/* $NetBSD: rtwphy.c,v 1.17 2019/11/10 21:16:35 chs Exp $ */
/*-
* Copyright (c) 2004, 2005 David Young.  All rights reserved.
*
* Programmed for NetBSD by David Young.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY David Young ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL David
* Young BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/*
* Control the Philips SA2400 RF front-end and the baseband processor
* built into the Realtek RTL8180.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: rtwphy.c,v 1.17 2019/11/10 21:16:35 chs Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/types.h>
#include <sys/device.h>

#include <sys/bus.h>

#include <net/if.h>
#include <net/if_media.h>
#include <net/if_ether.h>

#include <net80211/ieee80211_netbsd.h>
#include <net80211/ieee80211_radiotap.h>
#include <net80211/ieee80211_var.h>

#include <dev/ic/rtwreg.h>
#include <dev/ic/max2820reg.h>
#include <dev/ic/sa2400reg.h>
#include <dev/ic/rtwvar.h>
#include <dev/ic/rtwphyio.h>
#include <dev/ic/rtwphy.h>

static int rtw_max2820_pwrstate(struct rtw_rf *, enum rtw_pwrstate);
static int rtw_sa2400_pwrstate(struct rtw_rf *, enum rtw_pwrstate);

#define GCT_WRITE(__gr, __addr, __val, __label)                         \
       do {                                                            \
               if (rtw_rfbus_write(&(__gr)->gr_bus, RTW_RFCHIPID_GCT,  \
                   (__addr), (__val)) == -1)                           \
                       goto __label;                                   \
       } while(0)

static int
rtw_bbp_preinit(struct rtw_regs *regs, u_int antatten0, int dflantb,
   u_int freq)
{
       u_int antatten = antatten0;
       if (dflantb)
               antatten |= RTW_BBP_ANTATTEN_DFLANTB;
       if (freq == 2484) /* channel 14 */
               antatten |= RTW_BBP_ANTATTEN_CHAN14;
       return rtw_bbp_write(regs, RTW_BBP_ANTATTEN, antatten);
}

static int
rtw_bbp_init(struct rtw_regs *regs, struct rtw_bbpset *bb, int antdiv,
   int dflantb, uint8_t cs_threshold, u_int freq)
{
       int rc;
       uint32_t sys2, sys3;

       sys2 = bb->bb_sys2;
       if (antdiv)
               sys2 |= RTW_BBP_SYS2_ANTDIV;
       sys3 = bb->bb_sys3 |
           __SHIFTIN(cs_threshold, RTW_BBP_SYS3_CSTHRESH_MASK);

#define RTW_BBP_WRITE_OR_RETURN(reg, val) \
       if ((rc = rtw_bbp_write(regs, reg, val)) != 0) \
               return rc;

       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS1,           bb->bb_sys1);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TXAGC,          bb->bb_txagc);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_LNADET,         bb->bb_lnadet);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCINI,       bb->bb_ifagcini);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCLIMIT,     bb->bb_ifagclimit);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_IFAGCDET,       bb->bb_ifagcdet);

       if ((rc = rtw_bbp_preinit(regs, bb->bb_antatten, dflantb, freq)) != 0)
               return rc;

       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_TRL,            bb->bb_trl);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS2,           sys2);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_SYS3,           sys3);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHESTLIM,       bb->bb_chestlim);
       RTW_BBP_WRITE_OR_RETURN(RTW_BBP_CHSQLIM,        bb->bb_chsqlim);
       return 0;
}

static int
rtw_sa2400_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
{
       struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
       struct rtw_rfbus *bus = &sa->sa_bus;

       return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_TX,
           opaque_txpower);
}

/* make sure we're using the same settings as the reference driver */
static void
verify_syna(u_int freq, uint32_t val)
{
#ifdef DIAGNOSTIC
       uint32_t expected_val = ~val;

       switch (freq) {
       case 2412:
               expected_val = 0x0000096c; /* ch 1 */
               break;
       case 2417:
               expected_val = 0x00080970; /* ch 2 */
               break;
       case 2422:
               expected_val = 0x00100974; /* ch 3 */
               break;
       case 2427:
               expected_val = 0x00180978; /* ch 4 */
               break;
       case 2432:
               expected_val = 0x00000980; /* ch 5 */
               break;
       case 2437:
               expected_val = 0x00080984; /* ch 6 */
               break;
       case 2442:
               expected_val = 0x00100988; /* ch 7 */
               break;
       case 2447:
               expected_val = 0x0018098c; /* ch 8 */
               break;
       case 2452:
               expected_val = 0x00000994; /* ch 9 */
               break;
       case 2457:
               expected_val = 0x00080998; /* ch 10 */
               break;
       case 2462:
               expected_val = 0x0010099c; /* ch 11 */
               break;
       case 2467:
               expected_val = 0x001809a0; /* ch 12 */
               break;
       case 2472:
               expected_val = 0x000009a8; /* ch 13 */
               break;
       case 2484:
               expected_val = 0x000009b4; /* ch 14 */
               break;
       }
       KASSERT(val == expected_val);
#endif
}

/* freq is in MHz */
static int
rtw_sa2400_tune(struct rtw_rf *rf, u_int freq)
{
       struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
       struct rtw_rfbus *bus = &sa->sa_bus;
       int rc;
       uint32_t syna, synb, sync;

       /* XO = 44MHz, R = 11, hence N is in units of XO / R = 4MHz.
        *
        * The channel spacing (5MHz) is not divisible by 4MHz, so
        * we set the fractional part of N to compensate.
        */
       int n = freq / 4, nf = (freq % 4) * 2;

       syna = __SHIFTIN(nf, SA2400_SYNA_NF_MASK) | __SHIFTIN(n, SA2400_SYNA_N_MASK);
       verify_syna(freq, syna);

       /* Divide the 44MHz crystal down to 4MHz. Set the fractional
        * compensation charge pump value to agree with the fractional
        * modulus.
        */
       synb = __SHIFTIN(11, SA2400_SYNB_R_MASK) | SA2400_SYNB_L_NORMAL |
           SA2400_SYNB_ON | SA2400_SYNB_ONE |
           __SHIFTIN(80, SA2400_SYNB_FC_MASK); /* agrees w/ SA2400_SYNA_FM = 0 */

       sync = SA2400_SYNC_CP_NORMAL;

       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNA,
           syna)) != 0)
               return rc;
       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNB,
           synb)) != 0)
               return rc;
       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYNC,
           sync)) != 0)
               return rc;
       return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_SYND, 0x0);
}

static int
rtw_sa2400_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
{
       struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
       struct rtw_rfbus *bus = &sa->sa_bus;
       uint32_t opmode;
       opmode = SA2400_OPMODE_DEFAULTS;
       switch (power) {
       case RTW_ON:
               opmode |= SA2400_OPMODE_MODE_TXRX;
               break;
       case RTW_SLEEP:
               opmode |= SA2400_OPMODE_MODE_WAIT;
               break;
       case RTW_OFF:
               opmode |= SA2400_OPMODE_MODE_SLEEP;
               break;
       }

       if (sa->sa_digphy)
               opmode |= SA2400_OPMODE_DIGIN;

       return rtw_rfbus_write(bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
           opmode);
}

static int
rtw_sa2400_manrx_init(struct rtw_sa2400 *sa)
{
       uint32_t manrx;

       /* XXX we are not supposed to be in RXMGC mode when we do
        * this?
        */
       manrx = SA2400_MANRX_AHSN;
       manrx |= SA2400_MANRX_TEN;
       manrx |= __SHIFTIN(1023, SA2400_MANRX_RXGAIN_MASK);

       return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_MANRX,
           manrx);
}

static int
rtw_sa2400_vcocal_start(struct rtw_sa2400 *sa, int start)
{
       uint32_t opmode;

       opmode = SA2400_OPMODE_DEFAULTS;
       if (start)
               opmode |= SA2400_OPMODE_MODE_VCOCALIB;
       else
               opmode |= SA2400_OPMODE_MODE_SLEEP;

       if (sa->sa_digphy)
               opmode |= SA2400_OPMODE_DIGIN;

       return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
           opmode);
}

static int
rtw_sa2400_vco_calibration(struct rtw_sa2400 *sa)
{
       int rc;
       /* calibrate VCO */
       if ((rc = rtw_sa2400_vcocal_start(sa, 1)) != 0)
               return rc;
       DELAY(2200);    /* 2.2 milliseconds */
       /* XXX superfluous: SA2400 automatically entered SLEEP mode. */
       return rtw_sa2400_vcocal_start(sa, 0);
}

static int
rtw_sa2400_filter_calibration(struct rtw_sa2400 *sa)
{
       uint32_t opmode;

       opmode = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_FCALIB;
       if (sa->sa_digphy)
               opmode |= SA2400_OPMODE_DIGIN;

       return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
           opmode);
}

static int
rtw_sa2400_dc_calibration(struct rtw_sa2400 *sa)
{
       struct rtw_rf *rf = &sa->sa_rf;
       int rc;
       uint32_t dccal;

       (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 1);

       dccal = SA2400_OPMODE_DEFAULTS | SA2400_OPMODE_MODE_TXRX;

       rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
           dccal);
       if (rc != 0)
               return rc;

       DELAY(5);       /* DCALIB after being in Tx mode for 5
                        * microseconds
                        */

       dccal &= ~SA2400_OPMODE_MODE_MASK;
       dccal |= SA2400_OPMODE_MODE_DCALIB;

       rc = rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_OPMODE,
          dccal);
       if (rc != 0)
               return rc;

       DELAY(20);      /* calibration takes at most 20 microseconds */

       (*rf->rf_continuous_tx_cb)(rf->rf_continuous_tx_arg, 0);

       return 0;
}

static int
rtw_sa2400_agc_init(struct rtw_sa2400 *sa)
{
       uint32_t agc;

       agc = __SHIFTIN(25, SA2400_AGC_MAXGAIN_MASK);
       agc |= __SHIFTIN(7, SA2400_AGC_BBPDELAY_MASK);
       agc |= __SHIFTIN(15, SA2400_AGC_LNADELAY_MASK);
       agc |= __SHIFTIN(27, SA2400_AGC_RXONDELAY_MASK);

       return rtw_rfbus_write(&sa->sa_bus, RTW_RFCHIPID_PHILIPS, SA2400_AGC,
           agc);
}

static void
rtw_sa2400_destroy(struct rtw_rf *rf)
{
       struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
       memset(sa, 0, sizeof(*sa));
       free(sa, M_DEVBUF);
}

static int
rtw_sa2400_calibrate(struct rtw_rf *rf, u_int freq)
{
       struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
       int i, rc;

       /* XXX reference driver calibrates VCO twice. Is it a bug? */
       for (i = 0; i < 2; i++) {
               if ((rc = rtw_sa2400_vco_calibration(sa)) != 0)
                       return rc;
       }
       /* VCO calibration erases synthesizer registers, so re-tune */
       if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
               return rc;
       if ((rc = rtw_sa2400_filter_calibration(sa)) != 0)
               return rc;
       /* analog PHY needs DC calibration */
       if (!sa->sa_digphy)
               return rtw_sa2400_dc_calibration(sa);
       return 0;
}

static int
rtw_sa2400_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
   enum rtw_pwrstate power)
{
       struct rtw_sa2400 *sa = (struct rtw_sa2400 *)rf;
       int rc;

       if ((rc = rtw_sa2400_txpower(rf, opaque_txpower)) != 0)
               return rc;

       /* skip configuration if it's time to sleep or to power-down. */
       if (power == RTW_SLEEP || power == RTW_OFF)
               return rtw_sa2400_pwrstate(rf, power);

       /* go to sleep for configuration */
       if ((rc = rtw_sa2400_pwrstate(rf, RTW_SLEEP)) != 0)
               return rc;

       if ((rc = rtw_sa2400_tune(rf, freq)) != 0)
               return rc;
       if ((rc = rtw_sa2400_agc_init(sa)) != 0)
               return rc;
       if ((rc = rtw_sa2400_manrx_init(sa)) != 0)
               return rc;
       if ((rc = rtw_sa2400_calibrate(rf, freq)) != 0)
               return rc;

       /* enter Tx/Rx mode */
       return rtw_sa2400_pwrstate(rf, power);
}

struct rtw_rf *
rtw_sa2400_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int digphy)
{
       struct rtw_sa2400 *sa;
       struct rtw_rfbus *bus;
       struct rtw_rf *rf;
       struct rtw_bbpset *bb;

       sa = malloc(sizeof(*sa), M_DEVBUF, M_WAITOK | M_ZERO);
       sa->sa_digphy = digphy;

       rf = &sa->sa_rf;
       bus = &sa->sa_bus;

       rf->rf_init = rtw_sa2400_init;
       rf->rf_destroy = rtw_sa2400_destroy;
       rf->rf_txpower = rtw_sa2400_txpower;
       rf->rf_tune = rtw_sa2400_tune;
       rf->rf_pwrstate = rtw_sa2400_pwrstate;
       bb = &rf->rf_bbpset;

       /* XXX magic */
       bb->bb_antatten = RTW_BBP_ANTATTEN_PHILIPS_MAGIC;
       bb->bb_chestlim =       0x00;
       bb->bb_chsqlim =        0xa0;
       bb->bb_ifagcdet =       0x64;
       bb->bb_ifagcini =       0x90;
       bb->bb_ifagclimit =     0x1a;
       bb->bb_lnadet =         0xe0;
       bb->bb_sys1 =           0x98;
       bb->bb_sys2 =           0x47;
       bb->bb_sys3 =           0x90;
       bb->bb_trl =            0x88;
       bb->bb_txagc =          0x38;

       bus->b_regs = regs;
       bus->b_write = rf_write;

       return &sa->sa_rf;
}

static int
rtw_grf5101_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
{
       struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;

       GCT_WRITE(gr, 0x15, 0, err);
       GCT_WRITE(gr, 0x06, opaque_txpower, err);
       GCT_WRITE(gr, 0x15, 0x10, err);
       GCT_WRITE(gr, 0x15, 0x00, err);
       return 0;
err:
       return -1;
}

static int
rtw_grf5101_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
{
       struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
       switch (power) {
       case RTW_OFF:
       case RTW_SLEEP:
               GCT_WRITE(gr, 0x07, 0x0000, err);
               GCT_WRITE(gr, 0x1f, 0x0045, err);
               GCT_WRITE(gr, 0x1f, 0x0005, err);
               GCT_WRITE(gr, 0x00, 0x08e4, err);
       default:
               break;
       case RTW_ON:
               GCT_WRITE(gr, 0x1f, 0x0001, err);
               DELAY(10);
               GCT_WRITE(gr, 0x1f, 0x0001, err);
               DELAY(10);
               GCT_WRITE(gr, 0x1f, 0x0041, err);
               DELAY(10);
               GCT_WRITE(gr, 0x1f, 0x0061, err);
               DELAY(10);
               GCT_WRITE(gr, 0x00, 0x0ae4, err);
               DELAY(10);
               GCT_WRITE(gr, 0x07, 0x1000, err);
               DELAY(100);
               break;
       }

       return 0;
err:
       return -1;
}

static int
rtw_grf5101_tune(struct rtw_rf *rf, u_int freq)
{
       int channel;
       struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;

       if (freq == 2484)
               channel = 14;
       else if ((channel = (freq - 2412) / 5 + 1) < 1 || channel > 13) {
               RTW_DPRINTF(RTW_DEBUG_PHY,
                   ("%s: invalid channel %d (freq %d)\n", __func__, channel,
                    freq));
               return -1;
       }

       GCT_WRITE(gr, 0x07, 0, err);
       GCT_WRITE(gr, 0x0b, channel - 1, err);
       GCT_WRITE(gr, 0x07, 0x1000, err);
       return 0;
err:
       return -1;
}

static int
rtw_grf5101_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
   enum rtw_pwrstate power)
{
       int rc;
       struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;

       /*
        * These values have been derived from the rtl8180-sa2400
        * Linux driver.  It is unknown what they all do, GCT refuse
        * to release any documentation so these are more than
        * likely sub optimal settings
        */

       GCT_WRITE(gr, 0x01, 0x1a23, err);
       GCT_WRITE(gr, 0x02, 0x4971, err);
       GCT_WRITE(gr, 0x03, 0x41de, err);
       GCT_WRITE(gr, 0x04, 0x2d80, err);

       GCT_WRITE(gr, 0x05, 0x61ff, err);

       GCT_WRITE(gr, 0x06, 0x0, err);

       GCT_WRITE(gr, 0x08, 0x7533, err);
       GCT_WRITE(gr, 0x09, 0xc401, err);
       GCT_WRITE(gr, 0x0a, 0x0, err);
       GCT_WRITE(gr, 0x0c, 0x1c7, err);
       GCT_WRITE(gr, 0x0d, 0x29d3, err);
       GCT_WRITE(gr, 0x0e, 0x2e8, err);
       GCT_WRITE(gr, 0x10, 0x192, err);
       GCT_WRITE(gr, 0x11, 0x248, err);
       GCT_WRITE(gr, 0x12, 0x0, err);
       GCT_WRITE(gr, 0x13, 0x20c4, err);
       GCT_WRITE(gr, 0x14, 0xf4fc, err);
       GCT_WRITE(gr, 0x15, 0x0, err);
       GCT_WRITE(gr, 0x16, 0x1500, err);

       if ((rc = rtw_grf5101_txpower(rf, opaque_txpower)) != 0)
               return rc;

       if ((rc = rtw_grf5101_tune(rf, freq)) != 0)
               return rc;

       return 0;
err:
       return -1;
}

static void
rtw_grf5101_destroy(struct rtw_rf *rf)
{
       struct rtw_grf5101 *gr = (struct rtw_grf5101 *)rf;
       memset(gr, 0, sizeof(*gr));
       free(gr, M_DEVBUF);
}

struct rtw_rf *
rtw_grf5101_create(struct rtw_regs *regs, rtw_rf_write_t rf_write,
   int digphy)
{
       struct rtw_grf5101 *gr;
       struct rtw_rfbus *bus;
       struct rtw_rf *rf;
       struct rtw_bbpset *bb;

       gr = malloc(sizeof(*gr), M_DEVBUF, M_WAITOK | M_ZERO);

       rf = &gr->gr_rf;
       bus = &gr->gr_bus;

       rf->rf_init = rtw_grf5101_init;
       rf->rf_destroy = rtw_grf5101_destroy;
       rf->rf_txpower = rtw_grf5101_txpower;
       rf->rf_tune = rtw_grf5101_tune;
       rf->rf_pwrstate = rtw_grf5101_pwrstate;
       bb = &rf->rf_bbpset;

       /* XXX magic */
       bb->bb_antatten = RTW_BBP_ANTATTEN_GCT_MAGIC;
       bb->bb_chestlim =       0x00;
       bb->bb_chsqlim =        0xa0;
       bb->bb_ifagcdet =       0x64;
       bb->bb_ifagcini =       0x90;
       bb->bb_ifagclimit =     0x1e;
       bb->bb_lnadet =         0xc0;
       bb->bb_sys1 =           0xa8;
       bb->bb_sys2 =           0x47;
       bb->bb_sys3 =           0x9b;
       bb->bb_trl =            0x88;
       bb->bb_txagc =          0x08;

       bus->b_regs = regs;
       bus->b_write = rf_write;

       return &gr->gr_rf;
}

/* freq is in MHz */
static int
rtw_max2820_tune(struct rtw_rf *rf, u_int freq)
{
       struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
       struct rtw_rfbus *bus = &mx->mx_bus;

       if (freq < 2400 || freq > 2499)
               return -1;

       return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_CHANNEL,
           __SHIFTIN(freq - 2400, MAX2820_CHANNEL_CF_MASK));
}

static void
rtw_max2820_destroy(struct rtw_rf *rf)
{
       struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
       memset(mx, 0, sizeof(*mx));
       free(mx, M_DEVBUF);
}

static int
rtw_max2820_init(struct rtw_rf *rf, u_int freq, uint8_t opaque_txpower,
   enum rtw_pwrstate power)
{
       struct rtw_max2820 *mx = (struct rtw_max2820 *)rf;
       struct rtw_rfbus *bus = &mx->mx_bus;
       int rc;

       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TEST,
           MAX2820_TEST_DEFAULT)) != 0)
               return rc;

       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE,
           MAX2820_ENABLE_DEFAULT)) != 0)
               return rc;

       /* skip configuration if it's time to sleep or to power-down. */
       if ((rc = rtw_max2820_pwrstate(rf, power)) != 0)
               return rc;
       else if (power == RTW_OFF || power == RTW_SLEEP)
               return 0;

       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_SYNTH,
           MAX2820_SYNTH_R_44MHZ)) != 0)
               return rc;

       if ((rc = rtw_max2820_tune(rf, freq)) != 0)
               return rc;

       /* XXX The MAX2820 datasheet indicates that 1C and 2C should not
        * be changed from 7, however, the reference driver sets them
        * to 4 and 1, respectively.
        */
       if ((rc = rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_RECEIVE,
           MAX2820_RECEIVE_DL_DEFAULT |
           __SHIFTIN(4, MAX2820A_RECEIVE_1C_MASK) |
           __SHIFTIN(1, MAX2820A_RECEIVE_2C_MASK))) != 0)
               return rc;

       return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_TRANSMIT,
           MAX2820_TRANSMIT_PA_DEFAULT);
}

static int
rtw_max2820_txpower(struct rtw_rf *rf, uint8_t opaque_txpower)
{
       /* TBD */
       return 0;
}

static int
rtw_max2820_pwrstate(struct rtw_rf *rf, enum rtw_pwrstate power)
{
       uint32_t enable;
       struct rtw_max2820 *mx;
       struct rtw_rfbus *bus;

       mx = (struct rtw_max2820 *)rf;
       bus = &mx->mx_bus;

       switch (power) {
       case RTW_OFF:
       case RTW_SLEEP:
       default:
               enable = 0x0;
               break;
       case RTW_ON:
               enable = MAX2820_ENABLE_DEFAULT;
               break;
       }
       return rtw_rfbus_write(bus, RTW_RFCHIPID_MAXIM, MAX2820_ENABLE, enable);
}

struct rtw_rf *
rtw_max2820_create(struct rtw_regs *regs, rtw_rf_write_t rf_write, int is_a)
{
       struct rtw_max2820 *mx;
       struct rtw_rfbus *bus;
       struct rtw_rf *rf;
       struct rtw_bbpset *bb;

       mx = malloc(sizeof(*mx), M_DEVBUF, M_WAITOK | M_ZERO);
       mx->mx_is_a = is_a;

       rf = &mx->mx_rf;
       bus = &mx->mx_bus;

       rf->rf_init = rtw_max2820_init;
       rf->rf_destroy = rtw_max2820_destroy;
       rf->rf_txpower = rtw_max2820_txpower;
       rf->rf_tune = rtw_max2820_tune;
       rf->rf_pwrstate = rtw_max2820_pwrstate;
       bb = &rf->rf_bbpset;

       /* XXX magic */
       bb->bb_antatten = RTW_BBP_ANTATTEN_MAXIM_MAGIC;
       bb->bb_chestlim =       0;
       bb->bb_chsqlim =        159;
       bb->bb_ifagcdet =       100;
       bb->bb_ifagcini =       144;
       bb->bb_ifagclimit =     26;
       bb->bb_lnadet =         248;
       bb->bb_sys1 =           136;
       bb->bb_sys2 =           71;
       bb->bb_sys3 =           155;
       bb->bb_trl =            136;
       bb->bb_txagc =          8;

       bus->b_regs = regs;
       bus->b_write = rf_write;

       return &mx->mx_rf;
}

/* freq is in MHz */
int
rtw_phy_init(struct rtw_regs *regs, struct rtw_rf *rf, uint8_t opaque_txpower,
   uint8_t cs_threshold, u_int freq, int antdiv, int dflantb,
   enum rtw_pwrstate power)
{
       int rc;
       RTW_DPRINTF(RTW_DEBUG_PHY,
           ("%s: txpower %u csthresh %u freq %u antdiv %u dflantb %u "
            "pwrstate %s\n", __func__, opaque_txpower, cs_threshold, freq,
            antdiv, dflantb, rtw_pwrstate_string(power)));

       /* XXX is this really necessary? */
       if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
               return rc;
       if ((rc = rtw_bbp_preinit(regs, rf->rf_bbpset.bb_antatten, dflantb,
           freq)) != 0)
               return rc;
       if ((rc = rtw_rf_tune(rf, freq)) != 0)
               return rc;
       /* initialize RF  */
       if ((rc = rtw_rf_init(rf, freq, opaque_txpower, power)) != 0)
               return rc;
#if 0   /* what is this redundant tx power setting here for? */
       if ((rc = rtw_rf_txpower(rf, opaque_txpower)) != 0)
               return rc;
#endif
       return rtw_bbp_init(regs, &rf->rf_bbpset, antdiv, dflantb,
           cs_threshold, freq);
}