/*      $NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $      */

/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* HME Ethernet module driver.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hme.c,v 1.110 2024/06/29 12:11:11 riastradh Exp $");

/* #define HMEDEBUG */

#include "opt_inet.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/rndsource.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/bpf.h>

#ifdef INET
#include <net/if_vlanvar.h>
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#endif

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <sys/bus.h>

#include <dev/ic/hmereg.h>
#include <dev/ic/hmevar.h>

static void     hme_start(struct ifnet *);
static void     hme_stop(struct ifnet *, int);
static int      hme_ioctl(struct ifnet *, u_long, void *);
static void     hme_tick(void *);
static void     hme_watchdog(struct ifnet *);
static bool     hme_shutdown(device_t, int);
static int      hme_init(struct ifnet *);
static void     hme_meminit(struct hme_softc *);
static void     hme_mifinit(struct hme_softc *);
static void     hme_reset(struct hme_softc *);
static void     hme_chipreset(struct hme_softc *);
static void     hme_setladrf(struct hme_softc *);

/* MII methods & callbacks */
static int      hme_mii_readreg(device_t, int, int, uint16_t *);
static int      hme_mii_writereg(device_t, int, int, uint16_t);
static void     hme_mii_statchg(struct ifnet *);

static int      hme_mediachange(struct ifnet *);

static struct mbuf *hme_get(struct hme_softc *, int, uint32_t);
static int      hme_put(struct hme_softc *, int, struct mbuf *);
static void     hme_read(struct hme_softc *, int, uint32_t);
static int      hme_eint(struct hme_softc *, u_int);
static int      hme_rint(struct hme_softc *);
static int      hme_tint(struct hme_softc *);

#if 0
/* Default buffer copy routines */
static void     hme_copytobuf_contig(struct hme_softc *, void *, int, int);
static void     hme_copyfrombuf_contig(struct hme_softc *, void *, int, int);
#endif

void
hme_config(struct hme_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mii_data *mii = &sc->sc_mii;
       struct mii_softc *child;
       bus_dma_tag_t dmatag = sc->sc_dmatag;
       bus_dma_segment_t seg;
       bus_size_t size;
       int rseg, error;

       /*
        * HME common initialization.
        *
        * hme_softc fields that must be initialized by the front-end:
        *
        * the bus tag:
        *      sc_bustag
        *
        * the DMA bus tag:
        *      sc_dmatag
        *
        * the bus handles:
        *      sc_seb          (Shared Ethernet Block registers)
        *      sc_erx          (Receiver Unit registers)
        *      sc_etx          (Transmitter Unit registers)
        *      sc_mac          (MAC registers)
        *      sc_mif          (Management Interface registers)
        *
        * the maximum bus burst size:
        *      sc_burst
        *
        * (notyet:DMA capable memory for the ring descriptors & packet buffers:
        *      rb_membase, rb_dmabase)
        *
        * the local Ethernet address:
        *      sc_enaddr
        *
        */

       /* Make sure the chip is stopped. */
       hme_chipreset(sc);

       /*
        * Allocate descriptors and buffers
        * XXX - do all this differently.. and more configurably,
        * eg. use things as `dma_load_mbuf()' on transmit,
        *     and a pool of `EXTMEM' mbufs (with buffers DMA-mapped
        *     all the time) on the receiver side.
        *
        * Note: receive buffers must be 64-byte aligned.
        * Also, apparently, the buffers must extend to a DMA burst
        * boundary beyond the maximum packet size.
        */
#define _HME_NDESC      128
#define _HME_BUFSZ      1600

       /* Note: the # of descriptors must be a multiple of 16 */
       sc->sc_rb.rb_ntbuf = _HME_NDESC;
       sc->sc_rb.rb_nrbuf = _HME_NDESC;

       /*
        * Allocate DMA capable memory
        * Buffer descriptors must be aligned on a 2048 byte boundary;
        * take this into account when calculating the size. Note that
        * the maximum number of descriptors (256) occupies 2048 bytes,
        * so we allocate that much regardless of _HME_NDESC.
        */
       size =  2048 +                                  /* TX descriptors */
               2048 +                                  /* RX descriptors */
               sc->sc_rb.rb_ntbuf * _HME_BUFSZ +       /* TX buffers */
               sc->sc_rb.rb_nrbuf * _HME_BUFSZ;        /* RX buffers */

       /* Allocate DMA buffer */
       if ((error = bus_dmamem_alloc(dmatag, size,
                                     2048, 0,
                                     &seg, 1, &rseg, BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(sc->sc_dev, "DMA buffer alloc error %d\n",
                       error);
               return;
       }

       /* Map DMA memory in CPU addressable space */
       if ((error = bus_dmamem_map(dmatag, &seg, rseg, size,
                                   &sc->sc_rb.rb_membase,
                                   BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
               aprint_error_dev(sc->sc_dev, "DMA buffer map error %d\n",
                       error);
               goto bad_free;
       }

       if ((error = bus_dmamap_create(dmatag, size, 1, size, 0,
                                   BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
               aprint_error_dev(sc->sc_dev, "DMA map create error %d\n",
                       error);
               goto bad_unmap;
       }

       /* Load the buffer */
       if ((error = bus_dmamap_load(dmatag, sc->sc_dmamap,
           sc->sc_rb.rb_membase, size, NULL,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
               aprint_error_dev(sc->sc_dev, "DMA buffer map load error %d\n",
                       error);
               goto bad_destroy;
       }
       sc->sc_rb.rb_dmabase = sc->sc_dmamap->dm_segs[0].ds_addr;

       aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
           ether_sprintf(sc->sc_enaddr));

       /* Initialize ifnet structure. */
       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
       ifp->if_softc = sc;
       ifp->if_start = hme_start;
       ifp->if_stop = hme_stop;
       ifp->if_ioctl = hme_ioctl;
       ifp->if_init = hme_init;
       ifp->if_watchdog = hme_watchdog;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       sc->sc_if_flags = ifp->if_flags;
       ifp->if_capabilities |=
           IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
           IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
       IFQ_SET_READY(&ifp->if_snd);

       /* Initialize ifmedia structures and MII info */
       mii->mii_ifp = ifp;
       mii->mii_readreg = hme_mii_readreg;
       mii->mii_writereg = hme_mii_writereg;
       mii->mii_statchg = hme_mii_statchg;

       sc->sc_ethercom.ec_mii = mii;
       ifmedia_init(&mii->mii_media, 0, hme_mediachange, ether_mediastatus);

       hme_mifinit(sc);

       mii_attach(sc->sc_dev, mii, 0xffffffff,
                       MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);

       child = LIST_FIRST(&mii->mii_phys);
       if (child == NULL) {
               /* No PHY attached */
               ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
       } else {
               /*
                * Walk along the list of attached MII devices and
                * establish an `MII instance' to `phy number'
                * mapping. We'll use this mapping in media change
                * requests to determine which phy to use to program
                * the MIF configuration register.
                */
               for (; child != NULL; child = LIST_NEXT(child, mii_list)) {
                       /*
                        * Note: we support just two PHYs: the built-in
                        * internal device and an external on the MII
                        * connector.
                        */
                       if (child->mii_phy > 1 || child->mii_inst > 1) {
                               aprint_error_dev(sc->sc_dev,
                                   "cannot accommodate MII device %s"
                                      " at phy %d, instance %d\n",
                                      device_xname(child->mii_dev),
                                      child->mii_phy, child->mii_inst);
                               continue;
                       }

                       sc->sc_phys[child->mii_inst] = child->mii_phy;
               }

               /*
                * Set the default media to auto negotiation if the phy has
                * the auto negotiation capability.
                * XXX; What to do otherwise?
                */
               if (ifmedia_match(&mii->mii_media, IFM_ETHER | IFM_AUTO, 0))
                       ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
/*
               else
                       ifmedia_set(&sc->sc_mii.mii_media, sc->sc_defaultmedia);
*/
       }

       /* claim 802.1q capability */
       sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;

       /* Attach the interface. */
       if_attach(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, sc->sc_enaddr);

       if (pmf_device_register1(sc->sc_dev, NULL, NULL, hme_shutdown))
               pmf_class_network_register(sc->sc_dev, ifp);
       else
               aprint_error_dev(sc->sc_dev,
                   "couldn't establish power handler\n");

       rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
                         RND_TYPE_NET, RND_FLAG_DEFAULT);

       callout_init(&sc->sc_tick_ch, 0);
       callout_setfunc(&sc->sc_tick_ch, hme_tick, sc);

       return;

bad_destroy:
       bus_dmamap_destroy(dmatag, sc->sc_dmamap);
bad_unmap:
       bus_dmamem_unmap(dmatag, sc->sc_rb.rb_membase, size);
bad_free:
       bus_dmamem_free(dmatag, &seg, rseg);
}

void
hme_tick(void *arg)
{
       struct hme_softc *sc = arg;
       int s;

       s = splnet();
       mii_tick(&sc->sc_mii);
       splx(s);

       callout_schedule(&sc->sc_tick_ch, hz);
}

void
hme_reset(struct hme_softc *sc)
{
       int s;

       s = splnet();
       (void)hme_init(&sc->sc_ethercom.ec_if);
       splx(s);
}

void
hme_chipreset(struct hme_softc *sc)
{
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t seb = sc->sc_seb;
       int n;

       /* Mask all interrupts */
       bus_space_write_4(t, seb, HME_SEBI_IMASK, 0xffffffff);

       /* Reset transmitter and receiver */
       bus_space_write_4(t, seb, HME_SEBI_RESET,
                         (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX));

       for (n = 0; n < 20; n++) {
               uint32_t v = bus_space_read_4(t, seb, HME_SEBI_RESET);
               if ((v & (HME_SEB_RESET_ETX | HME_SEB_RESET_ERX)) == 0)
                       return;
               DELAY(20);
       }

       printf("%s: %s: reset failed\n", device_xname(sc->sc_dev), __func__);
}

void
hme_stop(struct ifnet *ifp, int disable)
{
       struct hme_softc *sc;

       sc = ifp->if_softc;

       ifp->if_timer = 0;
       ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);

       callout_stop(&sc->sc_tick_ch);
       mii_down(&sc->sc_mii);

       hme_chipreset(sc);
}

void
hme_meminit(struct hme_softc *sc)
{
       bus_addr_t txbufdma, rxbufdma;
       bus_addr_t dma;
       char *p;
       unsigned int ntbuf, nrbuf, i;
       struct hme_ring *hr = &sc->sc_rb;

       p = hr->rb_membase;
       dma = hr->rb_dmabase;

       ntbuf = hr->rb_ntbuf;
       nrbuf = hr->rb_nrbuf;

       /*
        * Allocate transmit descriptors
        */
       hr->rb_txd = p;
       hr->rb_txddma = dma;
       p += ntbuf * HME_XD_SIZE;
       dma += ntbuf * HME_XD_SIZE;
       /* We have reserved descriptor space until the next 2048 byte boundary.*/
       dma = (bus_addr_t)roundup((u_long)dma, 2048);
       p = (void *)roundup((u_long)p, 2048);

       /*
        * Allocate receive descriptors
        */
       hr->rb_rxd = p;
       hr->rb_rxddma = dma;
       p += nrbuf * HME_XD_SIZE;
       dma += nrbuf * HME_XD_SIZE;
       /* Again move forward to the next 2048 byte boundary.*/
       dma = (bus_addr_t)roundup((u_long)dma, 2048);
       p = (void *)roundup((u_long)p, 2048);


       /*
        * Allocate transmit buffers
        */
       hr->rb_txbuf = p;
       txbufdma = dma;
       p += ntbuf * _HME_BUFSZ;
       dma += ntbuf * _HME_BUFSZ;

       /*
        * Allocate receive buffers
        */
       hr->rb_rxbuf = p;
       rxbufdma = dma;
       p += nrbuf * _HME_BUFSZ;
       dma += nrbuf * _HME_BUFSZ;

       /*
        * Initialize transmit buffer descriptors
        */
       for (i = 0; i < ntbuf; i++) {
               HME_XD_SETADDR(sc->sc_pci, hr->rb_txd, i, txbufdma + i * _HME_BUFSZ);
               HME_XD_SETFLAGS(sc->sc_pci, hr->rb_txd, i, 0);
       }

       /*
        * Initialize receive buffer descriptors
        */
       for (i = 0; i < nrbuf; i++) {
               HME_XD_SETADDR(sc->sc_pci, hr->rb_rxd, i, rxbufdma + i * _HME_BUFSZ);
               HME_XD_SETFLAGS(sc->sc_pci, hr->rb_rxd, i,
                               HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));
       }

       hr->rb_tdhead = hr->rb_tdtail = 0;
       hr->rb_td_nbusy = 0;
       hr->rb_rdtail = 0;
}

/*
* Initialization of interface; set up initialization block
* and transmit/receive descriptor rings.
*/
int
hme_init(struct ifnet *ifp)
{
       struct hme_softc *sc = ifp->if_softc;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t seb = sc->sc_seb;
       bus_space_handle_t etx = sc->sc_etx;
       bus_space_handle_t erx = sc->sc_erx;
       bus_space_handle_t mac = sc->sc_mac;
       uint8_t *ea;
       uint32_t v;
       int rc;

       /*
        * Initialization sequence. The numbered steps below correspond
        * to the sequence outlined in section 6.3.5.1 in the Ethernet
        * Channel Engine manual (part of the PCIO manual).
        * See also the STP2002-STQ document from Sun Microsystems.
        */

       /* step 1 & 2. Reset the Ethernet Channel */
       hme_stop(ifp, 0);

       /* Re-initialize the MIF */
       hme_mifinit(sc);

       /* Call MI reset function if any */
       if (sc->sc_hwreset)
               (*sc->sc_hwreset)(sc);

#if 0
       /* Mask all MIF interrupts, just in case */
       bus_space_write_4(t, mif, HME_MIFI_IMASK, 0xffff);
#endif

       /* step 3. Setup data structures in host memory */
       hme_meminit(sc);

       /* step 4. TX MAC registers & counters */
       bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_TXSIZE,
           (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
           ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);
       sc->sc_ec_capenable = sc->sc_ethercom.ec_capenable;

       /* Load station MAC address */
       ea = sc->sc_enaddr;
       bus_space_write_4(t, mac, HME_MACI_MACADDR0, (ea[0] << 8) | ea[1]);
       bus_space_write_4(t, mac, HME_MACI_MACADDR1, (ea[2] << 8) | ea[3]);
       bus_space_write_4(t, mac, HME_MACI_MACADDR2, (ea[4] << 8) | ea[5]);

       /*
        * Init seed for backoff
        * (source suggested by manual: low 10 bits of MAC address)
        */
       v = ((ea[4] << 8) | ea[5]) & 0x3fff;
       bus_space_write_4(t, mac, HME_MACI_RANDSEED, v);


       /* Note: Accepting power-on default for other MAC registers here.. */


       /* step 5. RX MAC registers & counters */
       hme_setladrf(sc);

       /* step 6 & 7. Program Descriptor Ring Base Addresses */
       bus_space_write_4(t, etx, HME_ETXI_RING, sc->sc_rb.rb_txddma);
       bus_space_write_4(t, etx, HME_ETXI_RSIZE, sc->sc_rb.rb_ntbuf);

       bus_space_write_4(t, erx, HME_ERXI_RING, sc->sc_rb.rb_rxddma);
       bus_space_write_4(t, mac, HME_MACI_RXSIZE,
           (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
           ETHER_VLAN_ENCAP_LEN + ETHER_MAX_LEN : ETHER_MAX_LEN);

       /* step 8. Global Configuration & Interrupt Mask */
       bus_space_write_4(t, seb, HME_SEBI_IMASK,
                       ~(
                         /*HME_SEB_STAT_GOTFRAME | HME_SEB_STAT_SENTFRAME |*/
                         HME_SEB_STAT_HOSTTOTX |
                         HME_SEB_STAT_RXTOHOST |
                         HME_SEB_STAT_TXALL |
                         HME_SEB_STAT_TXPERR |
                         HME_SEB_STAT_RCNTEXP |
                         HME_SEB_STAT_MIFIRQ |
                         HME_SEB_STAT_ALL_ERRORS ));

       switch (sc->sc_burst) {
       default:
               v = 0;
               break;
       case 16:
               v = HME_SEB_CFG_BURST16;
               break;
       case 32:
               v = HME_SEB_CFG_BURST32;
               break;
       case 64:
               v = HME_SEB_CFG_BURST64;
               break;
       }
       bus_space_write_4(t, seb, HME_SEBI_CFG, v);

       /* step 9. ETX Configuration: use mostly default values */

       /* Enable DMA */
       v = bus_space_read_4(t, etx, HME_ETXI_CFG);
       v |= HME_ETX_CFG_DMAENABLE;
       bus_space_write_4(t, etx, HME_ETXI_CFG, v);

       /* Transmit Descriptor ring size: in increments of 16 */
       bus_space_write_4(t, etx, HME_ETXI_RSIZE, _HME_NDESC / 16 - 1);


       /* step 10. ERX Configuration */
       v = bus_space_read_4(t, erx, HME_ERXI_CFG);

       /* Encode Receive Descriptor ring size: four possible values */
       switch (_HME_NDESC /*XXX*/) {
       case 32:
               v |= HME_ERX_CFG_RINGSIZE32;
               break;
       case 64:
               v |= HME_ERX_CFG_RINGSIZE64;
               break;
       case 128:
               v |= HME_ERX_CFG_RINGSIZE128;
               break;
       case 256:
               v |= HME_ERX_CFG_RINGSIZE256;
               break;
       default:
               printf("hme: invalid Receive Descriptor ring size\n");
               break;
       }

       /* Enable DMA */
       v |= HME_ERX_CFG_DMAENABLE;

       /* set h/w rx checksum start offset (# of half-words) */
#ifdef INET
       v |= (((ETHER_HDR_LEN + sizeof(struct ip)) / sizeof(uint16_t))
               << HME_ERX_CFG_CSUMSHIFT) &
               HME_ERX_CFG_CSUMSTART;
#endif
       bus_space_write_4(t, erx, HME_ERXI_CFG, v);

       /* step 11. XIF Configuration */
       v = bus_space_read_4(t, mac, HME_MACI_XIF);
       v |= HME_MAC_XIF_OE;
       bus_space_write_4(t, mac, HME_MACI_XIF, v);

       /* step 12. RX_MAC Configuration Register */
       v = bus_space_read_4(t, mac, HME_MACI_RXCFG);
       v |= HME_MAC_RXCFG_ENABLE | HME_MAC_RXCFG_PSTRIP;
       bus_space_write_4(t, mac, HME_MACI_RXCFG, v);

       /* step 13. TX_MAC Configuration Register */
       v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
       v |= (HME_MAC_TXCFG_ENABLE | HME_MAC_TXCFG_DGIVEUP);
       bus_space_write_4(t, mac, HME_MACI_TXCFG, v);

       /* step 14. Issue Transmit Pending command */

       /* Call MI initialization function if any */
       if (sc->sc_hwinit)
               (*sc->sc_hwinit)(sc);

       /* Set the current media. */
       if ((rc = hme_mediachange(ifp)) != 0)
               return rc;

       /* Start the one second timer. */
       callout_schedule(&sc->sc_tick_ch, hz);

       ifp->if_flags |= IFF_RUNNING;
       ifp->if_flags &= ~IFF_OACTIVE;
       sc->sc_if_flags = ifp->if_flags;
       ifp->if_timer = 0;
       hme_start(ifp);
       return 0;
}

/*
* Routine to copy from mbuf chain to transmit buffer in
* network buffer memory.
* Returns the amount of data copied.
*/
int
hme_put(struct hme_softc *sc, int ri, struct mbuf *m)
       /* ri:                   Ring index */
{
       struct mbuf *n;
       int len, tlen = 0;
       char *bp;

       bp = (char *)sc->sc_rb.rb_txbuf + (ri % sc->sc_rb.rb_ntbuf) * _HME_BUFSZ;
       for (; m; m = n) {
               len = m->m_len;
               if (len == 0) {
                       n = m_free(m);
                       continue;
               }
               memcpy(bp, mtod(m, void *), len);
               bp += len;
               tlen += len;
               n = m_free(m);
       }
       return (tlen);
}

/*
* Pull data off an interface.
* Len is length of data, with local net header stripped.
* We copy the data into mbufs.  When full cluster sized units are present
* we copy into clusters.
*/
struct mbuf *
hme_get(struct hme_softc *sc, int ri, uint32_t flags)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mbuf *m, *m0, *newm;
       char *bp;
       int len, totlen;
#ifdef INET
       int csum_flags;
#endif

       totlen = HME_XD_DECODE_RSIZE(flags);
       MGETHDR(m0, M_DONTWAIT, MT_DATA);
       if (m0 == 0)
               return (0);
       MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
       m_set_rcvif(m0, ifp);
       m0->m_pkthdr.len = totlen;
       len = MHLEN;
       m = m0;

       bp = (char *)sc->sc_rb.rb_rxbuf + (ri % sc->sc_rb.rb_nrbuf) * _HME_BUFSZ;

       while (totlen > 0) {
               if (totlen >= MINCLSIZE) {
                       MCLGET(m, M_DONTWAIT);
                       if ((m->m_flags & M_EXT) == 0)
                               goto bad;
                       len = MCLBYTES;
               }

               if (m == m0) {
                       char *newdata = (char *)
                           ALIGN(m->m_data + sizeof(struct ether_header)) -
                           sizeof(struct ether_header);
                       len -= newdata - m->m_data;
                       m->m_data = newdata;
               }

               m->m_len = len = uimin(totlen, len);
               memcpy(mtod(m, void *), bp, len);
               bp += len;

               totlen -= len;
               if (totlen > 0) {
                       MGET(newm, M_DONTWAIT, MT_DATA);
                       if (newm == 0)
                               goto bad;
                       len = MLEN;
                       m = m->m_next = newm;
               }
       }

#ifdef INET
       /* hardware checksum */
       csum_flags = 0;
       if (ifp->if_csum_flags_rx & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
               struct ether_header *eh;
               struct ether_vlan_header *evh;
               struct ip *ip;
               struct udphdr *uh;
               uint16_t *opts;
               int32_t hlen, pktlen;
               uint32_t csum_data;

               eh = mtod(m0, struct ether_header *);
               if (ntohs(eh->ether_type) == ETHERTYPE_IP) {
                       ip = (struct ip *)((char *)eh + ETHER_HDR_LEN);
                       pktlen = m0->m_pkthdr.len - ETHER_HDR_LEN;
               } else if (ntohs(eh->ether_type) == ETHERTYPE_VLAN) {
                       evh = (struct ether_vlan_header *)eh;
                       if (ntohs(evh->evl_proto) != ETHERTYPE_IP)
                               goto swcsum;
                       ip = (struct ip *)((char *)eh + ETHER_HDR_LEN +
                           ETHER_VLAN_ENCAP_LEN);
                       pktlen = m0->m_pkthdr.len -
                           ETHER_HDR_LEN - ETHER_VLAN_ENCAP_LEN;
               } else
                       goto swcsum;

               /* IPv4 only */
               if (ip->ip_v != IPVERSION)
                       goto swcsum;

               hlen = ip->ip_hl << 2;
               if (hlen < sizeof(struct ip))
                       goto swcsum;

               /*
                * bail if too short, has random trailing garbage, truncated,
                * fragment, or has ethernet pad.
                */
               if (ntohs(ip->ip_len) < hlen ||
                   ntohs(ip->ip_len) != pktlen ||
                   (ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
                       goto swcsum;

               switch (ip->ip_p) {
               case IPPROTO_TCP:
                       if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0)
                               goto swcsum;
                       if (pktlen < (hlen + sizeof(struct tcphdr)))
                               goto swcsum;
                       csum_flags =
                           M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
                       break;
               case IPPROTO_UDP:
                       if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0)
                               goto swcsum;
                       if (pktlen < (hlen + sizeof(struct udphdr)))
                               goto swcsum;
                       uh = (struct udphdr *)((char *)ip + hlen);
                       /* no checksum */
                       if (uh->uh_sum == 0)
                               goto swcsum;
                       csum_flags =
                           M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
                       break;
               default:
                       goto swcsum;
               }

               /* w/ M_CSUM_NO_PSEUDOHDR, the uncomplemented sum is expected */
               csum_data = ~flags & HME_XD_RXCKSUM;

               /*
                * If data offset is different from RX cksum start offset,
                * we have to deduct them.
                */
               hlen = ((char *)ip + hlen) -
                   ((char *)eh + ETHER_HDR_LEN + sizeof(struct ip));
               if (hlen > 1) {
                       uint32_t optsum;

                       optsum = 0;
                       opts = (uint16_t *)((char *)eh +
                           ETHER_HDR_LEN + sizeof(struct ip));

                       while (hlen > 1) {
                               optsum += ntohs(*opts++);
                               hlen -= 2;
                       }
                       while (optsum >> 16)
                               optsum = (optsum >> 16) + (optsum & 0xffff);

                       /* Deduct the ip opts sum from the hwsum. */
                       csum_data += (uint16_t)~optsum;

                       while (csum_data >> 16)
                               csum_data =
                                   (csum_data >> 16) + (csum_data & 0xffff);
               }
               m0->m_pkthdr.csum_data = csum_data;
       }
swcsum:
       m0->m_pkthdr.csum_flags = csum_flags;
#endif

       return (m0);

bad:
       m_freem(m0);
       return (0);
}

/*
* Pass a packet to the higher levels.
*/
void
hme_read(struct hme_softc *sc, int ix, uint32_t flags)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mbuf *m;
       int len;

       len = HME_XD_DECODE_RSIZE(flags);
       if (len <= sizeof(struct ether_header) ||
           len > ((sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) ?
           ETHER_VLAN_ENCAP_LEN + ETHERMTU + sizeof(struct ether_header) :
           ETHERMTU + sizeof(struct ether_header))) {
#ifdef HMEDEBUG
               printf("%s: invalid packet size %d; dropping\n",
                   device_xname(sc->sc_dev), len);
#endif
               if_statinc(ifp, if_ierrors);
               return;
       }

       /* Pull packet off interface. */
       m = hme_get(sc, ix, flags);
       if (m == 0) {
               if_statinc(ifp, if_ierrors);
               return;
       }

       /* Pass the packet up. */
       if_percpuq_enqueue(ifp->if_percpuq, m);
}

void
hme_start(struct ifnet *ifp)
{
       struct hme_softc *sc = ifp->if_softc;
       void *txd = sc->sc_rb.rb_txd;
       struct mbuf *m;
       unsigned int txflags;
       unsigned int ri, len, obusy;
       unsigned int ntbuf = sc->sc_rb.rb_ntbuf;

       if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
               return;

       ri = sc->sc_rb.rb_tdhead;
       obusy = sc->sc_rb.rb_td_nbusy;

       for (;;) {
               IFQ_DEQUEUE(&ifp->if_snd, m);
               if (m == 0)
                       break;

               /*
                * If BPF is listening on this interface, let it see the
                * packet before we commit it to the wire.
                */
               bpf_mtap(ifp, m, BPF_D_OUT);

#ifdef INET
               /* collect bits for h/w csum, before hme_put frees the mbuf */
               if (ifp->if_csum_flags_tx & (M_CSUM_TCPv4 | M_CSUM_UDPv4) &&
                   m->m_pkthdr.csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
                       struct ether_header *eh;
                       uint16_t offset, start;

                       eh = mtod(m, struct ether_header *);
                       switch (ntohs(eh->ether_type)) {
                       case ETHERTYPE_IP:
                               start = ETHER_HDR_LEN;
                               break;
                       case ETHERTYPE_VLAN:
                               start = ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN;
                               break;
                       default:
                               /* unsupported, drop it */
                               m_free(m);
                               continue;
                       }
                       start += M_CSUM_DATA_IPv4_IPHL(m->m_pkthdr.csum_data);
                       offset = M_CSUM_DATA_IPv4_OFFSET(m->m_pkthdr.csum_data)
                           + start;
                       txflags = HME_XD_TXCKSUM |
                                 (offset << HME_XD_TXCSSTUFFSHIFT) |
                                 (start << HME_XD_TXCSSTARTSHIFT);
               } else
#endif
                       txflags = 0;

               /*
                * Copy the mbuf chain into the transmit buffer.
                */
               len = hme_put(sc, ri, m);

               /*
                * Initialize transmit registers and start transmission
                */
               HME_XD_SETFLAGS(sc->sc_pci, txd, ri,
                       HME_XD_OWN | HME_XD_SOP | HME_XD_EOP |
                       HME_XD_ENCODE_TSIZE(len) | txflags);

               /*if (sc->sc_rb.rb_td_nbusy <= 0)*/
               bus_space_write_4(sc->sc_bustag, sc->sc_etx, HME_ETXI_PENDING,
                                 HME_ETX_TP_DMAWAKEUP);

               if (++ri == ntbuf)
                       ri = 0;

               if (++sc->sc_rb.rb_td_nbusy == ntbuf) {
                       ifp->if_flags |= IFF_OACTIVE;
                       break;
               }
       }

       if (obusy != sc->sc_rb.rb_td_nbusy) {
               sc->sc_rb.rb_tdhead = ri;
               ifp->if_timer = 5;
       }
}

/*
* Transmit interrupt.
*/
int
hme_tint(struct hme_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mac = sc->sc_mac;
       unsigned int ri, txflags;

       net_stat_ref_t nsr = IF_STAT_GETREF(ifp);

       /*
        * Unload collision counters
        */
       if_statadd_ref(ifp, nsr, if_collisions,
               bus_space_read_4(t, mac, HME_MACI_NCCNT) +
               bus_space_read_4(t, mac, HME_MACI_FCCNT));
       if_statadd_ref(ifp, nsr, if_oerrors,
               bus_space_read_4(t, mac, HME_MACI_EXCNT) +
               bus_space_read_4(t, mac, HME_MACI_LTCNT));

       /*
        * then clear the hardware counters.
        */
       bus_space_write_4(t, mac, HME_MACI_NCCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_FCCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_EXCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_LTCNT, 0);

       /* Fetch current position in the transmit ring */
       ri = sc->sc_rb.rb_tdtail;

       for (;;) {
               if (sc->sc_rb.rb_td_nbusy <= 0)
                       break;

               txflags = HME_XD_GETFLAGS(sc->sc_pci, sc->sc_rb.rb_txd, ri);

               if (txflags & HME_XD_OWN)
                       break;

               ifp->if_flags &= ~IFF_OACTIVE;
               if_statinc_ref(ifp, nsr, if_opackets);

               if (++ri == sc->sc_rb.rb_ntbuf)
                       ri = 0;

               --sc->sc_rb.rb_td_nbusy;
       }

       IF_STAT_PUTREF(ifp);

       /* Update ring */
       sc->sc_rb.rb_tdtail = ri;

       if_schedule_deferred_start(ifp);

       if (sc->sc_rb.rb_td_nbusy == 0)
               ifp->if_timer = 0;

       return (1);
}

/*
* Receive interrupt.
*/
int
hme_rint(struct hme_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mac = sc->sc_mac;
       void *xdr = sc->sc_rb.rb_rxd;
       unsigned int nrbuf = sc->sc_rb.rb_nrbuf;
       unsigned int ri;
       uint32_t flags;

       ri = sc->sc_rb.rb_rdtail;

       /*
        * Process all buffers with valid data.
        */
       for (;;) {
               flags = HME_XD_GETFLAGS(sc->sc_pci, xdr, ri);
               if (flags & HME_XD_OWN)
                       break;

               if (flags & HME_XD_OFL) {
                       printf("%s: buffer overflow, ri=%d; flags=0x%x\n",
                                       device_xname(sc->sc_dev), ri, flags);
               } else
                       hme_read(sc, ri, flags);

               /* This buffer can be used by the hardware again */
               HME_XD_SETFLAGS(sc->sc_pci, xdr, ri,
                               HME_XD_OWN | HME_XD_ENCODE_RSIZE(_HME_BUFSZ));

               if (++ri == nrbuf)
                       ri = 0;
       }

       sc->sc_rb.rb_rdtail = ri;

       /* Read error counters ... */
       if_statadd(ifp, if_ierrors,
           bus_space_read_4(t, mac, HME_MACI_STAT_LCNT) +
           bus_space_read_4(t, mac, HME_MACI_STAT_ACNT) +
           bus_space_read_4(t, mac, HME_MACI_STAT_CCNT) +
           bus_space_read_4(t, mac, HME_MACI_STAT_CVCNT));

       /* ... then clear the hardware counters. */
       bus_space_write_4(t, mac, HME_MACI_STAT_LCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_STAT_ACNT, 0);
       bus_space_write_4(t, mac, HME_MACI_STAT_CCNT, 0);
       bus_space_write_4(t, mac, HME_MACI_STAT_CVCNT, 0);
       return (1);
}

int
hme_eint(struct hme_softc *sc, u_int status)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       char bits[128];

       if ((status & HME_SEB_STAT_MIFIRQ) != 0) {
               bus_space_tag_t t = sc->sc_bustag;
               bus_space_handle_t mif = sc->sc_mif;
               uint32_t cf, st, sm;
               cf = bus_space_read_4(t, mif, HME_MIFI_CFG);
               st = bus_space_read_4(t, mif, HME_MIFI_STAT);
               sm = bus_space_read_4(t, mif, HME_MIFI_SM);
               printf("%s: XXXlink status changed: cfg=%x, stat %x, sm %x\n",
                       device_xname(sc->sc_dev), cf, st, sm);
               return (1);
       }

       /* Receive error counters rolled over */
       net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
       if (status & HME_SEB_STAT_ACNTEXP)
               if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
       if (status & HME_SEB_STAT_CCNTEXP)
               if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
       if (status & HME_SEB_STAT_LCNTEXP)
               if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
       if (status & HME_SEB_STAT_CVCNTEXP)
               if_statadd_ref(ifp, nsr, if_ierrors, 0xff);
       IF_STAT_PUTREF(ifp);

       /* RXTERR locks up the interface, so do a reset */
       if (status & HME_SEB_STAT_RXTERR)
               hme_reset(sc);

       snprintb(bits, sizeof(bits), HME_SEB_STAT_BITS, status);
       printf("%s: status=%s\n", device_xname(sc->sc_dev), bits);

       return (1);
}

int
hme_intr(void *v)
{
       struct hme_softc *sc = v;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t seb = sc->sc_seb;
       uint32_t status;
       int r = 0;

       status = bus_space_read_4(t, seb, HME_SEBI_STAT);

       if ((status & HME_SEB_STAT_ALL_ERRORS) != 0)
               r |= hme_eint(sc, status);

       if ((status & (HME_SEB_STAT_TXALL | HME_SEB_STAT_HOSTTOTX)) != 0)
               r |= hme_tint(sc);

       if ((status & HME_SEB_STAT_RXTOHOST) != 0)
               r |= hme_rint(sc);

       rnd_add_uint32(&sc->rnd_source, status);

       return (r);
}


void
hme_watchdog(struct ifnet *ifp)
{
       struct hme_softc *sc = ifp->if_softc;

       log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
       if_statinc(ifp, if_oerrors);

       hme_reset(sc);
}

/*
* Initialize the MII Management Interface
*/
void
hme_mifinit(struct hme_softc *sc)
{
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mif = sc->sc_mif;
       bus_space_handle_t mac = sc->sc_mac;
       int instance, phy;
       uint32_t v;

       if (sc->sc_mii.mii_media.ifm_cur != NULL) {
               instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
               phy = sc->sc_phys[instance];
       } else
               /* No media set yet, pick phy arbitrarily.. */
               phy = HME_PHYAD_EXTERNAL;

       /* Configure the MIF in frame mode, no poll, current phy select */
       v = 0;
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MIF_CFG_PHY;
       bus_space_write_4(t, mif, HME_MIFI_CFG, v);

       /* If an external transceiver is selected, enable its MII drivers */
       v = bus_space_read_4(t, mac, HME_MACI_XIF);
       v &= ~HME_MAC_XIF_MIIENABLE;
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MAC_XIF_MIIENABLE;
       bus_space_write_4(t, mac, HME_MACI_XIF, v);
}

/*
* MII interface
*/
static int
hme_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
       struct hme_softc *sc = device_private(self);
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mif = sc->sc_mif;
       bus_space_handle_t mac = sc->sc_mac;
       uint32_t v, xif_cfg, mifi_cfg;
       int n, rv;

       /* We can at most have two PHYs */
       if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
               return -1;

       /* Select the desired PHY in the MIF configuration register */
       v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
       v &= ~HME_MIF_CFG_PHY;
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MIF_CFG_PHY;
       bus_space_write_4(t, mif, HME_MIFI_CFG, v);

       /* Enable MII drivers on external transceiver */
       v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MAC_XIF_MIIENABLE;
       else
               v &= ~HME_MAC_XIF_MIIENABLE;
       bus_space_write_4(t, mac, HME_MACI_XIF, v);

#if 0
/* This doesn't work reliably; the MDIO_1 bit is off most of the time */
       /*
        * Check whether a transceiver is connected by testing
        * the MIF configuration register's MDI_X bits. Note that
        * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
        */
       mif_mdi_bit = 1 << (8 + (1 - phy));
       delay(100);
       v = bus_space_read_4(t, mif, HME_MIFI_CFG);
       if ((v & mif_mdi_bit) == 0) {
               rv = -1;
               goto out;
       }
#endif

       /* Construct the frame command */
       v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT) |
           HME_MIF_FO_TAMSB |
           (MII_COMMAND_READ << HME_MIF_FO_OPC_SHIFT) |
           (phy << HME_MIF_FO_PHYAD_SHIFT) |
           (reg << HME_MIF_FO_REGAD_SHIFT);

       bus_space_write_4(t, mif, HME_MIFI_FO, v);
       for (n = 0; n < 100; n++) {
               DELAY(1);
               v = bus_space_read_4(t, mif, HME_MIFI_FO);
               if (v & HME_MIF_FO_TALSB) {
                       *val = v & HME_MIF_FO_DATA;
                       rv = 0;
                       goto out;
               }
       }

       rv = ETIMEDOUT;
       printf("%s: mii_read timeout\n", device_xname(sc->sc_dev));

out:
       /* Restore MIFI_CFG register */
       bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
       /* Restore XIF register */
       bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);
       return rv;
}

static int
hme_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
       struct hme_softc *sc = device_private(self);
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mif = sc->sc_mif;
       bus_space_handle_t mac = sc->sc_mac;
       uint32_t v, xif_cfg, mifi_cfg;
       int n, rv;

       /* We can at most have two PHYs */
       if (phy != HME_PHYAD_EXTERNAL && phy != HME_PHYAD_INTERNAL)
               return -1;

       /* Select the desired PHY in the MIF configuration register */
       v = mifi_cfg = bus_space_read_4(t, mif, HME_MIFI_CFG);
       v &= ~HME_MIF_CFG_PHY;
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MIF_CFG_PHY;
       bus_space_write_4(t, mif, HME_MIFI_CFG, v);

       /* Enable MII drivers on external transceiver */
       v = xif_cfg = bus_space_read_4(t, mac, HME_MACI_XIF);
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MAC_XIF_MIIENABLE;
       else
               v &= ~HME_MAC_XIF_MIIENABLE;
       bus_space_write_4(t, mac, HME_MACI_XIF, v);

#if 0
/* This doesn't work reliably; the MDIO_1 bit is off most of the time */
       /*
        * Check whether a transceiver is connected by testing
        * the MIF configuration register's MDI_X bits. Note that
        * MDI_0 (int) == 0x100 and MDI_1 (ext) == 0x200; see hmereg.h
        */
       mif_mdi_bit = 1 << (8 + (1 - phy));
       delay(100);
       v = bus_space_read_4(t, mif, HME_MIFI_CFG);
       if ((v & mif_mdi_bit) == 0) {
               rv = -1;
               goto out;
       }
#endif

       /* Construct the frame command */
       v = (MII_COMMAND_START << HME_MIF_FO_ST_SHIFT)  |
           HME_MIF_FO_TAMSB                            |
           (MII_COMMAND_WRITE << HME_MIF_FO_OPC_SHIFT) |
           (phy << HME_MIF_FO_PHYAD_SHIFT)             |
           (reg << HME_MIF_FO_REGAD_SHIFT)             |
           (val & HME_MIF_FO_DATA);

       bus_space_write_4(t, mif, HME_MIFI_FO, v);
       for (n = 0; n < 100; n++) {
               DELAY(1);
               v = bus_space_read_4(t, mif, HME_MIFI_FO);
               if (v & HME_MIF_FO_TALSB) {
                       rv = 0;
                       goto out;
               }
       }

       rv = ETIMEDOUT;
       printf("%s: mii_write timeout\n", device_xname(sc->sc_dev));
out:
       /* Restore MIFI_CFG register */
       bus_space_write_4(t, mif, HME_MIFI_CFG, mifi_cfg);
       /* Restore XIF register */
       bus_space_write_4(t, mac, HME_MACI_XIF, xif_cfg);

       return rv;
}

static void
hme_mii_statchg(struct ifnet *ifp)
{
       struct hme_softc *sc = ifp->if_softc;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mac = sc->sc_mac;
       uint32_t v;

#ifdef HMEDEBUG
       if (sc->sc_debug)
               printf("hme_mii_statchg: status change\n");
#endif

       /* Set the MAC Full Duplex bit appropriately */
       /* Apparently the hme chip is SIMPLEX if working in full duplex mode,
          but not otherwise. */
       v = bus_space_read_4(t, mac, HME_MACI_TXCFG);
       if ((IFM_OPTIONS(sc->sc_mii.mii_media_active) & IFM_FDX) != 0) {
               v |= HME_MAC_TXCFG_FULLDPLX;
               sc->sc_ethercom.ec_if.if_flags |= IFF_SIMPLEX;
       } else {
               v &= ~HME_MAC_TXCFG_FULLDPLX;
               sc->sc_ethercom.ec_if.if_flags &= ~IFF_SIMPLEX;
       }
       sc->sc_if_flags = sc->sc_ethercom.ec_if.if_flags;
       bus_space_write_4(t, mac, HME_MACI_TXCFG, v);
}

int
hme_mediachange(struct ifnet *ifp)
{
       struct hme_softc *sc = ifp->if_softc;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mif = sc->sc_mif;
       bus_space_handle_t mac = sc->sc_mac;
       int instance = IFM_INST(sc->sc_mii.mii_media.ifm_cur->ifm_media);
       int phy = sc->sc_phys[instance];
       int rc;
       uint32_t v;

#ifdef HMEDEBUG
       if (sc->sc_debug)
               printf("hme_mediachange: phy = %d\n", phy);
#endif

       /* Select the current PHY in the MIF configuration register */
       v = bus_space_read_4(t, mif, HME_MIFI_CFG);
       v &= ~HME_MIF_CFG_PHY;
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MIF_CFG_PHY;
       bus_space_write_4(t, mif, HME_MIFI_CFG, v);

       /* If an external transceiver is selected, enable its MII drivers */
       v = bus_space_read_4(t, mac, HME_MACI_XIF);
       v &= ~HME_MAC_XIF_MIIENABLE;
       if (phy == HME_PHYAD_EXTERNAL)
               v |= HME_MAC_XIF_MIIENABLE;
       bus_space_write_4(t, mac, HME_MACI_XIF, v);

       if ((rc = mii_mediachg(&sc->sc_mii)) == ENXIO)
               return 0;
       return rc;
}

/*
* Process an ioctl request.
*/
int
hme_ioctl(struct ifnet *ifp, unsigned long cmd, void *data)
{
       struct hme_softc *sc = ifp->if_softc;
       struct ifaddr *ifa = (struct ifaddr *)data;
       int s, error = 0;

       s = splnet();

       switch (cmd) {

       case SIOCINITIFADDR:
               switch (ifa->ifa_addr->sa_family) {
#ifdef INET
               case AF_INET:
                       if (ifp->if_flags & IFF_UP)
                               hme_setladrf(sc);
                       else {
                               ifp->if_flags |= IFF_UP;
                               error = hme_init(ifp);
                       }
                       arp_ifinit(ifp, ifa);
                       break;
#endif
               default:
                       ifp->if_flags |= IFF_UP;
                       error = hme_init(ifp);
                       break;
               }
               break;

       case SIOCSIFFLAGS:
#ifdef HMEDEBUG
               {
                       struct ifreq *ifr = data;
                       sc->sc_debug =
                           (ifr->ifr_flags & IFF_DEBUG) != 0 ? 1 : 0;
               }
#endif
               if ((error = ifioctl_common(ifp, cmd, data)) != 0)
                       break;

               switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
               case IFF_RUNNING:
                       /*
                        * If interface is marked down and it is running, then
                        * stop it.
                        */
                       hme_stop(ifp, 0);
                       ifp->if_flags &= ~IFF_RUNNING;
                       break;
               case IFF_UP:
                       /*
                        * If interface is marked up and it is stopped, then
                        * start it.
                        */
                       error = hme_init(ifp);
                       break;
               case IFF_UP | IFF_RUNNING:
                       /*
                        * If setting debug or promiscuous mode, do not reset
                        * the chip; for everything else, call hme_init()
                        * which will trigger a reset.
                        */
#define RESETIGN (IFF_CANTCHANGE | IFF_DEBUG)
                       if (ifp->if_flags != sc->sc_if_flags) {
                               if ((ifp->if_flags & (~RESETIGN))
                                   == (sc->sc_if_flags & (~RESETIGN)))
                                       hme_setladrf(sc);
                               else
                                       error = hme_init(ifp);
                       }
#undef RESETIGN
                       break;
               case 0:
                       break;
               }

               if (sc->sc_ec_capenable != sc->sc_ethercom.ec_capenable)
                       error = hme_init(ifp);

               break;

       default:
               if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
                       break;

               error = 0;

               if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
                       ;
               else if (ifp->if_flags & IFF_RUNNING) {
                       /*
                        * Multicast list has changed; set the hardware filter
                        * accordingly.
                        */
                       hme_setladrf(sc);
               }
               break;
       }

       sc->sc_if_flags = ifp->if_flags;
       splx(s);
       return (error);
}

bool
hme_shutdown(device_t self, int howto)
{
       struct hme_softc *sc;
       struct ifnet *ifp;

       sc = device_private(self);
       ifp = &sc->sc_ethercom.ec_if;
       hme_stop(ifp, 1);

       return true;
}

/*
* Set up the logical address filter.
*/
void
hme_setladrf(struct hme_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct ether_multi *enm;
       struct ether_multistep step;
       struct ethercom *ec = &sc->sc_ethercom;
       bus_space_tag_t t = sc->sc_bustag;
       bus_space_handle_t mac = sc->sc_mac;
       uint32_t v;
       uint32_t crc;
       uint32_t hash[4];

       /* Clear hash table */
       hash[3] = hash[2] = hash[1] = hash[0] = 0;

       /* Get current RX configuration */
       v = bus_space_read_4(t, mac, HME_MACI_RXCFG);

       if ((ifp->if_flags & IFF_PROMISC) != 0) {
               /* Turn on promiscuous mode; turn off the hash filter */
               v |= HME_MAC_RXCFG_PMISC;
               v &= ~HME_MAC_RXCFG_HENABLE;
               ifp->if_flags |= IFF_ALLMULTI;
               goto chipit;
       }

       /* Turn off promiscuous mode; turn on the hash filter */
       v &= ~HME_MAC_RXCFG_PMISC;
       v |= HME_MAC_RXCFG_HENABLE;

       /*
        * Set up multicast address filter by passing all multicast addresses
        * through a crc generator, and then using the high order 6 bits as an
        * index into the 64 bit logical address filter.  The high order bit
        * selects the word, while the rest of the bits select the bit within
        * the word.
        */

       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                       /*
                        * We must listen to a range of multicast addresses.
                        * For now, just accept all multicasts, rather than
                        * trying to set only those filter bits needed to match
                        * the range.  (At this time, the only use of address
                        * ranges is for IP multicast routing, for which the
                        * range is big enough to require all bits set.)
                        */
                       hash[3] = hash[2] = hash[1] = hash[0] = 0xffff;
                       ifp->if_flags |= IFF_ALLMULTI;
                       ETHER_UNLOCK(ec);
                       goto chipit;
               }

               crc = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);

               /* Just want the 6 most significant bits. */
               crc >>= 26;

               /* Set the corresponding bit in the filter. */
               hash[crc >> 4] |= 1 << (crc & 0xf);

               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);

       ifp->if_flags &= ~IFF_ALLMULTI;

chipit:
       /* Now load the hash table into the chip */
       bus_space_write_4(t, mac, HME_MACI_HASHTAB0, hash[0]);
       bus_space_write_4(t, mac, HME_MACI_HASHTAB1, hash[1]);
       bus_space_write_4(t, mac, HME_MACI_HASHTAB2, hash[2]);
       bus_space_write_4(t, mac, HME_MACI_HASHTAB3, hash[3]);
       bus_space_write_4(t, mac, HME_MACI_RXCFG, v);
}

/*
* Routines for accessing the transmit and receive buffers.
* The various CPU and adapter configurations supported by this
* driver require three different access methods for buffers
* and descriptors:
*      (1) contig (contiguous data; no padding),
*      (2) gap2 (two bytes of data followed by two bytes of padding),
*      (3) gap16 (16 bytes of data followed by 16 bytes of padding).
*/

#if 0
/*
* contig: contiguous data with no padding.
*
* Buffers may have any alignment.
*/

void
hme_copytobuf_contig(struct hme_softc *sc, void *from, int ri, int len)
{
       volatile void *buf = sc->sc_rb.rb_txbuf + (ri * _HME_BUFSZ);

       /*
        * Just call memcpy() to do the work.
        */
       memcpy(buf, from, len);
}

void
hme_copyfrombuf_contig(struct hme_softc *sc, void *to, int boff, int len)
{
       volatile void *buf = sc->sc_rb.rb_rxbuf + (ri * _HME_BUFSZ);

       /*
        * Just call memcpy() to do the work.
        */
       memcpy(to, buf, len);
}
#endif