int     ess_audio2_trigger_output(void *, void *, void *, int,
           void (*)(void *), void *, const audio_params_t *);
int     ess_audio1_trigger_input(void *, void *, void *, int,
           void (*)(void *), void *, const audio_params_t *);
int     ess_audio1_halt(void *);
int     ess_audio2_halt(void *);
int     ess_audio1_intr(void *);
int     ess_audio2_intr(void *);
void    ess_audio1_poll(void *);
void    ess_audio2_poll(void *);

int     ess_speaker_ctl(void *, int);

int     ess_getdev(void *, struct audio_device *);

int     ess_set_port(void *, mixer_ctrl_t *);
int     ess_get_port(void *, mixer_ctrl_t *);

void   *ess_malloc(void *, int, size_t);
void    ess_free(void *, void *, size_t);
size_t  ess_round_buffersize(void *, int, size_t);


int     ess_query_devinfo(void *, mixer_devinfo_t *);
int     ess_1788_get_props(void *);
int     ess_1888_get_props(void *);
void    ess_get_locks(void *, kmutex_t **, kmutex_t **);

void    ess_speaker_on(struct ess_softc *);
void    ess_speaker_off(struct ess_softc *);

void    ess_config_irq(struct ess_softc *);
void    ess_config_drq(struct ess_softc *);
void    ess_setup(struct ess_softc *);
int     ess_identify(struct ess_softc *);

int     ess_reset(struct ess_softc *);
void    ess_set_gain(struct ess_softc *, int, int);
int     ess_set_in_port(struct ess_softc *, int);
int     ess_set_in_ports(struct ess_softc *, int);
u_int   ess_srtotc(struct ess_softc *, u_int);
u_int   ess_srtofc(u_int);
u_char  ess_get_dsp_status(struct ess_softc *);
u_char  ess_dsp_read_ready(struct ess_softc *);
u_char  ess_dsp_write_ready(struct ess_softc *);
int     ess_rdsp(struct ess_softc *);
int     ess_wdsp(struct ess_softc *, u_char);
u_char  ess_read_x_reg(struct ess_softc *, u_char);
int     ess_write_x_reg(struct ess_softc *, u_char, u_char);
void    ess_clear_xreg_bits(struct ess_softc *, u_char, u_char);
void    ess_set_xreg_bits(struct ess_softc *, u_char, u_char);
u_char  ess_read_mix_reg(struct ess_softc *, u_char);
void    ess_write_mix_reg(struct ess_softc *, u_char, u_char);
void    ess_clear_mreg_bits(struct ess_softc *, u_char, u_char);
void    ess_set_mreg_bits(struct ess_softc *, u_char, u_char);
void    ess_read_multi_mix_reg(struct ess_softc *, u_char, u_int8_t *,
   bus_size_t);

static const char *essmodel[] = {
       "unsupported",

       "688",
       "1688",
       "1788",
       "1868",
       "1869",
       "1878",
       "1879",

       "888",
       "1887",
       "1888",
};

struct audio_device ess_device = {
       "ESS Technology",
       "x",
       "ess"
};

/*
* Define our interface to the higher level audio driver.
*/

const struct audio_hw_if ess_1788_hw_if = {
       .close                  = ess_close,
       .query_format           = ess_query_format,
       .set_format             = ess_set_format,
       .round_blocksize        = ess_round_blocksize,
       .halt_output            = ess_audio1_halt,
       .halt_input             = ess_audio1_halt,
       .speaker_ctl            = ess_speaker_ctl,
       .getdev                 = ess_getdev,
       .set_port               = ess_set_port,
       .get_port               = ess_get_port,
       .query_devinfo          = ess_query_devinfo,
       .allocm                 = ess_malloc,
       .freem                  = ess_free,
       .round_buffersize       = ess_round_buffersize,
       .get_props              = ess_1788_get_props,
       .trigger_output         = ess_audio1_trigger_output,
       .trigger_input          = ess_audio1_trigger_input,
       .get_locks              = ess_get_locks,
};

const struct audio_hw_if ess_1888_hw_if = {
       .close                  = ess_close,
       .query_format           = ess_query_format,
       .set_format             = ess_set_format,
       .round_blocksize        = ess_round_blocksize,
       .halt_output            = ess_audio2_halt,
       .halt_input             = ess_audio1_halt,
       .speaker_ctl            = ess_speaker_ctl,
       .getdev                 = ess_getdev,
       .set_port               = ess_set_port,
       .get_port               = ess_get_port,
       .query_devinfo          = ess_query_devinfo,
       .allocm                 = ess_malloc,
       .freem                  = ess_free,
       .round_buffersize       = ess_round_buffersize,
       .get_props              = ess_1888_get_props,
       .trigger_output         = ess_audio2_trigger_output,
       .trigger_input          = ess_audio1_trigger_input,
       .get_locks              = ess_get_locks,
};

static const struct audio_format ess_formats[] = {
       {
               .mode           = AUMODE_PLAY | AUMODE_RECORD,
               .encoding       = AUDIO_ENCODING_SLINEAR_LE,
               .validbits      = 16,
               .precision      = 16,
               .channels       = 2,
               .channel_mask   = AUFMT_STEREO,
               .frequency_type = 0,
               .frequency      = { ESS_MINRATE, ESS_MAXRATE },
       },
};
#define ESS_NFORMATS __arraycount(ess_formats)

#ifdef AUDIO_DEBUG
void ess_printsc(struct ess_softc *);
void ess_dump_mixer(struct ess_softc *);

void
ess_printsc(struct ess_softc *sc)
{
       int i;

       printf("iobase 0x%x outport %u inport %u speaker %s\n",
              sc->sc_iobase, sc->out_port,
              sc->in_port, sc->spkr_state ? "on" : "off");

       printf("audio1: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
              sc->sc_audio1.drq, sc->sc_audio1.irq, sc->sc_audio1.nintr,
              sc->sc_audio1.intr, sc->sc_audio1.arg);

       if (!ESS_USE_AUDIO1(sc->sc_model)) {
               printf("audio2: DMA chan %d irq %d nintr %lu intr %p arg %p\n",
                      sc->sc_audio2.drq, sc->sc_audio2.irq, sc->sc_audio2.nintr,
                      sc->sc_audio2.intr, sc->sc_audio2.arg);
       }

       printf("gain:");
       for (i = 0; i < sc->ndevs; i++)
               printf(" %u,%u", sc->gain[i][ESS_LEFT], sc->gain[i][ESS_RIGHT]);
       printf("\n");
}

void
ess_dump_mixer(struct ess_softc *sc)
{

       printf("ESS_DAC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
              0x7C, ess_read_mix_reg(sc, 0x7C));
       printf("ESS_MIC_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
              0x1A, ess_read_mix_reg(sc, 0x1A));
       printf("ESS_LINE_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
              0x3E, ess_read_mix_reg(sc, 0x3E));
       printf("ESS_SYNTH_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
              0x36, ess_read_mix_reg(sc, 0x36));
       printf("ESS_CD_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
              0x38, ess_read_mix_reg(sc, 0x38));
       printf("ESS_AUXB_PLAY_VOL: mix reg 0x%02x=0x%02x\n",
              0x3A, ess_read_mix_reg(sc, 0x3A));
       printf("ESS_MASTER_VOL: mix reg 0x%02x=0x%02x\n",
              0x32, ess_read_mix_reg(sc, 0x32));
       printf("ESS_PCSPEAKER_VOL: mix reg 0x%02x=0x%02x\n",
              0x3C, ess_read_mix_reg(sc, 0x3C));
       printf("ESS_DAC_REC_VOL: mix reg 0x%02x=0x%02x\n",
              0x69, ess_read_mix_reg(sc, 0x69));
       printf("ESS_MIC_REC_VOL: mix reg 0x%02x=0x%02x\n",
              0x68, ess_read_mix_reg(sc, 0x68));
       printf("ESS_LINE_REC_VOL: mix reg 0x%02x=0x%02x\n",
              0x6E, ess_read_mix_reg(sc, 0x6E));
       printf("ESS_SYNTH_REC_VOL: mix reg 0x%02x=0x%02x\n",
              0x6B, ess_read_mix_reg(sc, 0x6B));
       printf("ESS_CD_REC_VOL: mix reg 0x%02x=0x%02x\n",
              0x6A, ess_read_mix_reg(sc, 0x6A));
       printf("ESS_AUXB_REC_VOL: mix reg 0x%02x=0x%02x\n",
              0x6C, ess_read_mix_reg(sc, 0x6C));
       printf("ESS_RECORD_VOL: x reg 0x%02x=0x%02x\n",
              0xB4, ess_read_x_reg(sc, 0xB4));
       printf("Audio 1 play vol (unused): mix reg 0x%02x=0x%02x\n",
              0x14, ess_read_mix_reg(sc, 0x14));

       printf("ESS_MIC_PREAMP: x reg 0x%02x=0x%02x\n",
              ESS_XCMD_PREAMP_CTRL, ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL));
       printf("ESS_RECORD_MONITOR: x reg 0x%02x=0x%02x\n",
              ESS_XCMD_AUDIO_CTRL, ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL));
       printf("Record source: mix reg 0x%02x=0x%02x, 0x%02x=0x%02x\n",
              ESS_MREG_ADC_SOURCE, ess_read_mix_reg(sc, ESS_MREG_ADC_SOURCE),
              ESS_MREG_AUDIO2_CTRL2, ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2));
}

#endif

/*
* Configure the ESS chip for the desired audio base address.
*/
int
ess_config_addr(struct ess_softc *sc)
{
       int iobase;
       bus_space_tag_t iot;
       /*
        * Configure using the System Control Register method.  This
        * method is used when the AMODE line is tied high, which is
        * the case for the Shark, but not for the evaluation board.
        */
       bus_space_handle_t scr_access_ioh;
       bus_space_handle_t scr_ioh;
       u_short scr_value;

       iobase = sc->sc_iobase;
       iot = sc->sc_iot;
       /*
        * Set the SCR bit to enable audio.
        */
       scr_value = ESS_SCR_AUDIO_ENABLE;

       /*
        * Set the SCR bits necessary to select the specified audio
        * base address.
        */
       switch(iobase) {
       case 0x220:
               scr_value |= ESS_SCR_AUDIO_220;
               break;
       case 0x230:
               scr_value |= ESS_SCR_AUDIO_230;
               break;
       case 0x240:
               scr_value |= ESS_SCR_AUDIO_240;
               break;
       case 0x250:
               scr_value |= ESS_SCR_AUDIO_250;
               break;
       default:
               printf("ess: configured iobase 0x%x invalid\n", iobase);
               return 1;
               break;
       }

       /*
        * Get a mapping for the System Control Register (SCR) access
        * registers and the SCR data registers.
        */
       if (bus_space_map(iot, ESS_SCR_ACCESS_BASE, ESS_SCR_ACCESS_PORTS,
                         0, &scr_access_ioh)) {
               printf("ess: can't map SCR access registers\n");
               return 1;
       }
       if (bus_space_map(iot, ESS_SCR_BASE, ESS_SCR_PORTS,
                         0, &scr_ioh)) {
               printf("ess: can't map SCR registers\n");
               bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
               return 1;
       }

       /* Unlock the SCR. */
       EWRITE1(iot, scr_access_ioh, ESS_SCR_UNLOCK, 0);

       /* Write the base address information into SCR[0]. */
       EWRITE1(iot, scr_ioh, ESS_SCR_INDEX, 0);
       EWRITE1(iot, scr_ioh, ESS_SCR_DATA, scr_value);

       /* Lock the SCR. */
       EWRITE1(iot, scr_access_ioh, ESS_SCR_LOCK, 0);

       /* Unmap the SCR access ports and the SCR data ports. */
       bus_space_unmap(iot, scr_access_ioh, ESS_SCR_ACCESS_PORTS);
       bus_space_unmap(iot, scr_ioh, ESS_SCR_PORTS);

       return 0;
}


/*
* Configure the ESS chip for the desired IRQ and DMA channels.
* ESS  ISA
* --------
* IRQA irq9
* IRQB irq5
* IRQC irq7
* IRQD irq10
* IRQE irq15
*
* DRQA drq0
* DRQB drq1
* DRQC drq3
* DRQD drq5
*/
void
ess_config_irq(struct ess_softc *sc)
{
       int v;

       DPRINTFN(2,("ess_config_irq\n"));

       if (sc->sc_model == ESS_1887 &&
           sc->sc_audio1.irq == sc->sc_audio2.irq &&
           sc->sc_audio1.irq != -1) {
               /* Use new method, both interrupts are the same. */
               v = ESS_IS_SELECT_IRQ;  /* enable intrs */
               switch (sc->sc_audio1.irq) {
               case 5:
                       v |= ESS_IS_INTRB;
                       break;
               case 7:
                       v |= ESS_IS_INTRC;
                       break;
               case 9:
                       v |= ESS_IS_INTRA;
                       break;
               case 10:
                       v |= ESS_IS_INTRD;
                       break;
               case 15:
                       v |= ESS_IS_INTRE;
                       break;
#ifdef DIAGNOSTIC
               default:
                       printf("ess_config_irq: configured irq %d not supported for Audio 1\n",
                              sc->sc_audio1.irq);
                       return;
#endif
               }
               /* Set the IRQ */
               ess_write_mix_reg(sc, ESS_MREG_INTR_ST, v);
               return;
       }

       if (sc->sc_model == ESS_1887) {
               /* Tell the 1887 to use the old interrupt method. */
               ess_write_mix_reg(sc, ESS_MREG_INTR_ST, ESS_IS_ES1888);
       }

       if (sc->sc_audio1.polled) {
               /* Turn off Audio1 interrupts. */
               v = 0;
       } else {
               /* Configure Audio 1 for the appropriate IRQ line. */
               v = ESS_IRQ_CTRL_MASK | ESS_IRQ_CTRL_EXT; /* All intrs on */
               switch (sc->sc_audio1.irq) {
               case 5:
                       v |= ESS_IRQ_CTRL_INTRB;
                       break;
               case 7:
                       v |= ESS_IRQ_CTRL_INTRC;
                       break;
               case 9:
                       v |= ESS_IRQ_CTRL_INTRA;
                       break;
               case 10:
                       v |= ESS_IRQ_CTRL_INTRD;
                       break;
#ifdef DIAGNOSTIC
               default:
                       printf("ess: configured irq %d not supported for Audio 1\n",
                              sc->sc_audio1.irq);
                       return;
#endif
               }
       }
       ess_write_x_reg(sc, ESS_XCMD_IRQ_CTRL, v);

       if (ESS_USE_AUDIO1(sc->sc_model))
               return;

       if (sc->sc_audio2.polled) {
               /* Turn off Audio2 interrupts. */
               ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
                                   ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
       } else {
               /* Audio2 is hardwired to INTRE in this mode. */
               ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
                                 ESS_AUDIO2_CTRL2_IRQ2_ENABLE);
       }
}


void
ess_config_drq(struct ess_softc *sc)
{
       int v;

       DPRINTFN(2,("ess_config_drq\n"));

       /* Configure Audio 1 (record) for DMA on the appropriate channel. */
       v = ESS_DRQ_CTRL_PU | ESS_DRQ_CTRL_EXT;
       switch (sc->sc_audio1.drq) {
       case 0:
               v |= ESS_DRQ_CTRL_DRQA;
               break;
       case 1:
               v |= ESS_DRQ_CTRL_DRQB;
               break;
       case 3:
               v |= ESS_DRQ_CTRL_DRQC;
               break;
#ifdef DIAGNOSTIC
       default:
               printf("ess_config_drq: configured DMA chan %d not supported for Audio 1\n",
                      sc->sc_audio1.drq);
               return;
#endif
       }
       /* Set DRQ1 */
       ess_write_x_reg(sc, ESS_XCMD_DRQ_CTRL, v);

       if (ESS_USE_AUDIO1(sc->sc_model))
               return;

       /* Configure DRQ2 */
       v = ESS_AUDIO2_CTRL3_DRQ_PD;
       switch (sc->sc_audio2.drq) {
       case 0:
               v |= ESS_AUDIO2_CTRL3_DRQA;
               break;
       case 1:
               v |= ESS_AUDIO2_CTRL3_DRQB;
               break;
       case 3:
               v |= ESS_AUDIO2_CTRL3_DRQC;
               break;
       case 5:
               v |= ESS_AUDIO2_CTRL3_DRQD;
               break;
#ifdef DIAGNOSTIC
       default:
               printf("ess_config_drq: configured DMA chan %d not supported for Audio 2\n",
                      sc->sc_audio2.drq);
               return;
#endif
       }
       ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL3, v);
       /* Enable DMA 2 */
       ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2,
                         ESS_AUDIO2_CTRL2_DMA_ENABLE);
}

/*
* Set up registers after a reset.
*/
void
ess_setup(struct ess_softc *sc)
{

       ess_config_irq(sc);
       ess_config_drq(sc);

       DPRINTFN(2,("ess_setup: done\n"));
}

/*
* Determine the model of ESS chip we are talking to.  Currently we
* only support ES1888, ES1887 and ES888.  The method of determining
* the chip is based on the information on page 27 of the ES1887 data
* sheet.
*
* This routine sets the values of sc->sc_model and sc->sc_version.
*/
int
ess_identify(struct ess_softc *sc)
{
       u_char reg1;
       u_char reg2;
       u_char reg3;
       u_int8_t ident[4];

       sc->sc_model = ESS_UNSUPPORTED;
       sc->sc_version = 0;

       memset(ident, 0, sizeof(ident));

       /*
        * 1. Check legacy ID bytes.  These should be 0x68 0x8n, where
        *    n >= 8 for an ES1887 or an ES888.  Other values indicate
        *    earlier (unsupported) chips.
        */
       ess_wdsp(sc, ESS_ACMD_LEGACY_ID);

       if ((reg1 = ess_rdsp(sc)) != 0x68) {
               printf("ess: First ID byte wrong (0x%02x)\n", reg1);
               return 1;
       }

       reg2 = ess_rdsp(sc);
       if (((reg2 & 0xf0) != 0x80) ||
           ((reg2 & 0x0f) < 8)) {
               sc->sc_model = ESS_688;
               return 0;
       }

       /*
        * Store the ID bytes as the version.
        */
       sc->sc_version = (reg1 << 8) + reg2;


       /*
        * 2. Verify we can change bit 2 in mixer register 0x64.  This
        *    should be possible on all supported chips.
        */
       reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
       reg2 = reg1 ^ 0x04;  /* toggle bit 2 */

       ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);

       if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) != reg2) {
               switch (sc->sc_version) {
               case 0x688b:
                       sc->sc_model = ESS_1688;
                       break;
               default:
                       printf("ess: Hardware error (unable to toggle bit 2 of mixer register 0x64)\n");
                       return 1;
               }
               return 0;
       }

       /*
        * Restore the original value of mixer register 0x64.
        */
       ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);


       /*
        * 3. Verify we can change the value of mixer register
        *    ESS_MREG_SAMPLE_RATE.
        *    This is possible on the 1888/1887/888, but not on the 1788.
        *    It is not necessary to restore the value of this mixer register.
        */
       reg1 = ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE);
       reg2 = reg1 ^ 0xff;  /* toggle all bits */

       ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE, reg2);

       if (ess_read_mix_reg(sc, ESS_MREG_SAMPLE_RATE) != reg2) {
               /* If we got this far before failing, it's a 1788. */
               sc->sc_model = ESS_1788;

               /*
                * Identify ESS model for ES18[67]8.
                */
               ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
               if(ident[0] == 0x18) {
                       switch(ident[1]) {
                       case 0x68:
                               sc->sc_model = ESS_1868;
                               break;
                       case 0x78:
                               sc->sc_model = ESS_1878;
                               break;
                       }
               }

               return 0;
       }

       /*
        * 4. Determine if we can change bit 5 in mixer register 0x64.
        *    This determines whether we have an ES1887:
        *
        *    - can change indicates ES1887
        *    - can't change indicates ES1888 or ES888
        */
       reg1 = ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL);
       reg2 = reg1 ^ 0x20;  /* toggle bit 5 */

       ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg2);

       if (ess_read_mix_reg(sc, ESS_MREG_VOLUME_CTRL) == reg2) {
               sc->sc_model = ESS_1887;

               /*
                * Restore the original value of mixer register 0x64.
                */
               ess_write_mix_reg(sc, ESS_MREG_VOLUME_CTRL, reg1);

               /*
                * Identify ESS model for ES18[67]9.
                */
               ess_read_multi_mix_reg(sc, 0x40, ident, sizeof(ident));
               if(ident[0] == 0x18) {
                       switch(ident[1]) {
                       case 0x69:
                               sc->sc_model = ESS_1869;
                               break;
                       case 0x79:
                               sc->sc_model = ESS_1879;
                               break;
                       }
               }

               return 0;
       }

       /*
        * 5. Determine if we can change the value of mixer
        *    register 0x69 independently of mixer register
        *    0x68. This determines which chip we have:
        *
        *    - can modify independently indicates ES888
        *    - register 0x69 is an alias of 0x68 indicates ES1888
        */
       reg1 = ess_read_mix_reg(sc, 0x68);
       reg2 = ess_read_mix_reg(sc, 0x69);
       reg3 = reg2 ^ 0xff;  /* toggle all bits */

       /*
        * Write different values to each register.
        */
       ess_write_mix_reg(sc, 0x68, reg2);
       ess_write_mix_reg(sc, 0x69, reg3);

       if (ess_read_mix_reg(sc, 0x68) == reg2 &&
           ess_read_mix_reg(sc, 0x69) == reg3)
               sc->sc_model = ESS_888;
       else
               sc->sc_model = ESS_1888;

       /*
        * Restore the original value of the registers.
        */
       ess_write_mix_reg(sc, 0x68, reg1);
       ess_write_mix_reg(sc, 0x69, reg2);

       return 0;
}


int
ess_setup_sc(struct ess_softc *sc, int doinit)
{

       /* Reset the chip. */
       if (ess_reset(sc) != 0) {
               DPRINTF(("ess_setup_sc: couldn't reset chip\n"));
               return 1;
       }

       /* Identify the ESS chip, and check that it is supported. */
       if (ess_identify(sc)) {
               DPRINTF(("ess_setup_sc: couldn't identify\n"));
               return 1;
       }

       return 0;
}

/*
* Probe for the ESS hardware.
*/
int
essmatch(struct ess_softc *sc)
{
       if (!ESS_BASE_VALID(sc->sc_iobase)) {
               printf("ess: configured iobase 0x%x invalid\n", sc->sc_iobase);
               return 0;
       }

       if (ess_setup_sc(sc, 1))
               return 0;

       if (sc->sc_model == ESS_UNSUPPORTED) {
               DPRINTF(("ess: Unsupported model\n"));
               return 0;
       }

       /* Check that requested DMA channels are valid and different. */
       if (!ESS_DRQ1_VALID(sc->sc_audio1.drq)) {
               printf("ess: record drq %d invalid\n", sc->sc_audio1.drq);
               return 0;
       }
       if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio1.drq))
               return 0;
       if (!ESS_USE_AUDIO1(sc->sc_model)) {
               if (!ESS_DRQ2_VALID(sc->sc_audio2.drq)) {
                       printf("ess: play drq %d invalid\n", sc->sc_audio2.drq);
                       return 0;
               }
               if (sc->sc_audio1.drq == sc->sc_audio2.drq) {
                       printf("ess: play and record drq both %d\n",
                              sc->sc_audio1.drq);
                       return 0;
               }
               if (!isa_drq_isfree(sc->sc_ic, sc->sc_audio2.drq))
                       return 0;
       }

       /*
        * The 1887 has an additional IRQ mode where both channels are mapped
        * to the same IRQ.
        */
       if (sc->sc_model == ESS_1887 &&
           sc->sc_audio1.irq == sc->sc_audio2.irq &&
           sc->sc_audio1.irq != -1 &&
           ESS_IRQ12_VALID(sc->sc_audio1.irq))
               goto irq_not1888;

       /* Check that requested IRQ lines are valid and different. */
       if (sc->sc_audio1.irq != -1 &&
           !ESS_IRQ1_VALID(sc->sc_audio1.irq)) {
               printf("ess: record irq %d invalid\n", sc->sc_audio1.irq);
               return 0;
       }
       if (!ESS_USE_AUDIO1(sc->sc_model)) {
               if (sc->sc_audio2.irq != -1 &&
                   !ESS_IRQ2_VALID(sc->sc_audio2.irq)) {
                       printf("ess: play irq %d invalid\n", sc->sc_audio2.irq);
                       return 0;
               }
               if (sc->sc_audio1.irq == sc->sc_audio2.irq &&
                   sc->sc_audio1.irq != -1) {
                       printf("ess: play and record irq both %d\n",
                              sc->sc_audio1.irq);
                       return 0;
               }
       }

irq_not1888:
       /* XXX should we check IRQs as well? */

       return 2; /* beat "sb" */
}


/*
* Attach hardware to driver, attach hardware driver to audio
* pseudo-device driver.
*/
void
essattach(struct ess_softc *sc, int enablejoy)
{
       struct audio_attach_args arg;
       int i;
       u_int v;

       if (ess_setup_sc(sc, 0)) {
               aprint_error(": setup failed\n");
               return;
       }

       aprint_normal("ESS Technology ES%s [version 0x%04x]\n",
           essmodel[sc->sc_model], sc->sc_version);

       callout_init(&sc->sc_poll1_ch, CALLOUT_MPSAFE);
       callout_init(&sc->sc_poll2_ch, CALLOUT_MPSAFE);
       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
       mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_AUDIO);

       sc->sc_audio1.polled = sc->sc_audio1.irq == -1;
       if (!sc->sc_audio1.polled) {
               sc->sc_audio1.ih = isa_intr_establish(sc->sc_ic,
                   sc->sc_audio1.irq, sc->sc_audio1.ist, IPL_AUDIO,
                   ess_audio1_intr, sc);
               aprint_normal_dev(sc->sc_dev,
                   "audio1 interrupting at irq %d\n", sc->sc_audio1.irq);
       } else
               aprint_normal_dev(sc->sc_dev, "audio1 polled\n");
       sc->sc_audio1.maxsize = isa_dmamaxsize(sc->sc_ic, sc->sc_audio1.drq);

       if (isa_drq_alloc(sc->sc_ic, sc->sc_audio1.drq) != 0) {
               aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
                   sc->sc_audio1.drq);
               goto fail;
       }

       if (isa_dmamap_create(sc->sc_ic, sc->sc_audio1.drq,
           sc->sc_audio1.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
               aprint_error_dev(sc->sc_dev, "can't create map for drq %d\n",
                   sc->sc_audio1.drq);
               goto fail;
       }

       if (!ESS_USE_AUDIO1(sc->sc_model)) {
               sc->sc_audio2.polled = sc->sc_audio2.irq == -1;
               if (!sc->sc_audio2.polled) {
                       sc->sc_audio2.ih = isa_intr_establish(sc->sc_ic,
                           sc->sc_audio2.irq, sc->sc_audio2.ist, IPL_AUDIO,
                           ess_audio2_intr, sc);
                       aprint_normal_dev(sc->sc_dev,
                           "audio2 interrupting at irq %d\n",
                           sc->sc_audio2.irq);
               } else
                       aprint_normal_dev(sc->sc_dev, "audio2 polled\n");
               sc->sc_audio2.maxsize = isa_dmamaxsize(sc->sc_ic,
                   sc->sc_audio2.drq);

               if (isa_drq_alloc(sc->sc_ic, sc->sc_audio2.drq) != 0) {
                       aprint_error_dev(sc->sc_dev, "can't reserve drq %d\n",
                           sc->sc_audio2.drq);
                       goto fail;
               }

               if (isa_dmamap_create(sc->sc_ic, sc->sc_audio2.drq,
                   sc->sc_audio2.maxsize, BUS_DMA_NOWAIT|BUS_DMA_ALLOCNOW)) {
                       aprint_error_dev(sc->sc_dev,
                           "can't create map for drq %d\n",
                           sc->sc_audio2.drq);
                       goto fail;
               }
       }

       /* Do a hardware reset on the mixer. */
       ess_write_mix_reg(sc, ESS_MIX_RESET, ESS_MIX_RESET);

       /*
        * Set volume of Audio 1 to zero and disable Audio 1 DAC input
        * to playback mixer, since playback is always through Audio 2.
        */
       if (!ESS_USE_AUDIO1(sc->sc_model))
               ess_write_mix_reg(sc, ESS_MREG_VOLUME_VOICE, 0);
       ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);

       if (ESS_USE_AUDIO1(sc->sc_model)) {
               ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIC);
               sc->in_port = ESS_SOURCE_MIC;
               if (ESS_IS_ES18X9(sc->sc_model)) {
                       sc->ndevs = ESS_18X9_NDEVS;
                       sc->sc_spatializer = 0;
                       ess_set_mreg_bits(sc, ESS_MREG_MODE,
                           ESS_MODE_ASYNC_MODE | ESS_MODE_NEWREG);
                       ess_set_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL,
                           ESS_SPATIAL_CTRL_RESET);
                       ess_clear_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL,
                           ESS_SPATIAL_CTRL_ENABLE | ESS_SPATIAL_CTRL_MONO);
               } else
                       sc->ndevs = ESS_1788_NDEVS;
       } else {
               /*
                * Set hardware record source to use output of the record
                * mixer. We do the selection of record source in software by
                * setting the gain of the unused sources to zero. (See
                * ess_set_in_ports.)
                */
               ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ESS_SOURCE_MIXER);
               sc->in_mask = 1 << ESS_MIC_REC_VOL;
               sc->ndevs = ESS_1888_NDEVS;
               ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x10);
               ess_set_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL2, 0x08);
       }

       /*
        * Set gain on each mixer device to a sensible value.
        * Devices not normally used are turned off, and other devices
        * are set to 50% volume.
        */
       for (i = 0; i < sc->ndevs; i++) {
               if (ESS_IS_ES18X9(sc->sc_model)) {
                       switch (i) {
                       case ESS_SPATIALIZER:
                       case ESS_SPATIALIZER_ENABLE:
                               v = 0;
                               goto skip;
                       }
               }
               switch (i) {
               case ESS_MIC_PLAY_VOL:
               case ESS_LINE_PLAY_VOL:
               case ESS_CD_PLAY_VOL:
               case ESS_AUXB_PLAY_VOL:
               case ESS_DAC_REC_VOL:
               case ESS_LINE_REC_VOL:
               case ESS_SYNTH_REC_VOL:
               case ESS_CD_REC_VOL:
               case ESS_AUXB_REC_VOL:
                       v = 0;
                       break;
               default:
                       v = ESS_4BIT_GAIN(AUDIO_MAX_GAIN / 2);
                       break;
               }
skip:
               sc->gain[i][ESS_LEFT] = sc->gain[i][ESS_RIGHT] = v;
               ess_set_gain(sc, i, 1);
       }

       ess_setup(sc);

       /* Disable the speaker until the device is opened.  */
       ess_speaker_off(sc);
       sc->spkr_state = SPKR_OFF;

       snprintf(ess_device.name, sizeof(ess_device.name), "ES%s",
           essmodel[sc->sc_model]);
       snprintf(ess_device.version, sizeof(ess_device.version), "0x%04x",
           sc->sc_version);

       if (ESS_USE_AUDIO1(sc->sc_model))
               audio_attach_mi(&ess_1788_hw_if, sc, sc->sc_dev);
       else
               audio_attach_mi(&ess_1888_hw_if, sc, sc->sc_dev);

       arg.type = AUDIODEV_TYPE_OPL;
       arg.hwif = 0;
       arg.hdl = 0;
       (void)config_found(sc->sc_dev, &arg, audioprint,
           CFARGS(.iattr = "ess"));

#if NJOY_ESS > 0
       if (sc->sc_model == ESS_1888 && enablejoy) {
               unsigned char m40;

               m40 = ess_read_mix_reg(sc, 0x40);
               m40 |= 2;
               ess_write_mix_reg(sc, 0x40, m40);

               arg.type = AUDIODEV_TYPE_AUX;
               (void)config_found(sc->sc_dev, &arg, audioprint,
                   CFARGS(.iattr = "ess"));
       }
#endif

#ifdef AUDIO_DEBUG
       if (essdebug > 0)
               ess_printsc(sc);
#endif

       return;

fail:
       callout_destroy(&sc->sc_poll1_ch);
       callout_destroy(&sc->sc_poll2_ch);
       mutex_destroy(&sc->sc_lock);
       mutex_destroy(&sc->sc_intr_lock);
}

/*
* Various routines to interface to higher level audio driver
*/

void
ess_close(void *addr)
{
       struct ess_softc *sc;

       sc = addr;
       DPRINTF(("ess_close: sc=%p\n", sc));

       ess_speaker_off(sc);
       sc->spkr_state = SPKR_OFF;

       DPRINTF(("ess_close: closed\n"));
}

/* XXX should use reference count */
int
ess_speaker_ctl(void *addr, int newstate)
{
       struct ess_softc *sc;

       sc = addr;
       if ((newstate == SPKR_ON) && (sc->spkr_state == SPKR_OFF)) {
               ess_speaker_on(sc);
               sc->spkr_state = SPKR_ON;
       }
       if ((newstate == SPKR_OFF) && (sc->spkr_state == SPKR_ON)) {
               ess_speaker_off(sc);
               sc->spkr_state = SPKR_OFF;
       }
       return 0;
}

int
ess_getdev(void *addr, struct audio_device *retp)
{

       *retp = ess_device;
       return 0;
}

int
ess_query_format(void *addr, audio_format_query_t *afp)
{

       return audio_query_format(ess_formats, ESS_NFORMATS, afp);
}

int
ess_set_format(void *addr, int setmode,
       const audio_params_t *play, const audio_params_t *rec,
       audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
       struct ess_softc *sc;
       int rate;

       DPRINTF(("%s: set=%d\n", __func__, setmode));
       sc = addr;

       /* *play and *rec are the identical because !AUDIO_PROP_INDEPENDENT. */

       rate = play->sample_rate;
       ess_write_x_reg(sc, ESS_XCMD_SAMPLE_RATE, ess_srtotc(sc, rate));
       ess_write_x_reg(sc, ESS_XCMD_FILTER_CLOCK, ess_srtofc(rate));

       if (!ESS_USE_AUDIO1(sc->sc_model)) {
               ess_write_mix_reg(sc, ESS_MREG_SAMPLE_RATE,
                   ess_srtotc(sc, rate));
               ess_write_mix_reg(sc, ESS_MREG_FILTER_CLOCK, ess_srtofc(rate));
       }

       return 0;
}

int
ess_audio1_trigger_output(
       void *addr,
       void *start, void *end,
       int blksize,
       void (*intr)(void *),
       void *arg,
       const audio_params_t *param)
{
       struct ess_softc *sc;
       u_int8_t reg;

       sc = addr;
       DPRINTFN(1, ("ess_audio1_trigger_output: sc=%p start=%p end=%p "
           "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));

       if (sc->sc_audio1.active)
               panic("ess_audio1_trigger_output: already running");

       sc->sc_audio1.active = 1;
       sc->sc_audio1.intr = intr;
       sc->sc_audio1.arg = arg;
       if (sc->sc_audio1.polled) {
               sc->sc_audio1.dmapos = 0;
               sc->sc_audio1.buffersize = (char *)end - (char *)start;
               sc->sc_audio1.dmacount = 0;
               sc->sc_audio1.blksize = blksize;
               callout_reset(&sc->sc_poll1_ch, hz / 30,
                   ess_audio1_poll, sc);
       }

       reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
       if (param->channels == 2) {
               reg &= ~ESS_AUDIO_CTRL_MONO;
               reg |= ESS_AUDIO_CTRL_STEREO;
       } else {
               reg |= ESS_AUDIO_CTRL_MONO;
               reg &= ~ESS_AUDIO_CTRL_STEREO;
       }
       ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);

       reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
       if (param->precision == 16)
               reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
       else
               reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
       if (param->channels == 2)
               reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
       else
               reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
       if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
           param->encoding == AUDIO_ENCODING_SLINEAR_LE)
               reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
       else
               reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
       reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
       ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);

       isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
                    (char *)end - (char *)start, NULL,
           DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);

       /* Program transfer count registers with 2's complement of count. */
       blksize = -blksize;
       ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
       ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);

       /* Use 4 bytes per output DMA. */
       ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);

       /* Start auto-init DMA */
       ess_wdsp(sc, ESS_ACMD_ENABLE_SPKR);
       reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
       reg &= ~(ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE);
       reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
       ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);

       return 0;
}

int
ess_audio2_trigger_output(
       void *addr,
       void *start, void *end,
       int blksize,
       void (*intr)(void *),
       void *arg,
       const audio_params_t *param)
{
       struct ess_softc *sc;
       u_int8_t reg;

       sc = addr;
       DPRINTFN(1, ("ess_audio2_trigger_output: sc=%p start=%p end=%p "
           "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));

       if (sc->sc_audio2.active)
               panic("ess_audio2_trigger_output: already running");

       sc->sc_audio2.active = 1;
       sc->sc_audio2.intr = intr;
       sc->sc_audio2.arg = arg;
       if (sc->sc_audio2.polled) {
               sc->sc_audio2.dmapos = 0;
               sc->sc_audio2.buffersize = (char *)end - (char *)start;
               sc->sc_audio2.dmacount = 0;
               sc->sc_audio2.blksize = blksize;
               callout_reset(&sc->sc_poll2_ch, hz / 30,
                   ess_audio2_poll, sc);
       }

       reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
       if (param->precision == 16)
               reg |= ESS_AUDIO2_CTRL2_FIFO_SIZE;
       else
               reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIZE;
       if (param->channels == 2)
               reg |= ESS_AUDIO2_CTRL2_CHANNELS;
       else
               reg &= ~ESS_AUDIO2_CTRL2_CHANNELS;
       if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
           param->encoding == AUDIO_ENCODING_SLINEAR_LE)
               reg |= ESS_AUDIO2_CTRL2_FIFO_SIGNED;
       else
               reg &= ~ESS_AUDIO2_CTRL2_FIFO_SIGNED;
       ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);

       isa_dmastart(sc->sc_ic, sc->sc_audio2.drq, start,
                    (char *)end - (char *)start, NULL,
           DMAMODE_WRITE | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);

       if (IS16BITDRQ(sc->sc_audio2.drq))
               blksize >>= 1;  /* use word count for 16 bit DMA */
       /* Program transfer count registers with 2's complement of count. */
       blksize = -blksize;
       ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTLO, blksize);
       ess_write_mix_reg(sc, ESS_MREG_XFER_COUNTHI, blksize >> 8);

       reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1);
       if (IS16BITDRQ(sc->sc_audio2.drq))
               reg |= ESS_AUDIO2_CTRL1_XFER_SIZE;
       else
               reg &= ~ESS_AUDIO2_CTRL1_XFER_SIZE;
       reg |= ESS_AUDIO2_CTRL1_DEMAND_8;
       reg |= ESS_AUDIO2_CTRL1_DAC_ENABLE | ESS_AUDIO2_CTRL1_FIFO_ENABLE |
              ESS_AUDIO2_CTRL1_AUTO_INIT;
       ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL1, reg);

       return (0);
}

int
ess_audio1_trigger_input(
       void *addr,
       void *start, void *end,
       int blksize,
       void (*intr)(void *),
       void *arg,
       const audio_params_t *param)
{
       struct ess_softc *sc;
       u_int8_t reg;

       sc = addr;
       DPRINTFN(1, ("ess_audio1_trigger_input: sc=%p start=%p end=%p "
           "blksize=%d intr=%p(%p)\n", addr, start, end, blksize, intr, arg));

       if (sc->sc_audio1.active)
               panic("ess_audio1_trigger_input: already running");

       sc->sc_audio1.active = 1;
       sc->sc_audio1.intr = intr;
       sc->sc_audio1.arg = arg;
       if (sc->sc_audio1.polled) {
               sc->sc_audio1.dmapos = 0;
               sc->sc_audio1.buffersize = (char *)end - (char *)start;
               sc->sc_audio1.dmacount = 0;
               sc->sc_audio1.blksize = blksize;
               callout_reset(&sc->sc_poll1_ch, hz / 30,
                   ess_audio1_poll, sc);
       }

       reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL);
       if (param->channels == 2) {
               reg &= ~ESS_AUDIO_CTRL_MONO;
               reg |= ESS_AUDIO_CTRL_STEREO;
       } else {
               reg |= ESS_AUDIO_CTRL_MONO;
               reg &= ~ESS_AUDIO_CTRL_STEREO;
       }
       ess_write_x_reg(sc, ESS_XCMD_AUDIO_CTRL, reg);

       reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1);
       if (param->precision == 16)
               reg |= ESS_AUDIO1_CTRL1_FIFO_SIZE;
       else
               reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIZE;
       if (param->channels == 2)
               reg |= ESS_AUDIO1_CTRL1_FIFO_STEREO;
       else
               reg &= ~ESS_AUDIO1_CTRL1_FIFO_STEREO;
       if (param->encoding == AUDIO_ENCODING_SLINEAR_BE ||
           param->encoding == AUDIO_ENCODING_SLINEAR_LE)
               reg |= ESS_AUDIO1_CTRL1_FIFO_SIGNED;
       else
               reg &= ~ESS_AUDIO1_CTRL1_FIFO_SIGNED;
       reg |= ESS_AUDIO1_CTRL1_FIFO_CONNECT;
       ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL1, reg);

       isa_dmastart(sc->sc_ic, sc->sc_audio1.drq, start,
                    (char *)end - (char *)start, NULL,
           DMAMODE_READ | DMAMODE_LOOPDEMAND, BUS_DMA_NOWAIT);

       /* Program transfer count registers with 2's complement of count. */
       blksize = -blksize;
       ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTLO, blksize);
       ess_write_x_reg(sc, ESS_XCMD_XFER_COUNTHI, blksize >> 8);

       /* Use 4 bytes per input DMA. */
       ess_set_xreg_bits(sc, ESS_XCMD_DEMAND_CTRL, ESS_DEMAND_CTRL_DEMAND_4);

       /* Start auto-init DMA */
       ess_wdsp(sc, ESS_ACMD_DISABLE_SPKR);
       reg = ess_read_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2);
       reg |= ESS_AUDIO1_CTRL2_DMA_READ | ESS_AUDIO1_CTRL2_ADC_ENABLE;
       reg |= ESS_AUDIO1_CTRL2_FIFO_ENABLE | ESS_AUDIO1_CTRL2_AUTO_INIT;
       ess_write_x_reg(sc, ESS_XCMD_AUDIO1_CTRL2, reg);

       return 0;
}

int
ess_audio1_halt(void *addr)
{
       struct ess_softc *sc;

       sc = addr;
       DPRINTF(("ess_audio1_halt: sc=%p\n", sc));

       if (sc->sc_audio1.active) {
               ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO1_CTRL2,
                   ESS_AUDIO1_CTRL2_FIFO_ENABLE);
               isa_dmaabort(sc->sc_ic, sc->sc_audio1.drq);
               if (sc->sc_audio1.polled)
                       callout_stop(&sc->sc_poll1_ch);
               sc->sc_audio1.active = 0;
       }

       return 0;
}

int
ess_audio2_halt(void *addr)
{
       struct ess_softc *sc;

       sc = addr;
       DPRINTF(("ess_audio2_halt: sc=%p\n", sc));

       if (sc->sc_audio2.active) {
               ess_clear_mreg_bits(sc, ESS_MREG_AUDIO2_CTRL1,
                   ESS_AUDIO2_CTRL1_DAC_ENABLE |
                   ESS_AUDIO2_CTRL1_FIFO_ENABLE);
               isa_dmaabort(sc->sc_ic, sc->sc_audio2.drq);
               if (sc->sc_audio2.polled)
                       callout_stop(&sc->sc_poll2_ch);
               sc->sc_audio2.active = 0;
       }

       return 0;
}

int
ess_audio1_intr(void *arg)
{
       struct ess_softc *sc;
       uint8_t reg;
       int rv;

       sc = arg;
       DPRINTFN(1,("ess_audio1_intr: intr=%p\n", sc->sc_audio1.intr));

       mutex_spin_enter(&sc->sc_intr_lock);

       /* Check and clear interrupt on Audio1. */
       reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
       if ((reg & ESS_DSP_READ_OFLOW) == 0) {
               mutex_spin_exit(&sc->sc_intr_lock);
               return 0;
       }
       reg = EREAD1(sc->sc_iot, sc->sc_ioh, ESS_CLEAR_INTR);

       sc->sc_audio1.nintr++;

       if (sc->sc_audio1.active) {
               (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
               rv = 1;
       } else
               rv = 0;

       mutex_spin_exit(&sc->sc_intr_lock);

       return rv;
}

int
ess_audio2_intr(void *arg)
{
       struct ess_softc *sc;
       uint8_t reg;
       int rv;

       sc = arg;
       DPRINTFN(1,("ess_audio2_intr: intr=%p\n", sc->sc_audio2.intr));

       mutex_spin_enter(&sc->sc_intr_lock);

       /* Check and clear interrupt on Audio2. */
       reg = ess_read_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2);
       if ((reg & ESS_AUDIO2_CTRL2_IRQ_LATCH) == 0) {
               mutex_spin_exit(&sc->sc_intr_lock);
               return 0;
       }
       reg &= ~ESS_AUDIO2_CTRL2_IRQ_LATCH;
       ess_write_mix_reg(sc, ESS_MREG_AUDIO2_CTRL2, reg);

       sc->sc_audio2.nintr++;

       if (sc->sc_audio2.active) {
               (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
               rv = 1;
       } else
               rv = 0;

       mutex_spin_exit(&sc->sc_intr_lock);

       return rv;
}

void
ess_audio1_poll(void *addr)
{
       struct ess_softc *sc;
       int dmapos, dmacount;

       sc = addr;
       mutex_spin_enter(&sc->sc_intr_lock);

       if (!sc->sc_audio1.active) {
               mutex_spin_exit(&sc->sc_intr_lock);
               return;
       }

       sc->sc_audio1.nintr++;

       dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio1.drq);
       dmacount = sc->sc_audio1.dmapos - dmapos;
       if (dmacount < 0)
               dmacount += sc->sc_audio1.buffersize;
       sc->sc_audio1.dmapos = dmapos;
#if 1
       dmacount += sc->sc_audio1.dmacount;
       while (dmacount > sc->sc_audio1.blksize) {
               dmacount -= sc->sc_audio1.blksize;
               (*sc->sc_audio1.intr)(sc->sc_audio1.arg);
       }
       sc->sc_audio1.dmacount = dmacount;
#else
       (*sc->sc_audio1.intr)(sc->sc_audio1.arg, dmacount);
#endif

       mutex_spin_exit(&sc->sc_intr_lock);
       callout_reset(&sc->sc_poll1_ch, hz / 30, ess_audio1_poll, sc);
}

void
ess_audio2_poll(void *addr)
{
       struct ess_softc *sc;
       int dmapos, dmacount;

       sc = addr;
       mutex_spin_enter(&sc->sc_intr_lock);

       if (!sc->sc_audio2.active) {
               mutex_spin_exit(&sc->sc_intr_lock);
               return;
       }

       sc->sc_audio2.nintr++;

       dmapos = isa_dmacount(sc->sc_ic, sc->sc_audio2.drq);
       dmacount = sc->sc_audio2.dmapos - dmapos;
       if (dmacount < 0)
               dmacount += sc->sc_audio2.buffersize;
       sc->sc_audio2.dmapos = dmapos;
#if 1
       dmacount += sc->sc_audio2.dmacount;
       while (dmacount > sc->sc_audio2.blksize) {
               dmacount -= sc->sc_audio2.blksize;
               (*sc->sc_audio2.intr)(sc->sc_audio2.arg);
       }
       sc->sc_audio2.dmacount = dmacount;
#else
       (*sc->sc_audio2.intr)(sc->sc_audio2.arg, dmacount);
#endif

       mutex_spin_exit(&sc->sc_intr_lock);
       callout_reset(&sc->sc_poll2_ch, hz / 30, ess_audio2_poll, sc);
}

int
ess_round_blocksize(void *addr, int blk, int mode,
   const audio_params_t *param)
{

       return blk & -8;        /* round for max DMA size */
}

int
ess_set_port(void *addr, mixer_ctrl_t *cp)
{
       struct ess_softc *sc;
       int lgain, rgain;

       sc = addr;
       DPRINTFN(5,("ess_set_port: port=%d num_channels=%d\n",
                   cp->dev, cp->un.value.num_channels));

       switch (cp->dev) {
       /*
        * The following mixer ports are all stereo. If we get a
        * single-channel gain value passed in, then we duplicate it
        * to both left and right channels.
        */
       case ESS_MASTER_VOL:
       case ESS_DAC_PLAY_VOL:
       case ESS_MIC_PLAY_VOL:
       case ESS_LINE_PLAY_VOL:
       case ESS_SYNTH_PLAY_VOL:
       case ESS_CD_PLAY_VOL:
       case ESS_AUXB_PLAY_VOL:
       case ESS_RECORD_VOL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       return EINVAL;

               switch (cp->un.value.num_channels) {
               case 1:
                       lgain = rgain = ESS_4BIT_GAIN(
                         cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
                       break;
               case 2:
                       lgain = ESS_4BIT_GAIN(
                         cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
                       rgain = ESS_4BIT_GAIN(
                         cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
                       break;
               default:
                       return EINVAL;
               }

               sc->gain[cp->dev][ESS_LEFT]  = lgain;
               sc->gain[cp->dev][ESS_RIGHT] = rgain;
               ess_set_gain(sc, cp->dev, 1);
               return 0;

       /*
        * The PC speaker port is mono. If we get a stereo gain value
        * passed in, then we return EINVAL.
        */
       case ESS_PCSPEAKER_VOL:
               if (cp->un.value.num_channels != 1)
                       return EINVAL;

               sc->gain[cp->dev][ESS_LEFT] = sc->gain[cp->dev][ESS_RIGHT] =
                 ESS_3BIT_GAIN(cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
               ess_set_gain(sc, cp->dev, 1);
               return 0;

       case ESS_RECORD_SOURCE:
               if (ESS_USE_AUDIO1(sc->sc_model)) {
                       if (cp->type == AUDIO_MIXER_ENUM)
                               return ess_set_in_port(sc, cp->un.ord);
                       else
                               return EINVAL;
               } else {
                       if (cp->type == AUDIO_MIXER_SET)
                               return ess_set_in_ports(sc, cp->un.mask);
                       else
                               return EINVAL;
               }
               return 0;

       case ESS_RECORD_MONITOR:
               if (cp->type != AUDIO_MIXER_ENUM)
                       return EINVAL;

               if (cp->un.ord)
                       /* Enable monitor */
                       ess_set_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
                                         ESS_AUDIO_CTRL_MONITOR);
               else
                       /* Disable monitor */
                       ess_clear_xreg_bits(sc, ESS_XCMD_AUDIO_CTRL,
                                           ESS_AUDIO_CTRL_MONITOR);
               return 0;
       }

       if (ESS_IS_ES18X9(sc->sc_model)) {

               switch (cp->dev) {
               case ESS_SPATIALIZER:
                       if (cp->type != AUDIO_MIXER_VALUE ||
                           cp->un.value.num_channels != 1)
                               return EINVAL;

                       sc->gain[cp->dev][ESS_LEFT] =
                               sc->gain[cp->dev][ESS_RIGHT] = ESS_6BIT_GAIN(
                                   cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
                       ess_set_gain(sc, cp->dev, 1);
                       return 0;

               case ESS_SPATIALIZER_ENABLE:
                       if (cp->type != AUDIO_MIXER_ENUM)
                               return EINVAL;

                       sc->sc_spatializer = (cp->un.ord != 0);
                       if (sc->sc_spatializer)
                               ess_set_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL,
                                   ESS_SPATIAL_CTRL_ENABLE);
                       else
                               ess_clear_mreg_bits(sc, ESS_MREG_SPATIAL_CTRL,
                                   ESS_SPATIAL_CTRL_ENABLE);
                       return 0;
               }
       }

       if (ESS_USE_AUDIO1(sc->sc_model))
               return EINVAL;

       switch (cp->dev) {
       case ESS_DAC_REC_VOL:
       case ESS_MIC_REC_VOL:
       case ESS_LINE_REC_VOL:
       case ESS_SYNTH_REC_VOL:
       case ESS_CD_REC_VOL:
       case ESS_AUXB_REC_VOL:
               if (cp->type != AUDIO_MIXER_VALUE)
                       return EINVAL;

               switch (cp->un.value.num_channels) {
               case 1:
                       lgain = rgain = ESS_4BIT_GAIN(
                         cp->un.value.level[AUDIO_MIXER_LEVEL_MONO]);
                       break;
               case 2:
                       lgain = ESS_4BIT_GAIN(
                         cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT]);
                       rgain = ESS_4BIT_GAIN(
                         cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT]);
                       break;
               default:
                       return EINVAL;
               }

               sc->gain[cp->dev][ESS_LEFT]  = lgain;
               sc->gain[cp->dev][ESS_RIGHT] = rgain;
               ess_set_gain(sc, cp->dev, 1);
               return 0;

       case ESS_MIC_PREAMP:
               if (cp->type != AUDIO_MIXER_ENUM)
                       return EINVAL;

               if (cp->un.ord)
                       /* Enable microphone preamp */
                       ess_set_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
                                         ESS_PREAMP_CTRL_ENABLE);
               else
                       /* Disable microphone preamp */
                       ess_clear_xreg_bits(sc, ESS_XCMD_PREAMP_CTRL,
                                         ESS_PREAMP_CTRL_ENABLE);
               return 0;
       }

       return EINVAL;
}

int
ess_get_port(void *addr, mixer_ctrl_t *cp)
{
       struct ess_softc *sc;

       sc = addr;
       DPRINTFN(5,("ess_get_port: port=%d\n", cp->dev));

       switch (cp->dev) {
       case ESS_MASTER_VOL:
       case ESS_DAC_PLAY_VOL:
       case ESS_MIC_PLAY_VOL:
       case ESS_LINE_PLAY_VOL:
       case ESS_SYNTH_PLAY_VOL:
       case ESS_CD_PLAY_VOL:
       case ESS_AUXB_PLAY_VOL:
       case ESS_RECORD_VOL:
               switch (cp->un.value.num_channels) {
               case 1:
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                               sc->gain[cp->dev][ESS_LEFT];
                       break;
               case 2:
                       cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
                               sc->gain[cp->dev][ESS_LEFT];
                       cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
                               sc->gain[cp->dev][ESS_RIGHT];
                       break;
               default:
                       return EINVAL;
               }
               return 0;

       case ESS_PCSPEAKER_VOL:
               if (cp->un.value.num_channels != 1)
                       return EINVAL;

               cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                       sc->gain[cp->dev][ESS_LEFT];
               return 0;

       case ESS_RECORD_SOURCE:
               if (ESS_USE_AUDIO1(sc->sc_model))
                       cp->un.ord = sc->in_port;
               else
                       cp->un.mask = sc->in_mask;
               return 0;

       case ESS_RECORD_MONITOR:
               cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_AUDIO_CTRL) &
                             ESS_AUDIO_CTRL_MONITOR) ? 1 : 0;
               return 0;
       }

       if (ESS_IS_ES18X9(sc->sc_model)) {

               switch (cp->dev) {
               case ESS_SPATIALIZER:
                       if (cp->un.value.num_channels != 1)
                               return EINVAL;

                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                               sc->gain[cp->dev][ESS_LEFT];
                       return 0;

               case ESS_SPATIALIZER_ENABLE:
                       cp->un.ord = sc->sc_spatializer;
                       return 0;
               }
       }

       if (ESS_USE_AUDIO1(sc->sc_model))
               return EINVAL;

       switch (cp->dev) {
       case ESS_DAC_REC_VOL:
       case ESS_MIC_REC_VOL:
       case ESS_LINE_REC_VOL:
       case ESS_SYNTH_REC_VOL:
       case ESS_CD_REC_VOL:
       case ESS_AUXB_REC_VOL:
               switch (cp->un.value.num_channels) {
               case 1:
                       cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] =
                               sc->gain[cp->dev][ESS_LEFT];
                       break;
               case 2:
                       cp->un.value.level[AUDIO_MIXER_LEVEL_LEFT] =
                               sc->gain[cp->dev][ESS_LEFT];
                       cp->un.value.level[AUDIO_MIXER_LEVEL_RIGHT] =
                               sc->gain[cp->dev][ESS_RIGHT];
                       break;
               default:
                       return EINVAL;
               }
               return 0;

       case ESS_MIC_PREAMP:
               cp->un.ord = (ess_read_x_reg(sc, ESS_XCMD_PREAMP_CTRL) &
                             ESS_PREAMP_CTRL_ENABLE) ? 1 : 0;
               return 0;
       }

       return EINVAL;
}

int
ess_query_devinfo(void *addr, mixer_devinfo_t *dip)
{
       struct ess_softc *sc;

       sc = addr;
       DPRINTFN(5,("ess_query_devinfo: model=%d index=%d\n",
                   sc->sc_model, dip->index));

       /*
        * REVISIT: There are some slight differences between the
        *          mixers on the different ESS chips, which can
        *          be sorted out using the chip model rather than a
        *          separate mixer model.
        *          This is currently coded assuming an ES1887; we
        *          need to work out which bits are not applicable to
        *          the other models (1888 and 888).
        */
       switch (dip->index) {
       case ESS_DAC_PLAY_VOL:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNdac);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_MIC_PLAY_VOL:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->prev = AUDIO_MIXER_LAST;
               if (ESS_USE_AUDIO1(sc->sc_model))
                       dip->next = AUDIO_MIXER_LAST;
               else
                       dip->next = ESS_MIC_PREAMP;
               strcpy(dip->label.name, AudioNmicrophone);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_LINE_PLAY_VOL:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNline);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_SYNTH_PLAY_VOL:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNfmsynth);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_CD_PLAY_VOL:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNcd);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_AUXB_PLAY_VOL:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "auxb");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_INPUT_CLASS:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCinputs);
               dip->type = AUDIO_MIXER_CLASS;
               return 0;

       case ESS_MASTER_VOL:
               dip->mixer_class = ESS_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmaster);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_PCSPEAKER_VOL:
               dip->mixer_class = ESS_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "pc_speaker");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_OUTPUT_CLASS:
               dip->mixer_class = ESS_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCoutputs);
               dip->type = AUDIO_MIXER_CLASS;
               return 0;

       case ESS_RECORD_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNrecord);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_RECORD_SOURCE:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNsource);
               if (ESS_USE_AUDIO1(sc->sc_model)) {
                       /*
                        * The 1788 doesn't use the input mixer control that
                        * the 1888 uses, because it's a pain when you only
                        * have one mixer.
                        * Perhaps it could be emulated by keeping both sets of
                        * gain values, and doing a `context switch' of the
                        * mixer registers when shifting from playing to
                        * recording.
                        */
                       dip->type = AUDIO_MIXER_ENUM;
                       dip->un.e.num_mem = 4;
                       strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
                       dip->un.e.member[0].ord = ESS_SOURCE_MIC;
                       strcpy(dip->un.e.member[1].label.name, AudioNline);
                       dip->un.e.member[1].ord = ESS_SOURCE_LINE;
                       strcpy(dip->un.e.member[2].label.name, AudioNcd);
                       dip->un.e.member[2].ord = ESS_SOURCE_CD;
                       strcpy(dip->un.e.member[3].label.name, AudioNmixerout);
                       dip->un.e.member[3].ord = ESS_SOURCE_MIXER;
               } else {
                       dip->type = AUDIO_MIXER_SET;
                       dip->un.s.num_mem = 6;
                       strcpy(dip->un.s.member[0].label.name, AudioNdac);
                       dip->un.s.member[0].mask = 1 << ESS_DAC_REC_VOL;
                       strcpy(dip->un.s.member[1].label.name, AudioNmicrophone);
                       dip->un.s.member[1].mask = 1 << ESS_MIC_REC_VOL;
                       strcpy(dip->un.s.member[2].label.name, AudioNline);
                       dip->un.s.member[2].mask = 1 << ESS_LINE_REC_VOL;
                       strcpy(dip->un.s.member[3].label.name, AudioNfmsynth);
                       dip->un.s.member[3].mask = 1 << ESS_SYNTH_REC_VOL;
                       strcpy(dip->un.s.member[4].label.name, AudioNcd);
                       dip->un.s.member[4].mask = 1 << ESS_CD_REC_VOL;
                       strcpy(dip->un.s.member[5].label.name, "auxb");
                       dip->un.s.member[5].mask = 1 << ESS_AUXB_REC_VOL;
               }
               return 0;

       case ESS_RECORD_CLASS:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCrecord);
               dip->type = AUDIO_MIXER_CLASS;
               return 0;

       case ESS_RECORD_MONITOR:
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmute);
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = ESS_MONITOR_CLASS;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               return 0;

       case ESS_MONITOR_CLASS:
               dip->mixer_class = ESS_MONITOR_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCmonitor);
               dip->type = AUDIO_MIXER_CLASS;
               return 0;
       }

       if (ESS_IS_ES18X9(sc->sc_model)) {

               switch (dip->index) {
               case ESS_SPATIALIZER:
                       dip->mixer_class = ESS_OUTPUT_CLASS;
                       dip->prev = AUDIO_MIXER_LAST;
                       dip->next = ESS_SPATIALIZER_ENABLE;
                       strcpy(dip->label.name, AudioNspatial);
                       dip->type = AUDIO_MIXER_VALUE;
                       dip->un.v.num_channels = 1;
                       strcpy(dip->un.v.units.name, "level");
                       return 0;

               case ESS_SPATIALIZER_ENABLE:
                       dip->mixer_class = ESS_OUTPUT_CLASS;
                       dip->prev = ESS_SPATIALIZER;
                       dip->next = AUDIO_MIXER_LAST;
                       strcpy(dip->label.name, "enable");
                       dip->type = AUDIO_MIXER_ENUM;
                       dip->un.e.num_mem = 2;
                       strcpy(dip->un.e.member[0].label.name, AudioNoff);
                       dip->un.e.member[0].ord = 0;
                       strcpy(dip->un.e.member[1].label.name, AudioNon);
                       dip->un.e.member[1].ord = 1;
                       return 0;
               }
       }

       if (ESS_USE_AUDIO1(sc->sc_model))
               return ENXIO;

       switch (dip->index) {
       case ESS_DAC_REC_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNdac);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_MIC_REC_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmicrophone);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_LINE_REC_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNline);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_SYNTH_REC_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNfmsynth);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_CD_REC_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNcd);
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_AUXB_REC_VOL:
               dip->mixer_class = ESS_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, "auxb");
               dip->type = AUDIO_MIXER_VALUE;
               dip->un.v.num_channels = 2;
               strcpy(dip->un.v.units.name, AudioNvolume);
               return 0;

       case ESS_MIC_PREAMP:
               dip->mixer_class = ESS_INPUT_CLASS;
               dip->prev = ESS_MIC_PLAY_VOL;
               dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNpreamp);
               dip->type = AUDIO_MIXER_ENUM;
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               return 0;
       }

       return ENXIO;
}

void *
ess_malloc(void *addr, int direction, size_t size)
{
       struct ess_softc *sc;
       int drq;

       sc = addr;
       if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
               drq = sc->sc_audio2.drq;
       else
               drq = sc->sc_audio1.drq;
       return (isa_malloc(sc->sc_ic, drq, size, M_DEVBUF, M_WAITOK));
}

void
ess_free(void *addr, void *ptr, size_t size)
{

       isa_free(ptr, M_DEVBUF);
}

size_t
ess_round_buffersize(void *addr, int direction, size_t size)
{
       struct ess_softc *sc;
       bus_size_t maxsize;

       sc = addr;
       if ((!ESS_USE_AUDIO1(sc->sc_model)) && direction == AUMODE_PLAY)
               maxsize = sc->sc_audio2.maxsize;
       else
               maxsize = sc->sc_audio1.maxsize;

       if (size > maxsize)
               size = maxsize;
       return size;
}

int
ess_1788_get_props(void *addr)
{

       return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE;
}

int
ess_1888_get_props(void *addr)
{

       return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
           AUDIO_PROP_FULLDUPLEX;
}

void
ess_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
       struct ess_softc *sc;

       sc = addr;
       *intr = &sc->sc_intr_lock;
       *thread = &sc->sc_lock;
}


/* ============================================
* Generic functions for ess, not used by audio h/w i/f
* =============================================
*/

/*
* Reset the chip.
* Return non-zero if the chip isn't detected.
*/
int
ess_reset(struct ess_softc *sc)
{
       bus_space_tag_t iot;
       bus_space_handle_t ioh;

       iot = sc->sc_iot;
       ioh = sc->sc_ioh;
       sc->sc_audio1.active = 0;
       sc->sc_audio2.active = 0;

       EWRITE1(iot, ioh, ESS_DSP_RESET, ESS_RESET_EXT);
       delay(10000);           /* XXX shouldn't delay so long */
       EWRITE1(iot, ioh, ESS_DSP_RESET, 0);
       if (ess_rdsp(sc) != ESS_MAGIC)
               return 1;

       /* Enable access to the ESS extension commands. */
       ess_wdsp(sc, ESS_ACMD_ENABLE_EXT);

       return 0;
}

void
ess_set_gain(struct ess_softc *sc, int port, int on)
{
       int gain, left, right;
       int mix;
       int src;
       int stereo;

       /*
        * Most gain controls are found in the mixer registers and
        * are stereo. Any that are not, must set mix and stereo as
        * required.
        */
       mix = 1;
       stereo = 1;

       if (ESS_IS_ES18X9(sc->sc_model)) {
               switch (port) {
               case ESS_SPATIALIZER:
                       src = ESS_MREG_SPATIAL_LEVEL;
                       stereo = -1;
                       goto skip;
               case ESS_SPATIALIZER_ENABLE:
                       return;
               }
       }
       switch (port) {
       case ESS_MASTER_VOL:
               src = ESS_MREG_VOLUME_MASTER;
               break;
       case ESS_DAC_PLAY_VOL:
               if (ESS_USE_AUDIO1(sc->sc_model))
                       src = ESS_MREG_VOLUME_VOICE;
               else
                       src = 0x7C;
               break;
       case ESS_MIC_PLAY_VOL:
               src = ESS_MREG_VOLUME_MIC;
               break;
       case ESS_LINE_PLAY_VOL:
               src = ESS_MREG_VOLUME_LINE;
               break;
       case ESS_SYNTH_PLAY_VOL:
               src = ESS_MREG_VOLUME_SYNTH;
               break;
       case ESS_CD_PLAY_VOL:
               src = ESS_MREG_VOLUME_CD;
               break;
       case ESS_AUXB_PLAY_VOL:
               src = ESS_MREG_VOLUME_AUXB;
               break;
       case ESS_PCSPEAKER_VOL:
               src = ESS_MREG_VOLUME_PCSPKR;
               stereo = 0;
               break;
       case ESS_DAC_REC_VOL:
               src = 0x69;
               break;
       case ESS_MIC_REC_VOL:
               src = 0x68;
               break;
       case ESS_LINE_REC_VOL:
               src = 0x6E;
               break;
       case ESS_SYNTH_REC_VOL:
               src = 0x6B;
               break;
       case ESS_CD_REC_VOL:
               src = 0x6A;
               break;
       case ESS_AUXB_REC_VOL:
               src = 0x6C;
               break;
       case ESS_RECORD_VOL:
               src = ESS_XCMD_VOLIN_CTRL;
               mix = 0;
               break;
       default:
               return;
       }
skip:

       /* 1788 doesn't have a separate recording mixer */
       if (ESS_USE_AUDIO1(sc->sc_model) && mix && src > 0x62)
               return;

       if (on) {
               left = sc->gain[port][ESS_LEFT];
               right = sc->gain[port][ESS_RIGHT];
       } else {
               left = right = 0;
       }

       if (stereo == -1)
               gain = ESS_SPATIAL_GAIN(left);
       else if (stereo)
               gain = ESS_STEREO_GAIN(left, right);
       else
               gain = ESS_MONO_GAIN(left);

       if (mix)
               ess_write_mix_reg(sc, src, gain);
       else
               ess_write_x_reg(sc, src, gain);
}

/* Set the input device on devices without an input mixer. */
int
ess_set_in_port(struct ess_softc *sc, int ord)
{
       mixer_devinfo_t di;
       int i;

       DPRINTF(("ess_set_in_port: ord=0x%x\n", ord));

       /*
        * Get the device info for the record source control,
        * including the list of available sources.
        */
       di.index = ESS_RECORD_SOURCE;
       if (ess_query_devinfo(sc, &di))
               return EINVAL;

       /* See if the given ord value was anywhere in the list. */
       for (i = 0; i < di.un.e.num_mem; i++) {
               if (ord == di.un.e.member[i].ord)
                       break;
       }
       if (i == di.un.e.num_mem)
               return EINVAL;

       ess_write_mix_reg(sc, ESS_MREG_ADC_SOURCE, ord);

       sc->in_port = ord;
       return 0;
}

/* Set the input device levels on input-mixer-enabled devices. */
int
ess_set_in_ports(struct ess_softc *sc, int mask)
{
       mixer_devinfo_t di;
       int i, port;

       DPRINTF(("ess_set_in_ports: mask=0x%x\n", mask));

       /*
        * Get the device info for the record source control,
        * including the list of available sources.
        */
       di.index = ESS_RECORD_SOURCE;
       if (ess_query_devinfo(sc, &di))
               return EINVAL;

       /*
        * Set or disable the record volume control for each of the
        * possible sources.
        */
       for (i = 0; i < di.un.s.num_mem; i++) {
               /*
                * Calculate the source port number from its mask.
                */
               port = ffs(di.un.s.member[i].mask);

               /*
                * Set the source gain:
                *      to the current value if source is enabled
                *      to zero if source is disabled
                */
               ess_set_gain(sc, port, mask & di.un.s.member[i].mask);
       }

       sc->in_mask = mask;
       return 0;
}

void
ess_speaker_on(struct ess_softc *sc)
{

       /* Unmute the DAC. */
       ess_set_gain(sc, ESS_DAC_PLAY_VOL, 1);
}

void
ess_speaker_off(struct ess_softc *sc)
{

       /* Mute the DAC. */
       ess_set_gain(sc, ESS_DAC_PLAY_VOL, 0);
}

/*
* Calculate the time constant for the requested sampling rate.
*/
u_int
ess_srtotc(struct ess_softc *sc, u_int rate)
{
       u_int tc;

       /* The following formulae are from the ESS data sheet. */
       if (ESS_IS_ES18X9(sc->sc_model)) {
               if ((rate % 8000) != 0)
                       tc = 128 - 793800L / rate;
               else
                       tc = 256 - 768000L / rate;
       } else {
               if (rate <= 22050)
                       tc = 128 - 397700L / rate;
               else
                       tc = 256 - 795500L / rate;
       }

       return tc;
}


/*
* Calculate the filter constant for the requested sampling rate.
*/
u_int
ess_srtofc(u_int rate)
{
       /*
        * The following formula is derived from the information in
        * the ES1887 data sheet, based on a roll-off frequency of
        * 87%.
        */
       return 256 - 200279L / rate;
}


/*
* Return the status of the DSP.
*/
u_char
ess_get_dsp_status(struct ess_softc *sc)
{
       return EREAD1(sc->sc_iot, sc->sc_ioh, ESS_DSP_RW_STATUS);
}


/*
* Return the read status of the DSP:   1 -> DSP ready for reading
*                                      0 -> DSP not ready for reading
*/
u_char
ess_dsp_read_ready(struct ess_softc *sc)
{

       return (ess_get_dsp_status(sc) & ESS_DSP_READ_READY) ? 1 : 0;
}


/*
* Return the write status of the DSP:  1 -> DSP ready for writing
*                                      0 -> DSP not ready for writing
*/
u_char
ess_dsp_write_ready(struct ess_softc *sc)
{
       return (ess_get_dsp_status(sc) & ESS_DSP_WRITE_BUSY) ? 0 : 1;
}


/*
* Read a byte from the DSP.
*/
int
ess_rdsp(struct ess_softc *sc)
{
       bus_space_tag_t iot;
       bus_space_handle_t ioh;
       int i;

       iot = sc->sc_iot;
       ioh = sc->sc_ioh;
       for (i = ESS_READ_TIMEOUT; i > 0; --i) {
               if (ess_dsp_read_ready(sc)) {
                       i = EREAD1(iot, ioh, ESS_DSP_READ);
                       DPRINTFN(8,("ess_rdsp() = 0x%02x\n", i));
                       return i;
               } else
                       delay(10);
       }

       DPRINTF(("ess_rdsp: timed out\n"));
       return -1;
}

/*
* Write a byte to the DSP.
*/
int
ess_wdsp(struct ess_softc *sc, u_char v)
{
       bus_space_tag_t iot;
       bus_space_handle_t ioh;
       int i;

       DPRINTFN(8,("ess_wdsp(0x%02x)\n", v));

       iot = sc->sc_iot;
       ioh = sc->sc_ioh;
       for (i = ESS_WRITE_TIMEOUT; i > 0; --i) {
               if (ess_dsp_write_ready(sc)) {
                       EWRITE1(iot, ioh, ESS_DSP_WRITE, v);
                       return 0;
               } else
                       delay(10);
       }

       DPRINTF(("ess_wdsp(0x%02x): timed out\n", v));
       return -1;
}

/*
* Write a value to one of the ESS extended registers.
*/
int
ess_write_x_reg(struct ess_softc *sc, u_char reg, u_char val)
{
       int error;

       DPRINTFN(2,("ess_write_x_reg: %02x=%02x\n", reg, val));
       if ((error = ess_wdsp(sc, reg)) == 0)
               error = ess_wdsp(sc, val);

       return error;
}

/*
* Read the value of one of the ESS extended registers.
*/
u_char
ess_read_x_reg(struct ess_softc *sc, u_char reg)
{
       int error;
       int val;

       if ((error = ess_wdsp(sc, 0xC0)) == 0)
               error = ess_wdsp(sc, reg);
       if (error) {
               DPRINTF(("Error reading extended register 0x%02x\n", reg));
       }
/* REVISIT: what if an error is returned above? */
       val = ess_rdsp(sc);
       DPRINTFN(2,("ess_read_x_reg: %02x=%02x\n", reg, val));
       return val;
}

void
ess_clear_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{
       if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) & ~mask) == -1) {
               DPRINTF(("Error clearing bits in extended register 0x%02x\n",
                        reg));
       }
}

void
ess_set_xreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{
       if (ess_write_x_reg(sc, reg, ess_read_x_reg(sc, reg) | mask) == -1) {
               DPRINTF(("Error setting bits in extended register 0x%02x\n",
                        reg));
       }
}


/*
* Write a value to one of the ESS mixer registers.
*/
void
ess_write_mix_reg(struct ess_softc *sc, u_char reg, u_char val)
{
       bus_space_tag_t iot;
       bus_space_handle_t ioh;

       DPRINTFN(2,("ess_write_mix_reg: %x=%x\n", reg, val));

       iot = sc->sc_iot;
       ioh = sc->sc_ioh;
       EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
       EWRITE1(iot, ioh, ESS_MIX_REG_DATA, val);
}

/*
* Read the value of one of the ESS mixer registers.
*/
u_char
ess_read_mix_reg(struct ess_softc *sc, u_char reg)
{
       bus_space_tag_t iot;
       bus_space_handle_t ioh;
       u_char val;

       iot = sc->sc_iot;
       ioh = sc->sc_ioh;
       EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
       val = EREAD1(iot, ioh, ESS_MIX_REG_DATA);

       DPRINTFN(2,("ess_read_mix_reg: %x=%x\n", reg, val));
       return val;
}

void
ess_clear_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{

       ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) & ~mask);
}

void
ess_set_mreg_bits(struct ess_softc *sc, u_char reg, u_char mask)
{

       ess_write_mix_reg(sc, reg, ess_read_mix_reg(sc, reg) | mask);
}

void
ess_read_multi_mix_reg(struct ess_softc *sc, u_char reg,
                      uint8_t *datap, bus_size_t count)
{
       bus_space_tag_t iot;
       bus_space_handle_t ioh;

       iot = sc->sc_iot;
       ioh = sc->sc_ioh;
       EWRITE1(iot, ioh, ESS_MIX_REG_SELECT, reg);
       bus_space_read_multi_1(iot, ioh, ESS_MIX_REG_DATA, datap, count);
}