/*      $NetBSD: ipmi.c,v 1.14 2024/12/04 15:26:07 riastradh Exp $ */

/*
* Copyright (c) 2019 Michael van Elst
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
/*
* Copyright (c) 2006 Manuel Bouyer.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/

/*
* Copyright (c) 2005 Jordan Hargrave
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ipmi.c,v 1.14 2024/12/04 15:26:07 riastradh Exp $");

#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/extent.h>
#include <sys/callout.h>
#include <sys/envsys.h>
#include <sys/malloc.h>
#include <sys/kthread.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/ioctl.h>
#include <sys/poll.h>
#include <sys/conf.h>

#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>

#include <sys/ipmi.h>
#include <dev/ipmivar.h>

#include <uvm/uvm_extern.h>

#include "ioconf.h"

static dev_type_open(ipmi_open);
static dev_type_close(ipmi_close);
static dev_type_ioctl(ipmi_ioctl);
static dev_type_poll(ipmi_poll);

const struct cdevsw ipmi_cdevsw = {
       .d_open = ipmi_open,
       .d_close = ipmi_close,
       .d_read = noread,
       .d_write = nowrite,
       .d_ioctl = ipmi_ioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = ipmi_poll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER
};

#define IPMIUNIT(n) (minor(n))

struct ipmi_sensor {
       uint8_t *i_sdr;
       int             i_num;
       int             i_stype;
       int             i_etype;
       char            i_envdesc[64];
       int             i_envtype; /* envsys compatible type */
       int             i_envnum; /* envsys index */
       sysmon_envsys_lim_t i_limits, i_deflims;
       uint32_t        i_props, i_defprops;
       SLIST_ENTRY(ipmi_sensor) i_list;
       int32_t         i_prevval;      /* feed rnd source on change */
};

#if 0
static  int ipmi_nintr;
#endif
static  int ipmi_dbg = 0;
static  int ipmi_enabled = 0;

#define SENSOR_REFRESH_RATE (hz / 2)

#define IPMI_BTMSG_LEN                  0
#define IPMI_BTMSG_NFLN                 1
#define IPMI_BTMSG_SEQ                  2
#define IPMI_BTMSG_CMD                  3
#define IPMI_BTMSG_CCODE                4
#define IPMI_BTMSG_DATASND              4
#define IPMI_BTMSG_DATARCV              5

#define IPMI_MSG_NFLN                   0
#define IPMI_MSG_CMD                    1
#define IPMI_MSG_CCODE                  2
#define IPMI_MSG_DATASND                2
#define IPMI_MSG_DATARCV                3

#define IPMI_SENSOR_TYPE_TEMP           0x0101
#define IPMI_SENSOR_TYPE_VOLT           0x0102
#define IPMI_SENSOR_TYPE_FAN            0x0104
#define IPMI_SENSOR_TYPE_INTRUSION      0x6F05
#define IPMI_SENSOR_TYPE_PWRSUPPLY      0x6F08

#define IPMI_NAME_UNICODE               0x00
#define IPMI_NAME_BCDPLUS               0x01
#define IPMI_NAME_ASCII6BIT             0x02
#define IPMI_NAME_ASCII8BIT             0x03

#define IPMI_ENTITY_PWRSUPPLY           0x0A

#define IPMI_SENSOR_SCANNING_ENABLED    (1L << 6)
#define IPMI_SENSOR_UNAVAILABLE         (1L << 5)
#define IPMI_INVALID_SENSOR_P(x) \
       (((x) & (IPMI_SENSOR_SCANNING_ENABLED|IPMI_SENSOR_UNAVAILABLE)) \
       != IPMI_SENSOR_SCANNING_ENABLED)

#define IPMI_SDR_TYPEFULL               1
#define IPMI_SDR_TYPECOMPACT            2

#define byteof(x) ((x) >> 3)
#define bitof(x)  (1L << ((x) & 0x7))
#define TB(b,m)   (data[2+byteof(b)] & bitof(b))

#define dbg_printf(lvl, fmt...) \
       if (ipmi_dbg >= lvl) \
               printf(fmt);
#define dbg_dump(lvl, msg, len, buf) \
       if (len && ipmi_dbg >= lvl) \
               dumpb(msg, len, (const uint8_t *)(buf));

static  long signextend(unsigned long, int);

SLIST_HEAD(ipmi_sensors_head, ipmi_sensor);
static struct ipmi_sensors_head ipmi_sensor_list =
   SLIST_HEAD_INITIALIZER(&ipmi_sensor_list);

static  void dumpb(const char *, int, const uint8_t *);

static  int read_sensor(struct ipmi_softc *, struct ipmi_sensor *);
static  int add_sdr_sensor(struct ipmi_softc *, uint8_t *);
static  int get_sdr_partial(struct ipmi_softc *, uint16_t, uint16_t,
           uint8_t, uint8_t, void *, uint16_t *);
static  int get_sdr(struct ipmi_softc *, uint16_t, uint16_t *);

static  char *ipmi_buf_acquire(struct ipmi_softc *, size_t);
static  void ipmi_buf_release(struct ipmi_softc *, char *);
static  int ipmi_sendcmd(struct ipmi_softc *, int, int, int, int, int, const void*);
static  int ipmi_recvcmd(struct ipmi_softc *, int, int *, void *);
static  void ipmi_delay(struct ipmi_softc *, int);

static  int ipmi_get_device_id(struct ipmi_softc *, struct ipmi_device_id *);
static  int ipmi_watchdog_setmode(struct sysmon_wdog *);
static  int ipmi_watchdog_tickle(struct sysmon_wdog *);
static  void ipmi_dotickle(struct ipmi_softc *);

#if 0
static  int ipmi_intr(void *);
#endif

static  int ipmi_match(device_t, cfdata_t, void *);
static  void ipmi_attach(device_t, device_t, void *);
static  int ipmi_detach(device_t, int);

static  long    ipmi_convert(uint8_t, struct sdrtype1 *, long);
static  void    ipmi_sensor_name(char *, int, uint8_t, uint8_t *);

/* BMC Helper Functions */
static  uint8_t bmc_read(struct ipmi_softc *, int);
static  void bmc_write(struct ipmi_softc *, int, uint8_t);
static  int bmc_io_wait(struct ipmi_softc *, int, uint8_t, uint8_t, const char *);
static  int bmc_io_wait_spin(struct ipmi_softc *, int, uint8_t, uint8_t);
static  int bmc_io_wait_sleep(struct ipmi_softc *, int, uint8_t, uint8_t);

static  void *cmn_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);

static  int getbits(uint8_t *, int, int);
static  int ipmi_sensor_type(int, int, int);

static  void ipmi_refresh_sensors(struct ipmi_softc *);
static  int ipmi_map_regs(struct ipmi_softc *, struct ipmi_attach_args *);
static  void ipmi_unmap_regs(struct ipmi_softc *);

static  int32_t ipmi_convert_sensor(uint8_t *, struct ipmi_sensor *);
static  void ipmi_set_limits(struct sysmon_envsys *, envsys_data_t *,
               sysmon_envsys_lim_t *, uint32_t *);
static  void ipmi_get_limits(struct sysmon_envsys *, envsys_data_t *,
               sysmon_envsys_lim_t *, uint32_t *);
static  void ipmi_get_sensor_limits(struct ipmi_softc *, struct ipmi_sensor *,
               sysmon_envsys_lim_t *, uint32_t *);
static  int ipmi_sensor_status(struct ipmi_softc *, struct ipmi_sensor *,
               envsys_data_t *, uint8_t *);

static  int add_child_sensors(struct ipmi_softc *, uint8_t *, int, int, int,
               int, int, int, const char *);

static  bool ipmi_suspend(device_t, const pmf_qual_t *);

static  int kcs_probe(struct ipmi_softc *);
static  int kcs_reset(struct ipmi_softc *);
static  int kcs_sendmsg(struct ipmi_softc *, int, const uint8_t *);
static  int kcs_recvmsg(struct ipmi_softc *, int, int *len, uint8_t *);

static  void *bt_buildmsg(struct ipmi_softc *, int, int, int, const void *, int *);
static  int bt_probe(struct ipmi_softc *);
static  int bt_reset(struct ipmi_softc *);
static  int bt_sendmsg(struct ipmi_softc *, int, const uint8_t *);
static  int bt_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);

static  int smic_probe(struct ipmi_softc *);
static  int smic_reset(struct ipmi_softc *);
static  int smic_sendmsg(struct ipmi_softc *, int, const uint8_t *);
static  int smic_recvmsg(struct ipmi_softc *, int, int *, uint8_t *);

static struct ipmi_if kcs_if = {
       "KCS",
       IPMI_IF_KCS_NREGS,
       cmn_buildmsg,
       kcs_sendmsg,
       kcs_recvmsg,
       kcs_reset,
       kcs_probe,
};

static struct ipmi_if smic_if = {
       "SMIC",
       IPMI_IF_SMIC_NREGS,
       cmn_buildmsg,
       smic_sendmsg,
       smic_recvmsg,
       smic_reset,
       smic_probe,
};

static struct ipmi_if bt_if = {
       "BT",
       IPMI_IF_BT_NREGS,
       bt_buildmsg,
       bt_sendmsg,
       bt_recvmsg,
       bt_reset,
       bt_probe,
};

static  struct ipmi_if *ipmi_get_if(int);

static struct ipmi_if *
ipmi_get_if(int iftype)
{
       switch (iftype) {
       case IPMI_IF_KCS:
               return &kcs_if;
       case IPMI_IF_SMIC:
               return &smic_if;
       case IPMI_IF_BT:
               return &bt_if;
       default:
               return NULL;
       }
}

/*
* BMC Helper Functions
*/
static uint8_t
bmc_read(struct ipmi_softc *sc, int offset)
{
       return bus_space_read_1(sc->sc_iot, sc->sc_ioh,
           offset * sc->sc_if_iospacing);
}

static void
bmc_write(struct ipmi_softc *sc, int offset, uint8_t val)
{
       bus_space_write_1(sc->sc_iot, sc->sc_ioh,
           offset * sc->sc_if_iospacing, val);
}

static int
bmc_io_wait_sleep(struct ipmi_softc *sc, int offset, uint8_t mask,
   uint8_t value)
{
       int retries;
       uint8_t v;

       KASSERT(mutex_owned(&sc->sc_cmd_mtx));

       for (retries = 0; retries < sc->sc_max_retries; retries++) {
               v = bmc_read(sc, offset);
               if ((v & mask) == value)
                       return v;
               kpause("ipmicmd", /*intr*/false, /*timo*/1, /*mtx*/NULL);
       }
       return -1;
}

static int
bmc_io_wait(struct ipmi_softc *sc, int offset, uint8_t mask, uint8_t value,
   const char *lbl)
{
       int v;

       v = bmc_io_wait_spin(sc, offset, mask, value);
       if (cold || v != -1)
               return v;

       return bmc_io_wait_sleep(sc, offset, mask, value);
}

static int
bmc_io_wait_spin(struct ipmi_softc *sc, int offset, uint8_t mask,
   uint8_t value)
{
       uint8_t v;
       int                     count = cold ? 15000 : 500;
       /* ~us */

       while (count--) {
               v = bmc_read(sc, offset);
               if ((v & mask) == value)
                       return v;

               delay(1);
       }

       return -1;

}

#define NETFN_LUN(nf,ln) (((nf) << 2) | ((ln) & 0x3))
#define GET_NETFN(m) (((m) >> 2)
#define GET_LUN(m) ((m) & 0x03)

/*
* BT interface
*/
#define _BT_CTRL_REG                    0
#define   BT_CLR_WR_PTR                 (1L << 0)
#define   BT_CLR_RD_PTR                 (1L << 1)
#define   BT_HOST2BMC_ATN               (1L << 2)
#define   BT_BMC2HOST_ATN               (1L << 3)
#define   BT_EVT_ATN                    (1L << 4)
#define   BT_HOST_BUSY                  (1L << 6)
#define   BT_BMC_BUSY                   (1L << 7)

#define   BT_READY      (BT_HOST_BUSY|BT_HOST2BMC_ATN|BT_BMC2HOST_ATN)

#define _BT_DATAIN_REG                  1
#define _BT_DATAOUT_REG                 1

#define _BT_INTMASK_REG                 2
#define  BT_IM_HIRQ_PEND                (1L << 1)
#define  BT_IM_SCI_EN                   (1L << 2)
#define  BT_IM_SMI_EN                   (1L << 3)
#define  BT_IM_NMI2SMI                  (1L << 4)

static int bt_read(struct ipmi_softc *, int);
static int bt_write(struct ipmi_softc *, int, uint8_t);

static int
bt_read(struct ipmi_softc *sc, int reg)
{
       return bmc_read(sc, reg);
}

static int
bt_write(struct ipmi_softc *sc, int reg, uint8_t data)
{
       if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC_BUSY, 0, __func__) < 0)
               return -1;

       bmc_write(sc, reg, data);
       return 0;
}

static int
bt_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
{
       int i;

       bt_write(sc, _BT_CTRL_REG, BT_CLR_WR_PTR);
       for (i = 0; i < len; i++)
               bt_write(sc, _BT_DATAOUT_REG, data[i]);

       bt_write(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN);
       if (bmc_io_wait(sc, _BT_CTRL_REG, BT_HOST2BMC_ATN | BT_BMC_BUSY, 0,
           __func__) < 0)
               return -1;

       return 0;
}

static int
bt_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t *data)
{
       uint8_t len, v, i;

       if (bmc_io_wait(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN, BT_BMC2HOST_ATN,
           __func__) < 0)
               return -1;

       bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
       bt_write(sc, _BT_CTRL_REG, BT_BMC2HOST_ATN);
       bt_write(sc, _BT_CTRL_REG, BT_CLR_RD_PTR);
       len = bt_read(sc, _BT_DATAIN_REG);
       for (i = IPMI_BTMSG_NFLN; i <= len; i++) {
               v = bt_read(sc, _BT_DATAIN_REG);
               if (i != IPMI_BTMSG_SEQ)
                       *(data++) = v;
       }
       bt_write(sc, _BT_CTRL_REG, BT_HOST_BUSY);
       *rxlen = len - 1;

       return 0;
}

static int
bt_reset(struct ipmi_softc *sc)
{
       return -1;
}

static int
bt_probe(struct ipmi_softc *sc)
{
       uint8_t rv;

       rv = bmc_read(sc, _BT_CTRL_REG);
       rv &= BT_HOST_BUSY;
       rv |= BT_CLR_WR_PTR|BT_CLR_RD_PTR|BT_BMC2HOST_ATN|BT_HOST2BMC_ATN;
       bmc_write(sc, _BT_CTRL_REG, rv);

       rv = bmc_read(sc, _BT_INTMASK_REG);
       rv &= BT_IM_SCI_EN|BT_IM_SMI_EN|BT_IM_NMI2SMI;
       rv |= BT_IM_HIRQ_PEND;
       bmc_write(sc, _BT_INTMASK_REG, rv);

#if 0
       printf("%s: %2x\n", __func__, v);
       printf(" WR    : %2x\n", v & BT_CLR_WR_PTR);
       printf(" RD    : %2x\n", v & BT_CLR_RD_PTR);
       printf(" H2B   : %2x\n", v & BT_HOST2BMC_ATN);
       printf(" B2H   : %2x\n", v & BT_BMC2HOST_ATN);
       printf(" EVT   : %2x\n", v & BT_EVT_ATN);
       printf(" HBSY  : %2x\n", v & BT_HOST_BUSY);
       printf(" BBSY  : %2x\n", v & BT_BMC_BUSY);
#endif
       return 0;
}

/*
* SMIC interface
*/
#define _SMIC_DATAIN_REG                0
#define _SMIC_DATAOUT_REG               0

#define _SMIC_CTRL_REG                  1
#define   SMS_CC_GET_STATUS              0x40
#define   SMS_CC_START_TRANSFER          0x41
#define   SMS_CC_NEXT_TRANSFER           0x42
#define   SMS_CC_END_TRANSFER            0x43
#define   SMS_CC_START_RECEIVE           0x44
#define   SMS_CC_NEXT_RECEIVE            0x45
#define   SMS_CC_END_RECEIVE             0x46
#define   SMS_CC_TRANSFER_ABORT          0x47

#define   SMS_SC_READY                   0xc0
#define   SMS_SC_WRITE_START             0xc1
#define   SMS_SC_WRITE_NEXT              0xc2
#define   SMS_SC_WRITE_END               0xc3
#define   SMS_SC_READ_START              0xc4
#define   SMS_SC_READ_NEXT               0xc5
#define   SMS_SC_READ_END                0xc6

#define _SMIC_FLAG_REG                  2
#define   SMIC_BUSY                     (1L << 0)
#define   SMIC_SMS_ATN                  (1L << 2)
#define   SMIC_EVT_ATN                  (1L << 3)
#define   SMIC_SMI                      (1L << 4)
#define   SMIC_TX_DATA_RDY              (1L << 6)
#define   SMIC_RX_DATA_RDY              (1L << 7)

static int smic_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
static int smic_write_cmd_data(struct ipmi_softc *, uint8_t, const uint8_t *);
static int smic_read_data(struct ipmi_softc *, uint8_t *);

static int
smic_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t val, const char *lbl)
{
       int v;

       /* Wait for expected flag bits */
       v = bmc_io_wait(sc, _SMIC_FLAG_REG, mask, val, __func__);
       if (v < 0)
               return -1;

       /* Return current status */
       v = bmc_read(sc, _SMIC_CTRL_REG);
       dbg_printf(99, "%s(%s) = %#.2x\n", __func__, lbl, v);
       return v;
}

static int
smic_write_cmd_data(struct ipmi_softc *sc, uint8_t cmd, const uint8_t *data)
{
       int     sts, v;

       dbg_printf(50, "%s: %#.2x %#.2x\n", __func__, cmd, data ? *data : -1);
       sts = smic_wait(sc, SMIC_TX_DATA_RDY | SMIC_BUSY, SMIC_TX_DATA_RDY,
           "smic_write_cmd_data ready");
       if (sts < 0)
               return sts;

       bmc_write(sc, _SMIC_CTRL_REG, cmd);
       if (data)
               bmc_write(sc, _SMIC_DATAOUT_REG, *data);

       /* Toggle BUSY bit, then wait for busy bit to clear */
       v = bmc_read(sc, _SMIC_FLAG_REG);
       bmc_write(sc, _SMIC_FLAG_REG, v | SMIC_BUSY);

       return smic_wait(sc, SMIC_BUSY, 0, __func__);
}

static int
smic_read_data(struct ipmi_softc *sc, uint8_t *data)
{
       int sts;

       sts = smic_wait(sc, SMIC_RX_DATA_RDY | SMIC_BUSY, SMIC_RX_DATA_RDY,
           __func__);
       if (sts >= 0) {
               *data = bmc_read(sc, _SMIC_DATAIN_REG);
               dbg_printf(50, "%s: %#.2x\n", __func__, *data);
       }
       return sts;
}

#define ErrStat(a, ...) if (a) printf(__VA_ARGS__);

static int
smic_sendmsg(struct ipmi_softc *sc, int len, const uint8_t *data)
{
       int sts, idx;

       sts = smic_write_cmd_data(sc, SMS_CC_START_TRANSFER, &data[0]);
       ErrStat(sts != SMS_SC_WRITE_START, "%s: wstart", __func__);
       for (idx = 1; idx < len - 1; idx++) {
               sts = smic_write_cmd_data(sc, SMS_CC_NEXT_TRANSFER,
                   &data[idx]);
               ErrStat(sts != SMS_SC_WRITE_NEXT, "%s: write", __func__);
       }
       sts = smic_write_cmd_data(sc, SMS_CC_END_TRANSFER, &data[idx]);
       if (sts != SMS_SC_WRITE_END) {
               dbg_printf(50, "%s: %d/%d = %#.2x\n", __func__, idx, len, sts);
               return -1;
       }

       return 0;
}

static int
smic_recvmsg(struct ipmi_softc *sc, int maxlen, int *len, uint8_t *data)
{
       int sts, idx;

       *len = 0;
       sts = smic_wait(sc, SMIC_RX_DATA_RDY, SMIC_RX_DATA_RDY, __func__);
       if (sts < 0)
               return -1;

       sts = smic_write_cmd_data(sc, SMS_CC_START_RECEIVE, NULL);
       ErrStat(sts != SMS_SC_READ_START, "%s: rstart", __func__);
       for (idx = 0;; ) {
               sts = smic_read_data(sc, &data[idx++]);
               if (sts != SMS_SC_READ_START && sts != SMS_SC_READ_NEXT)
                       break;
               smic_write_cmd_data(sc, SMS_CC_NEXT_RECEIVE, NULL);
       }
       ErrStat(sts != SMS_SC_READ_END, "%s: rend", __func__);

       *len = idx;

       sts = smic_write_cmd_data(sc, SMS_CC_END_RECEIVE, NULL);
       if (sts != SMS_SC_READY) {
               dbg_printf(50, "%s: %d/%d = %#.2x\n",
                   __func__, idx, maxlen, sts);
               return -1;
       }

       return 0;
}

static int
smic_reset(struct ipmi_softc *sc)
{
       return -1;
}

static int
smic_probe(struct ipmi_softc *sc)
{
       /* Flag register should not be 0xFF on a good system */
       if (bmc_read(sc, _SMIC_FLAG_REG) == 0xFF)
               return -1;

       return 0;
}

/*
* KCS interface
*/
#define _KCS_DATAIN_REGISTER            0
#define _KCS_DATAOUT_REGISTER           0
#define   KCS_READ_NEXT                 0x68

#define _KCS_COMMAND_REGISTER           1
#define   KCS_GET_STATUS                0x60
#define   KCS_WRITE_START               0x61
#define   KCS_WRITE_END                 0x62

#define _KCS_STATUS_REGISTER            1
#define   KCS_OBF                       (1L << 0)
#define   KCS_IBF                       (1L << 1)
#define   KCS_SMS_ATN                   (1L << 2)
#define   KCS_CD                        (1L << 3)
#define   KCS_OEM1                      (1L << 4)
#define   KCS_OEM2                      (1L << 5)
#define   KCS_STATE_MASK                0xc0
#define     KCS_IDLE_STATE              0x00
#define     KCS_READ_STATE              0x40
#define     KCS_WRITE_STATE             0x80
#define     KCS_ERROR_STATE             0xC0

static int kcs_wait(struct ipmi_softc *, uint8_t, uint8_t, const char *);
static int kcs_write_cmd(struct ipmi_softc *, uint8_t);
static int kcs_write_data(struct ipmi_softc *, uint8_t);
static int kcs_read_data(struct ipmi_softc *, uint8_t *);

static int
kcs_wait(struct ipmi_softc *sc, uint8_t mask, uint8_t value, const char *lbl)
{
       int v;

       v = bmc_io_wait(sc, _KCS_STATUS_REGISTER, mask, value, lbl);
       if (v < 0)
               return v;

       /* Check if output buffer full, read dummy byte  */
       if ((v & (KCS_OBF | KCS_STATE_MASK)) == (KCS_OBF | KCS_WRITE_STATE))
               bmc_read(sc, _KCS_DATAIN_REGISTER);

       /* Check for error state */
       if ((v & KCS_STATE_MASK) == KCS_ERROR_STATE) {
               bmc_write(sc, _KCS_COMMAND_REGISTER, KCS_GET_STATUS);
               while (bmc_read(sc, _KCS_STATUS_REGISTER) & KCS_IBF)
                       ;
               aprint_error_dev(sc->sc_dev, "error code: %#x\n",
                   bmc_read(sc, _KCS_DATAIN_REGISTER));
       }

       return v & KCS_STATE_MASK;
}

static int
kcs_write_cmd(struct ipmi_softc *sc, uint8_t cmd)
{
       /* ASSERT: IBF and OBF are clear */
       dbg_printf(50, "%s: %#.2x\n", __func__, cmd);
       bmc_write(sc, _KCS_COMMAND_REGISTER, cmd);

       return kcs_wait(sc, KCS_IBF, 0, "write_cmd");
}

static int
kcs_write_data(struct ipmi_softc *sc, uint8_t data)
{
       /* ASSERT: IBF and OBF are clear */
       dbg_printf(50, "%s: %#.2x\n", __func__, data);
       bmc_write(sc, _KCS_DATAOUT_REGISTER, data);

       return kcs_wait(sc, KCS_IBF, 0, "write_data");
}

static int
kcs_read_data(struct ipmi_softc *sc, uint8_t * data)
{
       int sts;

       sts = kcs_wait(sc, KCS_IBF | KCS_OBF, KCS_OBF, __func__);
       if (sts != KCS_READ_STATE)
               return sts;

       /* ASSERT: OBF is set read data, request next byte */
       *data = bmc_read(sc, _KCS_DATAIN_REGISTER);
       bmc_write(sc, _KCS_DATAOUT_REGISTER, KCS_READ_NEXT);

       dbg_printf(50, "%s: %#.2x\n", __func__, *data);

       return sts;
}

/* Exported KCS functions */
static int
kcs_sendmsg(struct ipmi_softc *sc, int len, const uint8_t * data)
{
       int idx, sts;

       /* ASSERT: IBF is clear */
       dbg_dump(50, __func__, len, data);
       sts = kcs_write_cmd(sc, KCS_WRITE_START);
       for (idx = 0; idx < len; idx++) {
               if (idx == len - 1)
                       sts = kcs_write_cmd(sc, KCS_WRITE_END);

               if (sts != KCS_WRITE_STATE)
                       break;

               sts = kcs_write_data(sc, data[idx]);
       }
       if (sts != KCS_READ_STATE) {
               dbg_printf(1, "%s: %d/%d <%#.2x>\n", __func__, idx, len, sts);
               dbg_dump(1, __func__, len, data);
               return -1;
       }

       return 0;
}

static int
kcs_recvmsg(struct ipmi_softc *sc, int maxlen, int *rxlen, uint8_t * data)
{
       int idx, sts;

       for (idx = 0; idx < maxlen; idx++) {
               sts = kcs_read_data(sc, &data[idx]);
               if (sts != KCS_READ_STATE)
                       break;
       }
       sts = kcs_wait(sc, KCS_IBF, 0, __func__);
       *rxlen = idx;
       if (sts != KCS_IDLE_STATE) {
               dbg_printf(1, "%s: %d/%d <%#.2x>\n",
                   __func__, idx, maxlen, sts);
               return -1;
       }

       dbg_dump(50, __func__, idx, data);

       return 0;
}

static int
kcs_reset(struct ipmi_softc *sc)
{
       return -1;
}

static int
kcs_probe(struct ipmi_softc *sc)
{
       uint8_t v;

       v = bmc_read(sc, _KCS_STATUS_REGISTER);
#if 0
       printf("%s: %2x\n", __func__, v);
       printf(" STS: %2x\n", v & KCS_STATE_MASK);
       printf(" ATN: %2x\n", v & KCS_SMS_ATN);
       printf(" C/D: %2x\n", v & KCS_CD);
       printf(" IBF: %2x\n", v & KCS_IBF);
       printf(" OBF: %2x\n", v & KCS_OBF);
#else
       __USE(v);
#endif
       return 0;
}

/*
* IPMI code
*/
#define READ_SMS_BUFFER         0x37
#define WRITE_I2C               0x50

#define GET_MESSAGE_CMD         0x33
#define SEND_MESSAGE_CMD        0x34

#define IPMB_CHANNEL_NUMBER     0

#define PUBLIC_BUS              0

#define MIN_I2C_PACKET_SIZE     3
#define MIN_IMB_PACKET_SIZE     7       /* one byte for cksum */

#define MIN_BTBMC_REQ_SIZE      4
#define MIN_BTBMC_RSP_SIZE      5
#define MIN_BMC_REQ_SIZE        2
#define MIN_BMC_RSP_SIZE        3

#define BMC_SA                  0x20    /* BMC/ESM3 */
#define FPC_SA                  0x22    /* front panel */
#define BP_SA                   0xC0    /* Primary Backplane */
#define BP2_SA                  0xC2    /* Secondary Backplane */
#define PBP_SA                  0xC4    /* Peripheral Backplane */
#define DRAC_SA                 0x28    /* DRAC-III */
#define DRAC3_SA                0x30    /* DRAC-III */
#define BMC_LUN                 0
#define SMS_LUN                 2

struct ipmi_request {
       uint8_t rsSa;
       uint8_t rsLun;
       uint8_t netFn;
       uint8_t cmd;
       uint8_t data_len;
       uint8_t *data;
};

struct ipmi_response {
       uint8_t cCode;
       uint8_t data_len;
       uint8_t *data;
};

struct ipmi_bmc_request {
       uint8_t bmc_nfLn;
       uint8_t bmc_cmd;
       uint8_t bmc_data_len;
       uint8_t bmc_data[1];
};

struct ipmi_bmc_response {
       uint8_t bmc_nfLn;
       uint8_t bmc_cmd;
       uint8_t bmc_cCode;
       uint8_t bmc_data_len;
       uint8_t bmc_data[1];
};


CFATTACH_DECL2_NEW(ipmi, sizeof(struct ipmi_softc),
   ipmi_match, ipmi_attach, ipmi_detach, NULL, NULL, NULL);

static void
dumpb(const char *lbl, int len, const uint8_t *data)
{
       int idx;

       printf("%s: ", lbl);
       for (idx = 0; idx < len; idx++)
               printf("%.2x ", data[idx]);

       printf("\n");
}

/*
* bt_buildmsg builds an IPMI message from a nfLun, cmd, and data
* This is used by BT protocol
*
* Returns a buffer to an allocated message, txlen contains length
*   of allocated message
*/
static void *
bt_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
   const void *data, int *txlen)
{
       uint8_t *buf;

       /* Block transfer needs 4 extra bytes: length/netfn/seq/cmd + data */
       *txlen = len + 4;
       buf = ipmi_buf_acquire(sc, *txlen);
       if (buf == NULL)
               return NULL;

       buf[IPMI_BTMSG_LEN] = len + 3;
       buf[IPMI_BTMSG_NFLN] = nfLun;
       buf[IPMI_BTMSG_SEQ] = sc->sc_btseq++;
       buf[IPMI_BTMSG_CMD] = cmd;
       if (len && data)
               memcpy(buf + IPMI_BTMSG_DATASND, data, len);

       return buf;
}

/*
* cmn_buildmsg builds an IPMI message from a nfLun, cmd, and data
* This is used by both SMIC and KCS protocols
*
* Returns a buffer to an allocated message, txlen contains length
*   of allocated message
*/
static void *
cmn_buildmsg(struct ipmi_softc *sc, int nfLun, int cmd, int len,
   const void *data, int *txlen)
{
       uint8_t *buf;

       /* Common needs two extra bytes: nfLun/cmd + data */
       *txlen = len + 2;
       buf = ipmi_buf_acquire(sc, *txlen);
       if (buf == NULL)
               return NULL;

       buf[IPMI_MSG_NFLN] = nfLun;
       buf[IPMI_MSG_CMD] = cmd;
       if (len && data)
               memcpy(buf + IPMI_MSG_DATASND, data, len);

       return buf;
}

/*
* ipmi_sendcmd: caller must hold sc_cmd_mtx.
*
* Send an IPMI command
*/
static int
ipmi_sendcmd(struct ipmi_softc *sc, int rssa, int rslun, int netfn, int cmd,
   int txlen, const void *data)
{
       uint8_t *buf;
       int             rc = -1;

       dbg_printf(50, "%s: rssa=%#.2x nfln=%#.2x cmd=%#.2x len=%#.2x\n",
           __func__, rssa, NETFN_LUN(netfn, rslun), cmd, txlen);
       dbg_dump(10, __func__, txlen, data);
       if (rssa != BMC_SA) {
#if 0
               buf = sc->sc_if->buildmsg(sc, NETFN_LUN(APP_NETFN, BMC_LUN),
                   APP_SEND_MESSAGE, 7 + txlen, NULL, &txlen);
               pI2C->bus = (sc->if_ver == 0x09) ?
                   PUBLIC_BUS :
                   IPMB_CHANNEL_NUMBER;

               imbreq->rsSa = rssa;
               imbreq->nfLn = NETFN_LUN(netfn, rslun);
               imbreq->cSum1 = -(imbreq->rsSa + imbreq->nfLn);
               imbreq->rqSa = BMC_SA;
               imbreq->seqLn = NETFN_LUN(sc->imb_seq++, SMS_LUN);
               imbreq->cmd = cmd;
               if (txlen)
                       memcpy(imbreq->data, data, txlen);
               /* Set message checksum */
               imbreq->data[txlen] = cksum8(&imbreq->rqSa, txlen + 3);
#endif
               goto done;
       } else
               buf = sc->sc_if->buildmsg(sc, NETFN_LUN(netfn, rslun), cmd,
                   txlen, data, &txlen);

       if (buf == NULL) {
               aprint_error_dev(sc->sc_dev, "sendcmd buffer busy\n");
               goto done;
       }
       rc = sc->sc_if->sendmsg(sc, txlen, buf);
       ipmi_buf_release(sc, buf);

       ipmi_delay(sc, 50); /* give bmc chance to digest command */

done:
       return rc;
}

static void
ipmi_buf_release(struct ipmi_softc *sc, char *buf)
{
       KASSERT(sc->sc_buf_rsvd);
       KASSERT(sc->sc_buf == buf);
       sc->sc_buf_rsvd = false;
}

static char *
ipmi_buf_acquire(struct ipmi_softc *sc, size_t len)
{
       KASSERT(len <= sizeof(sc->sc_buf));

       if (sc->sc_buf_rsvd || len > sizeof(sc->sc_buf))
               return NULL;
       sc->sc_buf_rsvd = true;
       return sc->sc_buf;
}

/*
* ipmi_recvcmd: caller must hold sc_cmd_mtx.
*/
static int
ipmi_recvcmd(struct ipmi_softc *sc, int maxlen, int *rxlen, void *data)
{
       uint8_t *buf, rc = 0;
       int             rawlen;

       /* Need three extra bytes: netfn/cmd/ccode + data */
       buf = ipmi_buf_acquire(sc, maxlen + 3);
       if (buf == NULL) {
               aprint_error_dev(sc->sc_dev, "%s: malloc fails\n", __func__);
               return -1;
       }
       /* Receive message from interface, copy out result data */
       if (sc->sc_if->recvmsg(sc, maxlen + 3, &rawlen, buf)) {
               ipmi_buf_release(sc, buf);
               return -1;
       }

       *rxlen = rawlen >= IPMI_MSG_DATARCV ? rawlen - IPMI_MSG_DATARCV : 0;
       if (*rxlen > 0 && data)
               memcpy(data, buf + IPMI_MSG_DATARCV, *rxlen);

       if ((rc = buf[IPMI_MSG_CCODE]) != 0)
               dbg_printf(1, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x\n", __func__,
                   buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD], buf[IPMI_MSG_CCODE]);

       dbg_printf(50, "%s: nfln=%#.2x cmd=%#.2x err=%#.2x len=%#.2x\n",
           __func__, buf[IPMI_MSG_NFLN], buf[IPMI_MSG_CMD],
           buf[IPMI_MSG_CCODE], *rxlen);
       dbg_dump(10, __func__, *rxlen, data);

       ipmi_buf_release(sc, buf);

       return rc;
}

/*
* ipmi_delay: caller must hold sc_cmd_mtx.
*/
static void
ipmi_delay(struct ipmi_softc *sc, int ms)
{
       if (cold) {
               delay(ms * 1000);
               return;
       }
       kpause("ipmicmd", /*intr*/false, /*timo*/mstohz(ms), /*mtx*/NULL);
}

/* Read a partial SDR entry */
static int
get_sdr_partial(struct ipmi_softc *sc, uint16_t recordId, uint16_t reserveId,
   uint8_t offset, uint8_t length, void *buffer, uint16_t *nxtRecordId)
{
       union {
               struct {
                       uint16_t        reserveId;
                       uint16_t        recordId;
                       uint8_t         offset;
                       uint8_t         length;
               } __packed      cmd;
               struct {
                       uint16_t        nxtRecordId;
                       uint8_t         data[262];
               } __packed      msg;
       }               u;
       int             len;

       __CTASSERT(sizeof(u) == 256 + 8);
       __CTASSERT(sizeof(u.cmd) == 6);
       __CTASSERT(offsetof(typeof(u.msg), data) == 2);

       u.cmd.reserveId = reserveId;
       u.cmd.recordId = recordId;
       u.cmd.offset = offset;
       u.cmd.length = length;
       mutex_enter(&sc->sc_cmd_mtx);
       if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_GET_SDR,
               sizeof(u.cmd), &u.cmd)) {
               mutex_exit(&sc->sc_cmd_mtx);
               aprint_error_dev(sc->sc_dev, "%s: sendcmd fails\n", __func__);
               return -1;
       }
       if (ipmi_recvcmd(sc, 8 + length, &len, &u.msg)) {
               mutex_exit(&sc->sc_cmd_mtx);
               aprint_error_dev(sc->sc_dev, "%s: recvcmd fails\n", __func__);
               return -1;
       }
       mutex_exit(&sc->sc_cmd_mtx);
       if (nxtRecordId)
               *nxtRecordId = u.msg.nxtRecordId;
       memcpy(buffer, u.msg.data, len - offsetof(typeof(u.msg), data));

       return 0;
}

static int maxsdrlen = 0x10;

/* Read an entire SDR; pass to add sensor */
static int
get_sdr(struct ipmi_softc *sc, uint16_t recid, uint16_t *nxtrec)
{
       uint16_t        resid = 0;
       int             len, sdrlen, offset;
       uint8_t *psdr;
       struct sdrhdr   shdr;

       mutex_enter(&sc->sc_cmd_mtx);
       /* Reserve SDR */
       if (ipmi_sendcmd(sc, BMC_SA, 0, STORAGE_NETFN, STORAGE_RESERVE_SDR,
           0, NULL)) {
               mutex_exit(&sc->sc_cmd_mtx);
               aprint_error_dev(sc->sc_dev, "reserve send fails\n");
               return -1;
       }
       if (ipmi_recvcmd(sc, sizeof(resid), &len, &resid)) {
               mutex_exit(&sc->sc_cmd_mtx);
               aprint_error_dev(sc->sc_dev, "reserve recv fails\n");
               return -1;
       }
       mutex_exit(&sc->sc_cmd_mtx);
       /* Get SDR Header */
       if (get_sdr_partial(sc, recid, resid, 0, sizeof shdr, &shdr, nxtrec)) {
               aprint_error_dev(sc->sc_dev, "get header fails\n");
               return -1;
       }
       /* Allocate space for entire SDR Length of SDR in header does not
        * include header length */
       sdrlen = sizeof(shdr) + shdr.record_length;
       psdr = malloc(sdrlen, M_DEVBUF, M_WAITOK);
       if (psdr == NULL)
               return -1;

       memcpy(psdr, &shdr, sizeof(shdr));

       /* Read SDR Data maxsdrlen bytes at a time */
       for (offset = sizeof(shdr); offset < sdrlen; offset += maxsdrlen) {
               len = sdrlen - offset;
               if (len > maxsdrlen)
                       len = maxsdrlen;

               if (get_sdr_partial(sc, recid, resid, offset, len,
                   psdr + offset, NULL)) {
                       aprint_error_dev(sc->sc_dev,
                           "get chunk : %d,%d fails\n", offset, len);
                       free(psdr, M_DEVBUF);
                       return -1;
               }
       }

       /* Add SDR to sensor list, if not wanted, free buffer */
       if (add_sdr_sensor(sc, psdr) == 0)
               free(psdr, M_DEVBUF);

       return 0;
}

static int
getbits(uint8_t *bytes, int bitpos, int bitlen)
{
       int     v;
       int     mask;

       bitpos += bitlen - 1;
       for (v = 0; bitlen--;) {
               v <<= 1;
               mask = 1L << (bitpos & 7);
               if (bytes[bitpos >> 3] & mask)
                       v |= 1;
               bitpos--;
       }

       return v;
}

/* Decode IPMI sensor name */
static void
ipmi_sensor_name(char *name, int len, uint8_t typelen, uint8_t *bits)
{
       int     i, slen;
       char    bcdplus[] = "0123456789 -.:,_";

       slen = typelen & 0x1F;
       switch (typelen >> 6) {
       case IPMI_NAME_UNICODE:
               //unicode
               break;

       case IPMI_NAME_BCDPLUS:
               /* Characters are encoded in 4-bit BCDPLUS */
               if (len < slen * 2 + 1)
                       slen = (len >> 1) - 1;
               for (i = 0; i < slen; i++) {
                       *(name++) = bcdplus[bits[i] >> 4];
                       *(name++) = bcdplus[bits[i] & 0xF];
               }
               break;

       case IPMI_NAME_ASCII6BIT:
               /* Characters are encoded in 6-bit ASCII
                *   0x00 - 0x3F maps to 0x20 - 0x5F */
               /* XXX: need to calculate max len: slen = 3/4 * len */
               if (len < slen + 1)
                       slen = len - 1;
               for (i = 0; i < slen * 8; i += 6)
                       *(name++) = getbits(bits, i, 6) + ' ';
               break;

       case IPMI_NAME_ASCII8BIT:
               /* Characters are 8-bit ascii */
               if (len < slen + 1)
                       slen = len - 1;
               while (slen--)
                       *(name++) = *(bits++);
               break;
       }
       *name = 0;
}

/* Sign extend a n-bit value */
static long
signextend(unsigned long val, int bits)
{
       long msk = (1L << (bits-1))-1;

       return -(val & ~msk) | val;
}


/* fixpoint arithmetic */
#define FIX2INT(x)   ((int64_t)((x) >> 32))
#define INT2FIX(x)   ((int64_t)((uint64_t)(x) << 32))

#define FIX2            0x0000000200000000ll /* 2.0 */
#define FIX3            0x0000000300000000ll /* 3.0 */
#define FIXE            0x00000002b7e15163ll /* 2.71828182845904523536 */
#define FIX10           0x0000000a00000000ll /* 10.0 */
#define FIXMONE         0xffffffff00000000ll /* -1.0 */
#define FIXHALF         0x0000000080000000ll /* 0.5 */
#define FIXTHIRD        0x0000000055555555ll /* 0.33333333333333333333 */

#define FIX1LOG2        0x0000000171547653ll /* 1.0/log(2) */
#define FIX1LOGE        0x0000000100000000ll /* 1.0/log(2.71828182845904523536) */
#define FIX1LOG10       0x000000006F2DEC55ll /* 1.0/log(10) */

#define FIX1E           0x000000005E2D58D9ll /* 1.0/2.71828182845904523536 */

static int64_t fixlog_a[] = {
       0x0000000100000000ll /* 1.0/1.0 */,
       0xffffffff80000000ll /* -1.0/2.0 */,
       0x0000000055555555ll /* 1.0/3.0 */,
       0xffffffffc0000000ll /* -1.0/4.0 */,
       0x0000000033333333ll /* 1.0/5.0 */,
       0x000000002aaaaaabll /* -1.0/6.0 */,
       0x0000000024924925ll /* 1.0/7.0 */,
       0x0000000020000000ll /* -1.0/8.0 */,
       0x000000001c71c71cll /* 1.0/9.0 */
};

static int64_t fixexp_a[] = {
       0x0000000100000000ll /* 1.0/1.0 */,
       0x0000000100000000ll /* 1.0/1.0 */,
       0x0000000080000000ll /* 1.0/2.0 */,
       0x000000002aaaaaabll /* 1.0/6.0 */,
       0x000000000aaaaaabll /* 1.0/24.0 */,
       0x0000000002222222ll /* 1.0/120.0 */,
       0x00000000005b05b0ll /* 1.0/720.0 */,
       0x00000000000d00d0ll /* 1.0/5040.0 */,
       0x000000000001a01all /* 1.0/40320.0 */
};

static int64_t
fixmul(int64_t x, int64_t y)
{
       int64_t z;
       int64_t a,b,c,d;
       int neg;

       neg = 0;
       if (x < 0) {
               x = -x;
               neg = !neg;
       }
       if (y < 0) {
               y = -y;
               neg = !neg;
       }

       a = FIX2INT(x);
       b = x - INT2FIX(a);
       c = FIX2INT(y);
       d = y - INT2FIX(c);

       z = INT2FIX(a*c) + a * d + b * c + (b/2 * d/2 >> 30);

       return neg ? -z : z;
}

static int64_t
poly(int64_t x0, int64_t x, int64_t a[], int n)
{
       int64_t z;
       int i;

       z  = fixmul(x0, a[0]);
       for (i=1; i<n; ++i) {
               x0 = fixmul(x0, x);
               z  = fixmul(x0, a[i]) + z;
       }
       return z;
}

static int64_t
logx(int64_t x, int64_t y)
{
       int64_t z;

       if (x <= INT2FIX(0)) {
               z = INT2FIX(-99999);
               goto done;
       }

       z = INT2FIX(0);
       while (x >= FIXE) {
               x = fixmul(x, FIX1E);
               z += INT2FIX(1);
       }
       while (x < INT2FIX(1)) {
               x = fixmul(x, FIXE);
               z -= INT2FIX(1);
       }

       x -= INT2FIX(1);
       z += poly(x, x, fixlog_a, sizeof(fixlog_a)/sizeof(fixlog_a[0]));
       z  = fixmul(z, y);

done:
       return z;
}

static int64_t
powx(int64_t x, int64_t y)
{
       int64_t k;

       if (x == INT2FIX(0))
               goto done;

       x = logx(x,y);

       if (x < INT2FIX(0)) {
               x = INT2FIX(0) - x;
               k = -FIX2INT(x);
               x = INT2FIX(-k) - x;
       } else {
               k = FIX2INT(x);
               x = x - INT2FIX(k);
       }

       x = poly(INT2FIX(1), x, fixexp_a, sizeof(fixexp_a)/sizeof(fixexp_a[0]));

       while (k < 0) {
               x = fixmul(x, FIX1E);
               ++k;
       }
       while (k > 0) {
               x = fixmul(x, FIXE);
               --k;
       }

done:
       return x;
}

/* Convert IPMI reading from sensor factors */
static long
ipmi_convert(uint8_t v, struct sdrtype1 *s1, long adj)
{
       int64_t M, B;
       char    K1, K2;
       int64_t val, v1, v2, vs;
       int sign = (s1->units1 >> 6) & 0x3;

       vs = (sign == 0x1 || sign == 0x2) ? (int8_t)v : v;
       if ((vs < 0) && (sign == 0x1))
               vs++;

       /* Calculate linear reading variables */
       M  = signextend((((short)(s1->m_tolerance & 0xC0)) << 2) + s1->m, 10);
       B  = signextend((((short)(s1->b_accuracy & 0xC0)) << 2) + s1->b, 10);
       K1 = signextend(s1->rbexp & 0xF, 4);
       K2 = signextend(s1->rbexp >> 4, 4);

       /* Calculate sensor reading:
        *  y = L((M * v + (B * 10^K1)) * 10^(K2+adj)
        *
        * This commutes out to:
        *  y = L(M*v * 10^(K2+adj) + B * 10^(K1+K2+adj)); */
       v1 = powx(FIX10, INT2FIX(K2 + adj));
       v2 = powx(FIX10, INT2FIX(K1 + K2 + adj));
       val = M * vs * v1 + B * v2;

       /* Linearization function: y = f(x) 0 : y = x 1 : y = ln(x) 2 : y =
        * log10(x) 3 : y = log2(x) 4 : y = e^x 5 : y = 10^x 6 : y = 2^x 7 : y
        * = 1/x 8 : y = x^2 9 : y = x^3 10 : y = square root(x) 11 : y = cube
        * root(x) */
       switch (s1->linear & 0x7f) {
       case 0: break;
       case 1: val = logx(val,FIX1LOGE); break;
       case 2: val = logx(val,FIX1LOG10); break;
       case 3: val = logx(val,FIX1LOG2); break;
       case 4: val = powx(FIXE,val); break;
       case 5: val = powx(FIX10,val); break;
       case 6: val = powx(FIX2,val); break;
       case 7: val = powx(val,FIXMONE); break;
       case 8: val = powx(val,FIX2); break;
       case 9: val = powx(val,FIX3); break;
       case 10: val = powx(val,FIXHALF); break;
       case 11: val = powx(val,FIXTHIRD); break;
       }

       return FIX2INT(val);
}

static int32_t
ipmi_convert_sensor(uint8_t *reading, struct ipmi_sensor *psensor)
{
       struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr;
       int32_t val;

       switch (psensor->i_envtype) {
       case ENVSYS_STEMP:
               val = ipmi_convert(reading[0], s1, 6) + 273150000;
               break;

       case ENVSYS_SVOLTS_DC:
               val = ipmi_convert(reading[0], s1, 6);
               break;

       case ENVSYS_SFANRPM:
               val = ipmi_convert(reading[0], s1, 0);
               if (((s1->units1>>3)&0x7) == 0x3)
                       val *= 60; /* RPS -> RPM */
               break;
       default:
               val = 0;
               break;
       }
       return val;
}

static void
ipmi_set_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
               sysmon_envsys_lim_t *limits, uint32_t *props)
{
       struct ipmi_sensor *ipmi_s;

       /* Find the ipmi_sensor corresponding to this edata */
       SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
               if (ipmi_s->i_envnum == edata->sensor) {
                       if (limits == NULL) {
                               limits = &ipmi_s->i_deflims;
                               props  = &ipmi_s->i_defprops;
                       }
                       *props |= PROP_DRIVER_LIMITS;
                       ipmi_s->i_limits = *limits;
                       ipmi_s->i_props  = *props;
                       return;
               }
       }
       return;
}

static void
ipmi_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
               sysmon_envsys_lim_t *limits, uint32_t *props)
{
       struct ipmi_sensor *ipmi_s;
       struct ipmi_softc *sc = sme->sme_cookie;

       /* Find the ipmi_sensor corresponding to this edata */
       SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
               if (ipmi_s->i_envnum == edata->sensor) {
                       ipmi_get_sensor_limits(sc, ipmi_s, limits, props);
                       ipmi_s->i_limits = *limits;
                       ipmi_s->i_props  = *props;
                       if (ipmi_s->i_defprops == 0) {
                               ipmi_s->i_defprops = *props;
                               ipmi_s->i_deflims  = *limits;
                       }
                       return;
               }
       }
       return;
}

/* valid bits for (upper,lower) x (non-recoverable, critical, warn) */
#define UN      0x20
#define UC      0x10
#define UW      0x08
#define LN      0x04
#define LC      0x02
#define LW      0x01

static void
ipmi_get_sensor_limits(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
                      sysmon_envsys_lim_t *limits, uint32_t *props)
{
       struct sdrtype1 *s1 = (struct sdrtype1 *)psensor->i_sdr;
       bool failure;
       int     rxlen;
       uint8_t data[32], valid;
       uint32_t prop_critmax, prop_warnmax, prop_critmin, prop_warnmin;
       int32_t *pcritmax, *pwarnmax, *pcritmin, *pwarnmin;

       *props &= ~(PROP_CRITMIN | PROP_CRITMAX | PROP_WARNMIN | PROP_WARNMAX);
       data[0] = psensor->i_num;
       mutex_enter(&sc->sc_cmd_mtx);
       failure =
           ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun,
                        SE_NETFN, SE_GET_SENSOR_THRESHOLD, 1, data) ||
           ipmi_recvcmd(sc, sizeof(data), &rxlen, data);
       mutex_exit(&sc->sc_cmd_mtx);
       if (failure)
               return;

       dbg_printf(25, "%s: %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x %#.2x\n",
           __func__, data[0], data[1], data[2], data[3], data[4], data[5],
           data[6]);

       switch (s1->linear & 0x7f) {
       case 7: /* 1/x sensor, exchange upper and lower limits */
               prop_critmax = PROP_CRITMIN;
               prop_warnmax = PROP_WARNMIN;
               prop_critmin = PROP_CRITMAX;
               prop_warnmin = PROP_WARNMAX;
               pcritmax = &limits->sel_critmin;
               pwarnmax = &limits->sel_warnmin;
               pcritmin = &limits->sel_critmax;
               pwarnmin = &limits->sel_warnmax;
               break;
       default:
               prop_critmax = PROP_CRITMAX;
               prop_warnmax = PROP_WARNMAX;
               prop_critmin = PROP_CRITMIN;
               prop_warnmin = PROP_WARNMIN;
               pcritmax = &limits->sel_critmax;
               pwarnmax = &limits->sel_warnmax;
               pcritmin = &limits->sel_critmin;
               pwarnmin = &limits->sel_warnmin;
               break;
       }

       valid = data[0];

       /* if upper non-recoverable < warning, ignore it */
       if ((valid & (UN|UW)) == (UN|UW) && data[6] < data[4])
               valid ^= UN;
       /* if upper critical < warning, ignore it */
       if ((valid & (UC|UW)) == (UC|UW) && data[5] < data[4])
               valid ^= UC;

       /* if lower non-recoverable > warning, ignore it */
       if ((data[0] & (LN|LW)) == (LN|LW) && data[3] > data[1])
               valid ^= LN;
       /* if lower critical > warning, ignore it */
       if ((data[0] & (LC|LW)) == (LC|LW) && data[2] > data[1])
               valid ^= LC;

       if (valid & UN && data[6] != 0xff) {
               *pcritmax = ipmi_convert_sensor(&data[6], psensor);
               *props |= prop_critmax;
       }
       if (valid & UC && data[5] != 0xff) {
               *pcritmax = ipmi_convert_sensor(&data[5], psensor);
               *props |= prop_critmax;
       }
       if (valid & UW && data[4] != 0xff) {
               *pwarnmax = ipmi_convert_sensor(&data[4], psensor);
               *props |= prop_warnmax;
       }
       if (valid & LN && data[3] != 0x00) {
               *pcritmin = ipmi_convert_sensor(&data[3], psensor);
               *props |= prop_critmin;
       }
       if (valid & LC && data[2] != 0x00) {
               *pcritmin = ipmi_convert_sensor(&data[2], psensor);
               *props |= prop_critmin;
       }
       if (valid & LW && data[1] != 0x00) {
               *pwarnmin = ipmi_convert_sensor(&data[1], psensor);
               *props |= prop_warnmin;
       }
       return;
}

static int
ipmi_sensor_status(struct ipmi_softc *sc, struct ipmi_sensor *psensor,
   envsys_data_t *edata, uint8_t *reading)
{
       int     etype;

       /* Get reading of sensor */
       edata->value_cur = ipmi_convert_sensor(reading, psensor);

       /* Return Sensor Status */
       etype = (psensor->i_etype << 8) + psensor->i_stype;
       switch (etype) {
       case IPMI_SENSOR_TYPE_TEMP:
       case IPMI_SENSOR_TYPE_VOLT:
       case IPMI_SENSOR_TYPE_FAN:
               if (psensor->i_props & PROP_CRITMAX &&
                   edata->value_cur > psensor->i_limits.sel_critmax)
                       return ENVSYS_SCRITOVER;

               if (psensor->i_props & PROP_WARNMAX &&
                   edata->value_cur > psensor->i_limits.sel_warnmax)
                       return ENVSYS_SWARNOVER;

               if (psensor->i_props & PROP_CRITMIN &&
                   edata->value_cur < psensor->i_limits.sel_critmin)
                       return ENVSYS_SCRITUNDER;

               if (psensor->i_props & PROP_WARNMIN &&
                   edata->value_cur < psensor->i_limits.sel_warnmin)
                       return ENVSYS_SWARNUNDER;

               break;

       case IPMI_SENSOR_TYPE_INTRUSION:
               edata->value_cur = (reading[2] & 1) ? 0 : 1;
               if (reading[2] & 0x1)
                       return ENVSYS_SCRITICAL;
               break;

       case IPMI_SENSOR_TYPE_PWRSUPPLY:
               /* Reading: 1 = present+powered, 0 = otherwise */
               edata->value_cur = (reading[2] & 1) ? 0 : 1;
               if (reading[2] & 0x10) {
                       /* XXX: Need envsys type for Power Supply types
                        *   ok: power supply installed && powered
                        * warn: power supply installed && !powered
                        * crit: power supply !installed
                        */
                       return ENVSYS_SCRITICAL;
               }
               if (reading[2] & 0x08) {
                       /* Power supply AC lost */
                       return ENVSYS_SWARNOVER;
               }
               break;
       }

       return ENVSYS_SVALID;
}

static int
read_sensor(struct ipmi_softc *sc, struct ipmi_sensor *psensor)
{
       struct sdrtype1 *s1 = (struct sdrtype1 *) psensor->i_sdr;
       uint8_t data[8];
       int             rxlen;
       envsys_data_t *edata = &sc->sc_sensor[psensor->i_envnum];

       memset(data, 0, sizeof(data));
       data[0] = psensor->i_num;

       mutex_enter(&sc->sc_cmd_mtx);
       if (ipmi_sendcmd(sc, s1->owner_id, s1->owner_lun, SE_NETFN,
           SE_GET_SENSOR_READING, 1, data))
               goto err;

       if (ipmi_recvcmd(sc, sizeof(data), &rxlen, data))
               goto err;
       mutex_exit(&sc->sc_cmd_mtx);

       dbg_printf(10, "m=%u, m_tolerance=%u, b=%u, b_accuracy=%u, "
           "rbexp=%u, linear=%d\n", s1->m, s1->m_tolerance, s1->b,
           s1->b_accuracy, s1->rbexp, s1->linear);
       dbg_printf(10, "values=%#.2x %#.2x %#.2x %#.2x %s\n",
           data[0],data[1],data[2],data[3], edata->desc);
       if (IPMI_INVALID_SENSOR_P(data[1])) {
               /* Check if sensor is valid */
               edata->state = ENVSYS_SINVALID;
       } else {
               edata->state = ipmi_sensor_status(sc, psensor, edata, data);
       }
       return 0;
err:
       mutex_exit(&sc->sc_cmd_mtx);
       return -1;
}

static int
ipmi_sensor_type(int type, int ext_type, int entity)
{
       switch (ext_type << 8L | type) {
       case IPMI_SENSOR_TYPE_TEMP:
               return ENVSYS_STEMP;

       case IPMI_SENSOR_TYPE_VOLT:
               return ENVSYS_SVOLTS_DC;

       case IPMI_SENSOR_TYPE_FAN:
               return ENVSYS_SFANRPM;

       case IPMI_SENSOR_TYPE_PWRSUPPLY:
               if (entity == IPMI_ENTITY_PWRSUPPLY)
                       return ENVSYS_INDICATOR;
               break;

       case IPMI_SENSOR_TYPE_INTRUSION:
               return ENVSYS_INDICATOR;
       }

       return -1;
}

/* Add Sensor to BSD Sysctl interface */
static int
add_sdr_sensor(struct ipmi_softc *sc, uint8_t *psdr)
{
       int                     rc;
       struct sdrtype1         *s1 = (struct sdrtype1 *)psdr;
       struct sdrtype2         *s2 = (struct sdrtype2 *)psdr;
       char                    name[64];

       switch (s1->sdrhdr.record_type) {
       case IPMI_SDR_TYPEFULL:
               ipmi_sensor_name(name, sizeof(name), s1->typelen, s1->name);
               rc = add_child_sensors(sc, psdr, 1, s1->sensor_num,
                   s1->sensor_type, s1->event_code, 0, s1->entity_id, name);
               break;

       case IPMI_SDR_TYPECOMPACT:
               ipmi_sensor_name(name, sizeof(name), s2->typelen, s2->name);
               rc = add_child_sensors(sc, psdr, s2->share1 & 0xF,
                   s2->sensor_num, s2->sensor_type, s2->event_code,
                   s2->share2 & 0x7F, s2->entity_id, name);
               break;

       default:
               return 0;
       }

       return rc;
}

static int
ipmi_is_dupname(char *name)
{
       struct ipmi_sensor *ipmi_s;

       SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
               if (strcmp(ipmi_s->i_envdesc, name) == 0) {
                       return 1;
               }
       }
       return 0;
}

static int
add_child_sensors(struct ipmi_softc *sc, uint8_t *psdr, int count,
   int sensor_num, int sensor_type, int ext_type, int sensor_base,
   int entity, const char *name)
{
       int                     typ, idx, dupcnt, c;
       char                    *e;
       struct ipmi_sensor      *psensor;
       struct sdrtype1         *s1 = (struct sdrtype1 *)psdr;

       typ = ipmi_sensor_type(sensor_type, ext_type, entity);
       if (typ == -1) {
               dbg_printf(5, "Unknown sensor type:%#.2x et:%#.2x sn:%#.2x "
                   "name:%s\n", sensor_type, ext_type, sensor_num, name);
               return 0;
       }
       dupcnt = 0;
       sc->sc_nsensors += count;
       for (idx = 0; idx < count; idx++) {
               psensor = malloc(sizeof(struct ipmi_sensor), M_DEVBUF,
                   M_WAITOK);
               if (psensor == NULL)
                       break;

               memset(psensor, 0, sizeof(struct ipmi_sensor));

               /* Initialize BSD Sensor info */
               psensor->i_sdr = psdr;
               psensor->i_num = sensor_num + idx;
               psensor->i_stype = sensor_type;
               psensor->i_etype = ext_type;
               psensor->i_envtype = typ;
               if (count > 1)
                       snprintf(psensor->i_envdesc,
                           sizeof(psensor->i_envdesc),
                           "%s - %d", name, sensor_base + idx);
               else
                       strlcpy(psensor->i_envdesc, name,
                           sizeof(psensor->i_envdesc));

               /*
                * Check for duplicates.  If there are duplicates,
                * make sure there is space in the name (if not,
                * truncate to make space) for a count (1-99) to
                * add to make the name unique.  If we run the
                * counter out, just accept the duplicate (@name99)
                * for now.
                */
               if (ipmi_is_dupname(psensor->i_envdesc)) {
                       if (strlen(psensor->i_envdesc) >=
                           sizeof(psensor->i_envdesc) - 3) {
                               e = psensor->i_envdesc +
                                   sizeof(psensor->i_envdesc) - 3;
                       } else {
                               e = psensor->i_envdesc +
                                   strlen(psensor->i_envdesc);
                       }
                       c = psensor->i_envdesc +
                           sizeof(psensor->i_envdesc) - e;
                       do {
                               dupcnt++;
                               snprintf(e, c, "%d", dupcnt);
                       } while (dupcnt < 100 &&
                                ipmi_is_dupname(psensor->i_envdesc));
               }

               dbg_printf(5, "%s: %#.4x %#.2x:%d ent:%#.2x:%#.2x %s\n",
                   __func__,
                   s1->sdrhdr.record_id, s1->sensor_type,
                   typ, s1->entity_id, s1->entity_instance,
                   psensor->i_envdesc);
               SLIST_INSERT_HEAD(&ipmi_sensor_list, psensor, i_list);
       }

       return 1;
}

#if 0
/* Interrupt handler */
static int
ipmi_intr(void *arg)
{
       struct ipmi_softc       *sc = (struct ipmi_softc *)arg;
       int                     v;

       v = bmc_read(sc, _KCS_STATUS_REGISTER);
       if (v & KCS_OBF)
               ++ipmi_nintr;

       return 0;
}
#endif

/* Handle IPMI Timer - reread sensor values */
static void
ipmi_refresh_sensors(struct ipmi_softc *sc)
{

       if (SLIST_EMPTY(&ipmi_sensor_list))
               return;

       sc->current_sensor = SLIST_NEXT(sc->current_sensor, i_list);
       if (sc->current_sensor == NULL)
               sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);

       if (read_sensor(sc, sc->current_sensor)) {
               dbg_printf(1, "%s: error reading\n", __func__);
       }
}

static int
ipmi_map_regs(struct ipmi_softc *sc, struct ipmi_attach_args *ia)
{
       int error;

       sc->sc_if = ipmi_get_if(ia->iaa_if_type);
       if (sc->sc_if == NULL)
               return -1;

       if (ia->iaa_if_iotype == 'i')
               sc->sc_iot = ia->iaa_iot;
       else
               sc->sc_iot = ia->iaa_memt;

       sc->sc_if_rev = ia->iaa_if_rev;
       sc->sc_if_iospacing = ia->iaa_if_iospacing;
       if ((error = bus_space_map(sc->sc_iot, ia->iaa_if_iobase,
           sc->sc_if->nregs * sc->sc_if_iospacing, 0, &sc->sc_ioh)) != 0) {
               const char *xname = sc->sc_dev ? device_xname(sc->sc_dev) :
                   "ipmi0";
               aprint_error("%s: %s:bus_space_map(..., %" PRIx64 ", %x"
                   ", 0, %p) type %c failed %d\n",
                   xname, __func__, (uint64_t)ia->iaa_if_iobase,
                   sc->sc_if->nregs * sc->sc_if_iospacing, &sc->sc_ioh,
                   ia->iaa_if_iotype, error);
               return -1;
       }
#if 0
       if (iaa->if_if_irq != -1)
               sc->ih = isa_intr_establish(-1, iaa->if_if_irq,
                   iaa->if_irqlvl, IPL_BIO, ipmi_intr, sc,
                   device_xname(sc->sc_dev);
#endif
       return 0;
}

static void
ipmi_unmap_regs(struct ipmi_softc *sc)
{
       bus_space_unmap(sc->sc_iot, sc->sc_ioh,
           sc->sc_if->nregs * sc->sc_if_iospacing);
}

static int
ipmi_match(device_t parent, cfdata_t cf, void *aux)
{
       struct ipmi_softc sc;
       struct ipmi_attach_args *ia = aux;
       int                     rv = 0;

       memset(&sc, 0, sizeof(sc));

       /* Map registers */
       if (ipmi_map_regs(&sc, ia) != 0)
               return 0;

       sc.sc_if->probe(&sc);

       mutex_init(&sc.sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);

       if (ipmi_get_device_id(&sc, NULL) == 0)
               rv = 1;

       mutex_destroy(&sc.sc_cmd_mtx);
       ipmi_unmap_regs(&sc);

       return rv;
}

static void
ipmi_thread(void *cookie)
{
       device_t                self = cookie;
       struct ipmi_softc       *sc = device_private(self);
       struct ipmi_attach_args *ia = &sc->sc_ia;
       uint16_t                rec;
       struct ipmi_sensor *ipmi_s;
       struct ipmi_device_id   id;
       int i;

       sc->sc_thread_running = true;

       /* setup ticker */
       sc->sc_max_retries = hz * 90; /* 90 seconds max */

       /* Map registers */
       ipmi_map_regs(sc, ia);

       /* Setup Watchdog timer */
       sc->sc_wdog.smw_name = device_xname(sc->sc_dev);
       sc->sc_wdog.smw_cookie = sc;
       sc->sc_wdog.smw_setmode = ipmi_watchdog_setmode;
       sc->sc_wdog.smw_tickle = ipmi_watchdog_tickle;
       sysmon_wdog_register(&sc->sc_wdog);

       /* Set up a power handler so we can possibly sleep */
       if (!pmf_device_register(self, ipmi_suspend, NULL))
               aprint_error_dev(self, "couldn't establish a power handler\n");

       /*
        * Allow boot to proceed -- we'll do the rest asynchronously
        * since it requires talking to the device.
        */
       config_pending_decr(self);

       memset(&id, 0, sizeof(id));
       if (ipmi_get_device_id(sc, &id))
               aprint_error_dev(self, "Failed to re-query device ID\n");

       /* Scan SDRs, add sensors to list */
       for (rec = 0; rec != 0xFFFF;)
               if (get_sdr(sc, rec, &rec))
                       break;

       /* allocate and fill sensor arrays */
       sc->sc_sensor = malloc(sizeof(sc->sc_sensor[0]) * sc->sc_nsensors,
           M_DEVBUF, M_WAITOK | M_ZERO);

       sc->sc_envsys = sysmon_envsys_create();
       sc->sc_envsys->sme_cookie = sc;
       sc->sc_envsys->sme_get_limits = ipmi_get_limits;
       sc->sc_envsys->sme_set_limits = ipmi_set_limits;

       i = 0;
       SLIST_FOREACH(ipmi_s, &ipmi_sensor_list, i_list) {
               ipmi_s->i_props = 0;
               ipmi_s->i_envnum = -1;
               sc->sc_sensor[i].units = ipmi_s->i_envtype;
               sc->sc_sensor[i].state = ENVSYS_SINVALID;
               sc->sc_sensor[i].flags |= ENVSYS_FHAS_ENTROPY;
               /*
                * Monitor threshold limits in the sensors.
                */
               switch (sc->sc_sensor[i].units) {
               case ENVSYS_STEMP:
               case ENVSYS_SVOLTS_DC:
               case ENVSYS_SFANRPM:
                       sc->sc_sensor[i].flags |= ENVSYS_FMONLIMITS;
                       break;
               default:
                       sc->sc_sensor[i].flags |= ENVSYS_FMONCRITICAL;
               }
               (void)strlcpy(sc->sc_sensor[i].desc, ipmi_s->i_envdesc,
                   sizeof(sc->sc_sensor[i].desc));
               ++i;

               if (sysmon_envsys_sensor_attach(sc->sc_envsys,
                                               &sc->sc_sensor[i-1]))
                       continue;

               /* get reference number from envsys */
               ipmi_s->i_envnum = sc->sc_sensor[i-1].sensor;
       }

       sc->sc_envsys->sme_name = device_xname(sc->sc_dev);
       sc->sc_envsys->sme_flags = SME_DISABLE_REFRESH;

       if (sysmon_envsys_register(sc->sc_envsys)) {
               aprint_error_dev(self, "unable to register with sysmon\n");
               sysmon_envsys_destroy(sc->sc_envsys);
               sc->sc_envsys = NULL;
       }

       /* initialize sensor list for thread */
       if (!SLIST_EMPTY(&ipmi_sensor_list))
               sc->current_sensor = SLIST_FIRST(&ipmi_sensor_list);

       aprint_verbose_dev(self, "version %d.%d interface %s %sbase "
           "0x%" PRIx64 "/%#x spacing %d\n",
           ia->iaa_if_rev >> 4, ia->iaa_if_rev & 0xF, sc->sc_if->name,
           ia->iaa_if_iotype == 'i' ? "io" : "mem",
           (uint64_t)ia->iaa_if_iobase,
           ia->iaa_if_iospacing * sc->sc_if->nregs, ia->iaa_if_iospacing);
       if (ia->iaa_if_irq != -1)
               aprint_verbose_dev(self, " irq %d\n", ia->iaa_if_irq);

       if (id.deviceid != 0) {
               aprint_normal_dev(self, "ID %u.%u IPMI %x.%x%s%s\n",
                       id.deviceid, (id.revision & 0xf),
                       (id.version & 0xf), (id.version >> 4) & 0xf,
                       (id.fwrev1 & 0x80) ? " Initializing" : " Available",
                       (id.revision & 0x80) ? " +SDRs" : "");
               if (id.additional != 0)
                       aprint_verbose_dev(self, "Additional%s%s%s%s%s%s%s%s\n",
                               (id.additional & 0x80) ? " Chassis" : "",
                               (id.additional & 0x40) ? " Bridge" : "",
                               (id.additional & 0x20) ? " IPMBGen" : "",
                               (id.additional & 0x10) ? " IPMBRcv" : "",
                               (id.additional & 0x08) ? " FRU" : "",
                               (id.additional & 0x04) ? " SEL" : "",
                               (id.additional & 0x02) ? " SDR" : "",
                               (id.additional & 0x01) ? " Sensor" : "");
               aprint_verbose_dev(self, "Manufacturer %05x Product %04x\n",
                       (id.manufacturer[2] & 0xf) << 16
                           | id.manufacturer[1] << 8
                           | id.manufacturer[0],
                       id.product[1] << 8
                           | id.manufacturer[0]);
               aprint_verbose_dev(self, "Firmware %u.%x\n",
                       (id.fwrev1 & 0x7f), id.fwrev2);
       }

       /* setup flag to exclude iic */
       ipmi_enabled = 1;

       mutex_enter(&sc->sc_poll_mtx);
       sc->sc_thread_ready = true;
       cv_broadcast(&sc->sc_mode_cv);
       while (sc->sc_thread_running) {
               while (sc->sc_mode == IPMI_MODE_COMMAND)
                       cv_wait(&sc->sc_mode_cv, &sc->sc_poll_mtx);
               sc->sc_mode = IPMI_MODE_ENVSYS;

               if (sc->sc_tickle_due) {
                       ipmi_dotickle(sc);
                       sc->sc_tickle_due = false;
               }
               ipmi_refresh_sensors(sc);

               sc->sc_mode = IPMI_MODE_IDLE;
               cv_broadcast(&sc->sc_mode_cv);
               cv_timedwait(&sc->sc_poll_cv, &sc->sc_poll_mtx,
                   SENSOR_REFRESH_RATE);
       }
       mutex_exit(&sc->sc_poll_mtx);
       kthread_exit(0);
}

static void
ipmi_attach(device_t parent, device_t self, void *aux)
{
       struct ipmi_softc       *sc = device_private(self);

       sc->sc_ia = *(struct ipmi_attach_args *)aux;
       sc->sc_dev = self;
       aprint_naive("\n");
       aprint_normal("\n");

       /* lock around read_sensor so that no one messes with the bmc regs */
       mutex_init(&sc->sc_cmd_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);

       mutex_init(&sc->sc_poll_mtx, MUTEX_DEFAULT, IPL_SOFTCLOCK);
       cv_init(&sc->sc_poll_cv, "ipmipoll");
       cv_init(&sc->sc_mode_cv, "ipmimode");

       if (kthread_create(PRI_NONE, KTHREAD_MUSTJOIN, NULL, ipmi_thread, self,
           &sc->sc_kthread, "%s", device_xname(self)) != 0) {
               aprint_error_dev(self, "unable to create thread, disabled\n");
       } else
               config_pending_incr(self);
}

static int
ipmi_detach(device_t self, int flags)
{
       struct ipmi_sensor *i;
       int rc;
       struct ipmi_softc *sc = device_private(self);

       mutex_enter(&sc->sc_poll_mtx);
       sc->sc_thread_running = false;
       cv_signal(&sc->sc_poll_cv);
       mutex_exit(&sc->sc_poll_mtx);
       if (sc->sc_kthread)
               (void)kthread_join(sc->sc_kthread);

       if ((rc = sysmon_wdog_unregister(&sc->sc_wdog)) != 0) {
               if (rc == ERESTART)
                       rc = EINTR;
               return rc;
       }

       /* cancel any pending countdown */
       sc->sc_wdog.smw_mode &= ~WDOG_MODE_MASK;
       sc->sc_wdog.smw_mode |= WDOG_MODE_DISARMED;
       sc->sc_wdog.smw_period = WDOG_PERIOD_DEFAULT;

       if ((rc = ipmi_watchdog_setmode(&sc->sc_wdog)) != 0)
               return rc;

       ipmi_enabled = 0;

       if (sc->sc_envsys != NULL) {
               /* _unregister also destroys */
               sysmon_envsys_unregister(sc->sc_envsys);
               sc->sc_envsys = NULL;
       }

       while ((i = SLIST_FIRST(&ipmi_sensor_list)) != NULL) {
               SLIST_REMOVE_HEAD(&ipmi_sensor_list, i_list);
               free(i, M_DEVBUF);
       }

       if (sc->sc_sensor != NULL) {
               free(sc->sc_sensor, M_DEVBUF);
               sc->sc_sensor = NULL;
       }

       ipmi_unmap_regs(sc);

       cv_destroy(&sc->sc_mode_cv);
       cv_destroy(&sc->sc_poll_cv);
       mutex_destroy(&sc->sc_poll_mtx);
       mutex_destroy(&sc->sc_cmd_mtx);

       return 0;
}

static int
ipmi_get_device_id(struct ipmi_softc *sc, struct ipmi_device_id *res)
{
       uint8_t         buf[32];
       int             len;
       int             rc;

       mutex_enter(&sc->sc_cmd_mtx);
       /* Identify BMC device early to detect lying bios */
       rc = ipmi_sendcmd(sc, BMC_SA, 0, APP_NETFN, APP_GET_DEVICE_ID, 0, NULL);
       if (rc) {
               dbg_printf(1, ": unable to send get device id "
                   "command\n");
               goto done;
       }
       rc = ipmi_recvcmd(sc, sizeof(buf), &len, buf);
       if (rc) {
               dbg_printf(1, ": unable to retrieve device id\n");
       }
done:
       mutex_exit(&sc->sc_cmd_mtx);

       if (rc == 0 && res != NULL)
               memcpy(res, buf, MIN(sizeof(*res), len));

       return rc;
}

static int
ipmi_watchdog_setmode(struct sysmon_wdog *smwdog)
{
       struct ipmi_softc       *sc = smwdog->smw_cookie;
       struct ipmi_get_watchdog gwdog;
       struct ipmi_set_watchdog swdog;
       int                     rc, len;

       if (smwdog->smw_period < 10)
               return EINVAL;
       if (smwdog->smw_period == WDOG_PERIOD_DEFAULT)
               sc->sc_wdog.smw_period = 10;
       else
               sc->sc_wdog.smw_period = smwdog->smw_period;

       /* Wait until the device is initialized */
       rc = 0;
       mutex_enter(&sc->sc_poll_mtx);
       while (sc->sc_thread_ready)
               rc = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
       mutex_exit(&sc->sc_poll_mtx);
       if (rc)
               return rc;

       mutex_enter(&sc->sc_cmd_mtx);
       /* see if we can properly task to the watchdog */
       rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
           APP_GET_WATCHDOG_TIMER, 0, NULL);
       rc = ipmi_recvcmd(sc, sizeof(gwdog), &len, &gwdog);
       mutex_exit(&sc->sc_cmd_mtx);
       if (rc) {
               aprint_error_dev(sc->sc_dev,
                   "APP_GET_WATCHDOG_TIMER returned %#x\n", rc);
               return EIO;
       }

       memset(&swdog, 0, sizeof(swdog));
       /* Period is 10ths/sec */
       swdog.wdog_timeout = htole16(sc->sc_wdog.smw_period * 10);
       if ((smwdog->smw_mode & WDOG_MODE_MASK) == WDOG_MODE_DISARMED)
               swdog.wdog_action = IPMI_WDOG_ACT_DISABLED;
       else
               swdog.wdog_action = IPMI_WDOG_ACT_RESET;
       swdog.wdog_use = IPMI_WDOG_USE_USE_OS;

       mutex_enter(&sc->sc_cmd_mtx);
       if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
           APP_SET_WATCHDOG_TIMER, sizeof(swdog), &swdog)) == 0)
               rc = ipmi_recvcmd(sc, 0, &len, NULL);
       mutex_exit(&sc->sc_cmd_mtx);
       if (rc) {
               aprint_error_dev(sc->sc_dev,
                   "APP_SET_WATCHDOG_TIMER returned %#x\n", rc);
               return EIO;
       }

       return 0;
}

static int
ipmi_watchdog_tickle(struct sysmon_wdog *smwdog)
{
       struct ipmi_softc       *sc = smwdog->smw_cookie;

       mutex_enter(&sc->sc_poll_mtx);
       sc->sc_tickle_due = true;
       cv_signal(&sc->sc_poll_cv);
       mutex_exit(&sc->sc_poll_mtx);
       return 0;
}

static void
ipmi_dotickle(struct ipmi_softc *sc)
{
       int                     rc, len;

       mutex_enter(&sc->sc_cmd_mtx);
       /* tickle the watchdog */
       if ((rc = ipmi_sendcmd(sc, BMC_SA, BMC_LUN, APP_NETFN,
           APP_RESET_WATCHDOG, 0, NULL)) == 0)
               rc = ipmi_recvcmd(sc, 0, &len, NULL);
       mutex_exit(&sc->sc_cmd_mtx);
       if (rc != 0) {
               aprint_error_dev(sc->sc_dev, "watchdog tickle returned %#x\n",
                   rc);
       }
}

static bool
ipmi_suspend(device_t dev, const pmf_qual_t *qual)
{
       struct ipmi_softc *sc = device_private(dev);

       /* Don't allow suspend if watchdog is armed */
       if ((sc->sc_wdog.smw_mode & WDOG_MODE_MASK) != WDOG_MODE_DISARMED)
               return false;
       return true;
}

static int
ipmi_open(dev_t dev, int flag, int fmt, lwp_t *l)
{
       struct ipmi_softc *sc;
       int unit;

       unit = IPMIUNIT(dev);
       if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
               return (ENXIO);

       return 0;
}

static int
ipmi_close(dev_t dev, int flag, int fmt, lwp_t *l)
{
       struct ipmi_softc *sc;
       int unit;

       unit = IPMIUNIT(dev);
       if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
               return (ENXIO);

       mutex_enter(&sc->sc_poll_mtx);
       if (sc->sc_mode == IPMI_MODE_COMMAND) {
               sc->sc_mode = IPMI_MODE_IDLE;
               cv_broadcast(&sc->sc_mode_cv);
       }
       mutex_exit(&sc->sc_poll_mtx);
       return 0;
}

static int
ipmi_ioctl(dev_t dev, u_long cmd, void *data, int flag, lwp_t *l)
{
       struct ipmi_softc *sc;
       int unit, error = 0, len;
       struct ipmi_req *req;
       struct ipmi_recv *recv;
       struct ipmi_addr addr;
       unsigned char ccode, *buf = NULL;

       unit = IPMIUNIT(dev);
       if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
               return (ENXIO);

       switch (cmd) {
       case IPMICTL_SEND_COMMAND:
               mutex_enter(&sc->sc_poll_mtx);
               while (sc->sc_mode == IPMI_MODE_ENVSYS) {
                       error = cv_wait_sig(&sc->sc_mode_cv, &sc->sc_poll_mtx);
                       if (error == EINTR) {
                               mutex_exit(&sc->sc_poll_mtx);
                               return error;
                       }
               }
               sc->sc_mode = IPMI_MODE_COMMAND;
               mutex_exit(&sc->sc_poll_mtx);
               break;
       }

       mutex_enter(&sc->sc_cmd_mtx);

       switch (cmd) {
       case IPMICTL_SEND_COMMAND:
               req = data;
               buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);

               len = req->msg.data_len;
               if (len < 0 || len > IPMI_MAX_RX) {
                       error = EINVAL;
                       break;
               }

               /* clear pending result */
               if (sc->sc_sent)
                       (void)ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);

               /* XXX */
               error = copyin(req->addr, &addr, sizeof(addr));
               if (error)
                       break;

               error = copyin(req->msg.data, buf, len);
               if (error)
                       break;

               /* save for receive */
               sc->sc_msgid = req->msgid;
               sc->sc_netfn = req->msg.netfn;
               sc->sc_cmd = req->msg.cmd;

               if (ipmi_sendcmd(sc, BMC_SA, 0, req->msg.netfn,
                   req->msg.cmd, len, buf)) {
                       error = EIO;
                       break;
               }
               sc->sc_sent = true;
               break;
       case IPMICTL_RECEIVE_MSG_TRUNC:
       case IPMICTL_RECEIVE_MSG:
               recv = data;
               buf = malloc(IPMI_MAX_RX, M_DEVBUF, M_WAITOK);

               if (recv->msg.data_len < 1) {
                       error = EINVAL;
                       break;
               }

               /* XXX */
               error = copyin(recv->addr, &addr, sizeof(addr));
               if (error)
                       break;


               if (!sc->sc_sent) {
                       error = EIO;
                       break;
               }

               len = 0;
               error = ipmi_recvcmd(sc, IPMI_MAX_RX, &len, buf);
               if (error < 0) {
                       error = EIO;
                       break;
               }
               ccode = (unsigned char)error;
               sc->sc_sent = false;

               if (len > recv->msg.data_len - 1) {
                       if (cmd == IPMICTL_RECEIVE_MSG) {
                               error = EMSGSIZE;
                               break;
                       }
                       len = recv->msg.data_len - 1;
               }

               addr.channel = IPMI_BMC_CHANNEL;

               recv->recv_type = IPMI_RESPONSE_RECV_TYPE;
               recv->msgid = sc->sc_msgid;
               recv->msg.netfn = sc->sc_netfn;
               recv->msg.cmd = sc->sc_cmd;
               recv->msg.data_len = len+1;

               error = copyout(&addr, recv->addr, sizeof(addr));
               if (error == 0)
                       error = copyout(&ccode, recv->msg.data, 1);
               if (error == 0)
                       error = copyout(buf, recv->msg.data+1, len);
               break;
       case IPMICTL_SET_MY_ADDRESS_CMD:
               sc->sc_address = *(int *)data;
               break;
       case IPMICTL_GET_MY_ADDRESS_CMD:
               *(int *)data = sc->sc_address;
               break;
       case IPMICTL_SET_MY_LUN_CMD:
               sc->sc_lun = *(int *)data & 0x3;
               break;
       case IPMICTL_GET_MY_LUN_CMD:
               *(int *)data = sc->sc_lun;
               break;
       case IPMICTL_SET_GETS_EVENTS_CMD:
               break;
       case IPMICTL_REGISTER_FOR_CMD:
       case IPMICTL_UNREGISTER_FOR_CMD:
               error = EOPNOTSUPP;
               break;
       default:
               error = ENODEV;
               break;
       }

       if (buf)
               free(buf, M_DEVBUF);

       mutex_exit(&sc->sc_cmd_mtx);

       switch (cmd) {
       case IPMICTL_RECEIVE_MSG:
       case IPMICTL_RECEIVE_MSG_TRUNC:
               mutex_enter(&sc->sc_poll_mtx);
               sc->sc_mode = IPMI_MODE_IDLE;
               cv_broadcast(&sc->sc_mode_cv);
               mutex_exit(&sc->sc_poll_mtx);
               break;
       }

       return error;
}

static int
ipmi_poll(dev_t dev, int events, lwp_t *l)
{
       struct ipmi_softc *sc;
       int unit, revents = 0;

       unit = IPMIUNIT(dev);
       if ((sc = device_lookup_private(&ipmi_cd, unit)) == NULL)
               return (ENXIO);

       mutex_enter(&sc->sc_cmd_mtx);
       if (events & (POLLIN | POLLRDNORM)) {
               if (sc->sc_sent)
                       revents |= events & (POLLIN | POLLRDNORM);
       }
       mutex_exit(&sc->sc_cmd_mtx);

       return revents;
}