/*      $NetBSD: elink3.c,v 1.154 2024/07/05 04:31:51 rin Exp $ */

/*-
* Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1996, 1997 Jonathan Stone <[email protected]>
* Copyright (c) 1994 Herb Peyerl <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Herb Peyerl.
* 4. The name of Herb Peyerl may not be used to endorse or promote products
*    derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: elink3.c,v 1.154 2024/07/05 04:31:51 rin Exp $");

#include "opt_inet.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/syslog.h>
#include <sys/select.h>
#include <sys/device.h>
#include <sys/rndsource.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/bpf.h>

#include <sys/cpu.h>
#include <sys/bus.h>
#include <sys/intr.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <dev/mii/mii_bitbang.h>

#include <dev/ic/elink3var.h>
#include <dev/ic/elink3reg.h>

#ifdef DEBUG
int epdebug = 0;
#endif

/*
* XXX endian workaround for big-endian CPUs  with pcmcia:
* if stream methods for bus_space_multi are not provided, define them
* using non-stream bus_space_{read,write}_multi_.
* Assumes host CPU is same endian-ness as bus.
*/
#ifndef __BUS_SPACE_HAS_STREAM_METHODS
#define bus_space_read_multi_stream_2   bus_space_read_multi_2
#define bus_space_read_multi_stream_4   bus_space_read_multi_4
#define bus_space_write_multi_stream_2  bus_space_write_multi_2
#define bus_space_write_multi_stream_4  bus_space_write_multi_4
#endif /* __BUS_SPACE_HAS_STREAM_METHODS */

/*
* Structure to map media-present bits in boards to ifmedia codes and
* printable media names. Used for table-driven ifmedia initialization.
*/
struct ep_media {
       int     epm_mpbit;              /* media present bit */
       const char *epm_name;           /* name of medium */
       int     epm_ifmedia;            /* ifmedia word for medium */
       int     epm_epmedia;            /* ELINKMEDIA_* constant */
};

/*
* Media table for the Demon/Vortex/Boomerang chipsets.
*
* Note that MII on the Demon and Vortex (3c59x) indicates an external
* MII connector (for connecting an external PHY) ... I think.  Treat
* it as `manual' on these chips.
*
* Any Boomerang (3c90x) chips with MII really do have an internal
* MII and real PHYs attached; no `native' media.
*/
const struct ep_media ep_vortex_media[] = {
       { ELINK_PCI_10BASE_T,   "10baseT",      IFM_ETHER | IFM_10_T,
         ELINKMEDIA_10BASE_T },
       { ELINK_PCI_10BASE_T,   "10baseT-FDX",  IFM_ETHER | IFM_10_T | IFM_FDX,
         ELINKMEDIA_10BASE_T },
       { ELINK_PCI_AUI,        "10base5",      IFM_ETHER | IFM_10_5,
         ELINKMEDIA_AUI },
       { ELINK_PCI_BNC,        "10base2",      IFM_ETHER | IFM_10_2,
         ELINKMEDIA_10BASE_2 },
       { ELINK_PCI_100BASE_TX, "100baseTX",    IFM_ETHER | IFM_100_TX,
         ELINKMEDIA_100BASE_TX },
       { ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER | IFM_100_TX|IFM_FDX,
         ELINKMEDIA_100BASE_TX },
       { ELINK_PCI_100BASE_FX, "100baseFX",    IFM_ETHER | IFM_100_FX,
         ELINKMEDIA_100BASE_FX },
       { ELINK_PCI_100BASE_MII,"manual",       IFM_ETHER | IFM_MANUAL,
         ELINKMEDIA_MII },
       { ELINK_PCI_100BASE_T4, "100baseT4",    IFM_ETHER | IFM_100_T4,
         ELINKMEDIA_100BASE_T4 },
       { 0,                    NULL,           0,
         0 },
};

/*
* Media table for the older 3Com Etherlink III chipset, used
* in the 3c509, 3c579, and 3c589.
*/
const struct ep_media ep_509_media[] = {
       { ELINK_W0_CC_UTP,      "10baseT",      IFM_ETHER | IFM_10_T,
         ELINKMEDIA_10BASE_T },
       { ELINK_W0_CC_AUI,      "10base5",      IFM_ETHER | IFM_10_5,
         ELINKMEDIA_AUI },
       { ELINK_W0_CC_BNC,      "10base2",      IFM_ETHER | IFM_10_2,
         ELINKMEDIA_10BASE_2 },
       { 0,                    NULL,           0,
         0 },
};

void    ep_internalconfig(struct ep_softc *sc);
void    ep_vortex_probemedia(struct ep_softc *sc);
void    ep_509_probemedia(struct ep_softc *sc);

static void eptxstat(struct ep_softc *);
static int epstatus(struct ep_softc *);
int     epinit(struct ifnet *);
void    epstop(struct ifnet *, int);
int     epioctl(struct ifnet *, u_long, void *);
void    epstart(struct ifnet *);
void    epwatchdog(struct ifnet *);
void    epreset(struct ep_softc *);
static bool epshutdown(device_t, int);
void    epread(struct ep_softc *);
struct mbuf *epget(struct ep_softc *, int);
void    epmbuffill(void *);
void    epmbufempty(struct ep_softc *);
void    epsetfilter(struct ep_softc *);
void    ep_roadrunner_mii_enable(struct ep_softc *);
void    epsetmedia(struct ep_softc *);

/* ifmedia callbacks */
int     ep_media_change(struct ifnet *ifp);
void    ep_media_status(struct ifnet *ifp, struct ifmediareq *req);

/* MII callbacks */
int     ep_mii_readreg(device_t, int, int, uint16_t *);
int     ep_mii_writereg(device_t, int, int, uint16_t);
void    ep_statchg(struct ifnet *);

void    ep_tick(void *);

static int epbusyeeprom(struct ep_softc *);
u_int16_t ep_read_eeprom(struct ep_softc *, u_int16_t);
static inline void ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg);
static inline void ep_finish_reset(bus_space_tag_t, bus_space_handle_t);
static inline void ep_discard_rxtop(bus_space_tag_t, bus_space_handle_t);
static inline int ep_w1_reg(struct ep_softc *, int);

/*
* MII bit-bang glue.
*/
u_int32_t ep_mii_bitbang_read(device_t);
void ep_mii_bitbang_write(device_t, u_int32_t);

const struct mii_bitbang_ops ep_mii_bitbang_ops = {
       ep_mii_bitbang_read,
       ep_mii_bitbang_write,
       {
               PHYSMGMT_DATA,          /* MII_BIT_MDO */
               PHYSMGMT_DATA,          /* MII_BIT_MDI */
               PHYSMGMT_CLK,           /* MII_BIT_MDC */
               PHYSMGMT_DIR,           /* MII_BIT_DIR_HOST_PHY */
               0,                      /* MII_BIT_DIR_PHY_HOST */
       }
};

/*
* Some chips (3c515 [Corkscrew] and 3c574 [RoadRunner]) have
* Window 1 registers offset!
*/
static inline int
ep_w1_reg(struct ep_softc *sc, int reg)
{

       switch (sc->ep_chipset) {
       case ELINK_CHIPSET_CORKSCREW:
               return (reg + 0x10);

       case ELINK_CHIPSET_ROADRUNNER:
               switch (reg) {
               case ELINK_W1_FREE_TX:
               case ELINK_W1_RUNNER_RDCTL:
               case ELINK_W1_RUNNER_WRCTL:
                       return (reg);
               }
               return (reg + 0x10);
       }

       return (reg);
}

/*
* Wait for any pending reset to complete.
* On newer hardware we could poll SC_COMMAND_IN_PROGRESS,
* but older hardware doesn't implement it and we must delay.
*/
static inline void
ep_finish_reset(bus_space_tag_t iot, bus_space_handle_t ioh)
{
       int i;

       for (i = 0; i < 10000; i++) {
               if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
                   COMMAND_IN_PROGRESS) == 0)
                       break;
               DELAY(10);
       }
}

/*
* Issue a (reset) command, and be sure it has completed.
* Used for global reset, TX_RESET, RX_RESET.
*/
static inline void
ep_reset_cmd(struct ep_softc *sc, u_int cmd, u_int arg)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;

       bus_space_write_2(iot, ioh, cmd, arg);
       ep_finish_reset(iot, ioh);
}


static inline void
ep_discard_rxtop(bus_space_tag_t iot, bus_space_handle_t ioh)
{
       int i;

       bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISCARD_TOP_PACK);

       /*
        * Spin for about 1 msec, to avoid forcing a DELAY() between
        * every received packet (adding latency and  limiting pkt-recv rate).
        * On PCI, at 4 30-nsec PCI bus cycles for a read, 8000 iterations
        * is about right.
        */
       for (i = 0; i < 8000; i++) {
               if ((bus_space_read_2(iot, ioh, ELINK_STATUS) &
                   COMMAND_IN_PROGRESS) == 0)
                   return;
       }

       /*  Didn't complete in a hurry. Do DELAY()s. */
       ep_finish_reset(iot, ioh);
}

/*
* Back-end attach and configure.
*/
int
epconfig(struct ep_softc *sc, u_short chipset, u_int8_t *enaddr)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct mii_data *mii = &sc->sc_mii;
       u_int16_t i;
       u_int8_t myla[ETHER_ADDR_LEN];

       callout_init(&sc->sc_mii_callout, 0);
       callout_setfunc(&sc->sc_mii_callout, ep_tick, sc);

       callout_init(&sc->sc_mbuf_callout, 0);
       callout_setfunc(&sc->sc_mbuf_callout, epmbuffill, sc);

       sc->ep_chipset = chipset;

       /*
        * We could have been groveling around in other register
        * windows in the front-end; make sure we're in window 0
        * to read the EEPROM.
        */
       GO_WINDOW(0);

       if (enaddr == NULL) {
               /*
                * Read the station address from the eeprom.
                */
               for (i = 0; i < ETHER_ADDR_LEN / 2; i++) {
                       u_int16_t x = ep_read_eeprom(sc, i);
                       myla[(i << 1)] = x >> 8;
                       myla[(i << 1) + 1] = x;
               }
               enaddr = myla;
       }

       /*
        * Vortex-based (3c59x pci,eisa) and Boomerang (3c900) cards
        * allow FDDI-sized (4500) byte packets.  Commands only take an
        * 11-bit parameter, and  11 bits isn't enough to hold a full-size
        * packet length.
        * Commands to these cards implicitly upshift a packet size
        * or threshold by 2 bits.
        * To detect  cards with large-packet support, we probe by setting
        * the transmit threshold register, then change windows and
        * read back the threshold register directly, and see if the
        * threshold value was shifted or not.
        */
       bus_space_write_2(iot, ioh, ELINK_COMMAND,
           SET_TX_AVAIL_THRESH | ELINK_LARGEWIN_PROBE);
       GO_WINDOW(5);
       i = bus_space_read_2(iot, ioh, ELINK_W5_TX_AVAIL_THRESH);
       GO_WINDOW(1);
       switch (i) {
       case ELINK_LARGEWIN_PROBE:
       case (ELINK_LARGEWIN_PROBE & ELINK_LARGEWIN_MASK):
               sc->ep_pktlenshift = 0;
               break;

       case (ELINK_LARGEWIN_PROBE << 2):
               sc->ep_pktlenshift = 2;
               break;

       default:
               aprint_error_dev(sc->sc_dev,
                   "wrote 0x%x to TX_AVAIL_THRESH, read back 0x%x. "
                   "Interface disabled\n",
                   ELINK_LARGEWIN_PROBE, (int) i);
               return (1);
       }

       /*
        * Ensure Tx-available interrupts are enabled for
        * start the interface.
        * XXX should be in epinit()?
        */
       bus_space_write_2(iot, ioh, ELINK_COMMAND,
           SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));

       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
       ifp->if_softc = sc;
       ifp->if_start = epstart;
       ifp->if_ioctl = epioctl;
       ifp->if_watchdog = epwatchdog;
       ifp->if_init = epinit;
       ifp->if_stop = epstop;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       IFQ_SET_READY(&ifp->if_snd);

       if_attach(ifp);
       ether_ifattach(ifp, enaddr);

       /*
        * Finish configuration:
        * determine chipset if the front-end couldn't do so,
        * show board details, set media.
        */

       /*
        * Print RAM size.  We also print the Ethernet address in here.
        * It's extracted from the ifp, so we have to make sure it's
        * been attached first.
        */
       ep_internalconfig(sc);
       GO_WINDOW(0);

       /*
        * Display some additional information, if pertinent.
        */
       if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
               aprint_normal_dev(sc->sc_dev, "RoadRunner FIFO buffer enabled\n");

       /*
        * Initialize our media structures and MII info.  We'll
        * probe the MII if we discover that we have one.
        */
       mii->mii_ifp = ifp;
       mii->mii_readreg = ep_mii_readreg;
       mii->mii_writereg = ep_mii_writereg;
       mii->mii_statchg = ep_statchg;
       sc->sc_ethercom.ec_mii = mii;
       ifmedia_init(&mii->mii_media, IFM_IMASK, ep_media_change,
           ep_media_status);

       /*
        * All CORKSCREW chips have MII.
        */
       if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW)
               sc->ep_flags |= ELINK_FLAGS_MII;

       /*
        * Now, determine which media we have.
        */
       switch (sc->ep_chipset) {
       case ELINK_CHIPSET_ROADRUNNER:
               if (sc->ep_flags & ELINK_FLAGS_MII) {
                       ep_roadrunner_mii_enable(sc);
                       GO_WINDOW(0);
               }
               /* FALLTHROUGH */

       case ELINK_CHIPSET_CORKSCREW:
       case ELINK_CHIPSET_BOOMERANG:
               /*
                * If the device has MII, probe it.  We won't be using
                * any `native' media in this case, only PHYs.  If
                * we don't, just treat the Boomerang like the Vortex.
                */
               if (sc->ep_flags & ELINK_FLAGS_MII) {
                       mii_attach(sc->sc_dev, mii, 0xffffffff,
                           MII_PHY_ANY, MII_OFFSET_ANY, 0);
                       if (LIST_FIRST(&mii->mii_phys) == NULL) {
                               ifmedia_add(&mii->mii_media,
                                   IFM_ETHER | IFM_NONE, 0, NULL);
                               ifmedia_set(&mii->mii_media,
                                   IFM_ETHER | IFM_NONE);
                       } else {
                               ifmedia_set(&mii->mii_media,
                                   IFM_ETHER | IFM_AUTO);
                       }
                       break;
               }
               /* FALLTHROUGH */

       case ELINK_CHIPSET_VORTEX:
               ep_vortex_probemedia(sc);
               break;

       default:
               ep_509_probemedia(sc);
               break;
       }

       GO_WINDOW(1);           /* Window 1 is operating window */

       rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
           RND_TYPE_NET, RND_FLAG_DEFAULT);

       sc->tx_start_thresh = 20;       /* probably a good starting point. */

       /*  Establish callback to reset card when we reboot. */
       if (pmf_device_register1(sc->sc_dev, NULL, NULL, epshutdown))
               pmf_class_network_register(sc->sc_dev, ifp);
       else
               aprint_error_dev(sc->sc_dev,
                   "couldn't establish power handler\n");

       ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
       ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);

       /* The attach is successful. */
       sc->sc_flags |= ELINK_FLAGS_ATTACHED;
       return (0);
}


/*
* Show interface-model-independent info from window 3
* internal-configuration register.
*/
void
ep_internalconfig(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;

       u_int config0;
       u_int config1;

       int  ram_size, ram_width, ram_split;
       /*
        * NVRAM buffer Rx:Tx config names for busmastering cards
        * (Demon, Vortex, and later).
        */
       const char *const onboard_ram_config[] = {
               "5:3", "3:1", "1:1", "3:5" };

       GO_WINDOW(3);
       config0 = (u_int)bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
       config1 = (u_int)bus_space_read_2(iot, ioh,
           ELINK_W3_INTERNAL_CONFIG + 2);
       GO_WINDOW(0);

       ram_size  = (config0 & CONFIG_RAMSIZE) >> CONFIG_RAMSIZE_SHIFT;
       ram_width = (config0 & CONFIG_RAMWIDTH) >> CONFIG_RAMWIDTH_SHIFT;

       ram_split  = (config1 & CONFIG_RAMSPLIT) >> CONFIG_RAMSPLIT_SHIFT;

       aprint_normal_dev(sc->sc_dev, "address %s, %dKB %s-wide FIFO, %s Rx:Tx split\n",
              ether_sprintf(CLLADDR(sc->sc_ethercom.ec_if.if_sadl)),
              8 << ram_size,
              (ram_width) ? "word" : "byte",
              onboard_ram_config[ram_split]);
}


/*
* Find supported media on 3c509-generation hardware that doesn't have
* a "reset_options" register in window 3.
* Use the config_cntrl register  in window 0 instead.
* Used on original, 10Mbit ISA (3c509), 3c509B, and pre-Demon EISA cards
* that implement  CONFIG_CTRL.  We don't have a good way to set the
* default active medium; punt to ifconfig  instead.
*/
void
ep_509_probemedia(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct ifmedia *ifm = &sc->sc_mii.mii_media;
       u_int16_t ep_w0_config, port;
       const struct ep_media *epm;
       const char *sep = "", *defmedianame = NULL;
       int defmedia = 0;

       GO_WINDOW(0);
       ep_w0_config = bus_space_read_2(iot, ioh, ELINK_W0_CONFIG_CTRL);

       aprint_normal_dev(sc->sc_dev, "");

       /* Sanity check that there are any media! */
       if ((ep_w0_config & ELINK_W0_CC_MEDIAMASK) == 0) {
               aprint_error("no media present!\n");
               ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
               ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
               return;
       }

       /*
        * Get the default media from the EEPROM.
        */
       port = ep_read_eeprom(sc, EEPROM_ADDR_CFG) >> 14;

#define PRINT(str)      aprint_normal("%s%s", sep, str); sep = ", "

       for (epm = ep_509_media; epm->epm_name != NULL; epm++) {
               if (ep_w0_config & epm->epm_mpbit) {
                       /*
                        * This simple test works because 509 chipsets
                        * don't do full-duplex.
                        */
                       if (epm->epm_epmedia == port || defmedia == 0) {
                               defmedia = epm->epm_ifmedia;
                               defmedianame = epm->epm_name;
                       }
                       ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
                           NULL);
                       PRINT(epm->epm_name);
               }
       }

#undef PRINT

#ifdef DIAGNOSTIC
       if (defmedia == 0)
               panic("ep_509_probemedia: impossible");
#endif

       aprint_normal(" (default %s)\n", defmedianame);
       ifmedia_set(ifm, defmedia);
}

/*
* Find media present on large-packet-capable elink3 devices.
* Show onboard configuration of large-packet-capable elink3 devices
* (Demon, Vortex, Boomerang), which do not implement CONFIG_CTRL in window 0.
* Use media and card-version info in window 3 instead.
*/
void
ep_vortex_probemedia(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct ifmedia *ifm = &sc->sc_mii.mii_media;
       const struct ep_media *epm;
       u_int config1;
       int reset_options;
       int default_media;      /* 3-bit encoding of default (EEPROM) media */
       int defmedia = 0;
       const char *sep = "", *defmedianame = NULL;

       GO_WINDOW(3);
       config1 = (u_int)bus_space_read_2(iot, ioh,
           ELINK_W3_INTERNAL_CONFIG + 2);
       reset_options = (int)bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
       GO_WINDOW(0);

       default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;

       aprint_normal_dev(sc->sc_dev, "");

       /* Sanity check that there are any media! */
       if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
               aprint_error("no media present!\n");
               ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
               ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
               return;
       }

#define PRINT(str)      aprint_normal("%s%s", sep, str); sep = ", "

       for (epm = ep_vortex_media; epm->epm_name != NULL; epm++) {
               if (reset_options & epm->epm_mpbit) {
                       /*
                        * Default media is a little more complicated
                        * on the Vortex.  We support full-duplex which
                        * uses the same reset options bit.
                        *
                        * XXX Check EEPROM for default to FDX?
                        */
                       if (epm->epm_epmedia == default_media) {
                               if ((epm->epm_ifmedia & IFM_FDX) == 0) {
                                       defmedia = epm->epm_ifmedia;
                                       defmedianame = epm->epm_name;
                               }
                       } else if (defmedia == 0) {
                               defmedia = epm->epm_ifmedia;
                               defmedianame = epm->epm_name;
                       }
                       ifmedia_add(ifm, epm->epm_ifmedia, epm->epm_epmedia,
                           NULL);
                       PRINT(epm->epm_name);
               }
       }

#undef PRINT

#ifdef DIAGNOSTIC
       if (defmedia == 0)
               panic("ep_vortex_probemedia: impossible");
#endif

       aprint_normal(" (default %s)\n", defmedianame);
       ifmedia_set(ifm, defmedia);
}

/*
* One second timer, used to tick the MII.
*/
void
ep_tick(void *arg)
{
       struct ep_softc *sc = arg;
       int s;

#ifdef DIAGNOSTIC
       if ((sc->ep_flags & ELINK_FLAGS_MII) == 0)
               panic("ep_tick");
#endif

       if (!device_is_active(sc->sc_dev))
               return;

       s = splnet();
       mii_tick(&sc->sc_mii);
       splx(s);

       callout_schedule(&sc->sc_mii_callout, hz);
}

/*
* Bring device up.
*
* The order in here seems important. Otherwise we may not receive
* interrupts. ?!
*/
int
epinit(struct ifnet *ifp)
{
       struct ep_softc *sc = ifp->if_softc;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       int i, error;
       const u_int8_t *addr;

       if (!sc->enabled && (error = epenable(sc)) != 0)
               return (error);

       /* Make sure any pending reset has completed before touching board */
       ep_finish_reset(iot, ioh);

       /*
        * Cancel any pending I/O.
        */
       epstop(ifp, 0);

       if (sc->bustype != ELINK_BUS_PCI && sc->bustype != ELINK_BUS_EISA
           && sc->bustype != ELINK_BUS_MCA) {
               GO_WINDOW(0);
               bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL, 0);
               bus_space_write_2(iot, ioh, ELINK_W0_CONFIG_CTRL,
                   ENABLE_DRQ_IRQ);
       }

       if (sc->bustype == ELINK_BUS_PCMCIA) {
               bus_space_write_2(iot, ioh, ELINK_W0_RESOURCE_CFG, 0x3f00);
       }

       GO_WINDOW(2);
       /* Reload the ether_addr. */
       addr = CLLADDR(ifp->if_sadl);
       for (i = 0; i < 6; i += 2)
               bus_space_write_2(iot, ioh, ELINK_W2_ADDR_0 + i,
                   (addr[i] << 0) | (addr[i + 1] << 8));

       /*
        * Reset the station-address receive filter.
        * A bug workaround for busmastering (Vortex, Demon) cards.
        */
       for (i = 0; i < 6; i += 2)
               bus_space_write_2(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);

       ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
       ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);

       GO_WINDOW(1);           /* Window 1 is operating window */
       for (i = 0; i < 31; i++)
               (void)bus_space_read_2(iot, ioh,
                                      ep_w1_reg(sc, ELINK_W1_TX_STATUS));

       /* Set threshold for Tx-space available interrupt. */
       bus_space_write_2(iot, ioh, ELINK_COMMAND,
           SET_TX_AVAIL_THRESH | (1600 >> sc->ep_pktlenshift));

       if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
               /*
                * Enable options in the PCMCIA LAN COR register, via
                * RoadRunner Window 1.
                *
                * XXX MAGIC CONSTANTS!
                */
               u_int16_t cor;

               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, (1 << 11));

               cor = bus_space_read_2(iot, ioh, 0) & ~0x30;
               if (sc->ep_flags & ELINK_FLAGS_USESHAREDMEM)
                       cor |= 0x10;
               if (sc->ep_flags & ELINK_FLAGS_FORCENOWAIT)
                       cor |= 0x20;
               bus_space_write_2(iot, ioh, 0, cor);

               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);

               if (sc->ep_flags & ELINK_FLAGS_MII) {
                       ep_roadrunner_mii_enable(sc);
                       GO_WINDOW(1);
               }
       }

       /* Enable interrupts. */
       bus_space_write_2(iot, ioh, ELINK_COMMAND,
           SET_RD_0_MASK | WATCHED_INTERRUPTS);
       bus_space_write_2(iot, ioh, ELINK_COMMAND,
           SET_INTR_MASK | WATCHED_INTERRUPTS);

       /*
        * Attempt to get rid of any stray interrupts that occurred during
        * configuration.  On the i386 this isn't possible because one may
        * already be queued.  However, a single stray interrupt is
        * unimportant.
        */
       bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);

       epsetfilter(sc);
       epsetmedia(sc);

       bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
       bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);

       epmbuffill(sc);

       /* Interface is now `running', with no output active. */
       ifp->if_flags |= IFF_RUNNING;
       ifp->if_flags &= ~IFF_OACTIVE;

       if (sc->ep_flags & ELINK_FLAGS_MII) {
               /* Start the one second clock. */
               callout_schedule(&sc->sc_mii_callout, hz);
       }

       /* Attempt to start output, if any. */
       epstart(ifp);

       return (0);
}


/*
* Set multicast receive filter.
* elink3 hardware has no selective multicast filter in hardware.
* Enable reception of all multicasts and filter in software.
*/
void
epsetfilter(struct ep_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       GO_WINDOW(1);           /* Window 1 is operating window */
       bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
           SET_RX_FILTER | FIL_INDIVIDUAL | FIL_BRDCST |
           ((ifp->if_flags & IFF_MULTICAST) ? FIL_MULTICAST : 0) |
           ((ifp->if_flags & IFF_PROMISC) ? FIL_PROMISC : 0));
}

int
ep_media_change(struct ifnet *ifp)
{
       struct ep_softc *sc = ifp->if_softc;

       if (sc->enabled && (ifp->if_flags & IFF_UP) != 0)
               epreset(sc);

       return (0);
}

/*
* Reset and enable the MII on the RoadRunner.
*/
void
ep_roadrunner_mii_enable(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;

       GO_WINDOW(3);
       bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
           ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
       delay(1000);
       bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
           ELINK_PCI_100BASE_MII | ELINK_RUNNER_MII_RESET |
           ELINK_RUNNER_ENABLE_MII);
       ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);
       ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
       delay(1000);
       bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
           ELINK_PCI_100BASE_MII | ELINK_RUNNER_ENABLE_MII);
}

/*
* Set the card to use the specified media.
*/
void
epsetmedia(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;

       /* Turn everything off.  First turn off linkbeat and UTP. */
       GO_WINDOW(4);
       bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0x0);

       /* Turn off coax */
       bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
       delay(1000);

       /*
        * If the device has MII, select it, and then tell the
        * PHY which media to use.
        */
       if (sc->ep_flags & ELINK_FLAGS_MII) {
               int config0, config1;

               GO_WINDOW(3);

               if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
                       int resopt;

                       resopt = bus_space_read_2(iot, ioh,
                           ELINK_W3_RESET_OPTIONS);
                       bus_space_write_2(iot, ioh, ELINK_W3_RESET_OPTIONS,
                           resopt | ELINK_RUNNER_ENABLE_MII);
               }

               config0 = (u_int)bus_space_read_2(iot, ioh,
                   ELINK_W3_INTERNAL_CONFIG);
               config1 = (u_int)bus_space_read_2(iot, ioh,
                   ELINK_W3_INTERNAL_CONFIG + 2);

               config1 = config1 & ~CONFIG_MEDIAMASK;
               config1 |= (ELINKMEDIA_MII << CONFIG_MEDIAMASK_SHIFT);

               bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
               bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
                   config1);
               GO_WINDOW(1);   /* back to operating window */

               mii_mediachg(&sc->sc_mii);
               return;
       }

       /*
        * Now turn on the selected media/transceiver.
        */
       GO_WINDOW(4);
       switch (IFM_SUBTYPE(sc->sc_mii.mii_media.ifm_cur->ifm_media)) {
       case IFM_10_T:
               bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
                   JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
               break;

       case IFM_10_2:
               bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
               DELAY(1000);    /* 50ms not enmough? */
               break;

       case IFM_100_TX:
       case IFM_100_FX:
       case IFM_100_T4:                /* XXX check documentation */
               bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
                   LINKBEAT_ENABLE);
               DELAY(1000);    /* not strictly necessary? */
               break;

       case IFM_10_5:
               bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
                   SQE_ENABLE);
               DELAY(1000);    /* not strictly necessary? */
               break;

       case IFM_MANUAL:
               /*
                * Nothing to do here; we are actually enabling the
                * external PHY on the MII port.
                */
               break;

       case IFM_NONE:
               printf("%s: interface disabled\n", device_xname(sc->sc_dev));
               return;

       default:
               panic("epsetmedia: impossible");
       }

       /*
        * Tell the chip which port to use.
        */
       switch (sc->ep_chipset) {
       case ELINK_CHIPSET_VORTEX:
       case ELINK_CHIPSET_BOOMERANG:
           {
               int mctl, config0, config1;

               GO_WINDOW(3);
               config0 = (u_int)bus_space_read_2(iot, ioh,
                   ELINK_W3_INTERNAL_CONFIG);
               config1 = (u_int)bus_space_read_2(iot, ioh,
                   ELINK_W3_INTERNAL_CONFIG + 2);

               config1 = config1 & ~CONFIG_MEDIAMASK;
               config1 |= (sc->sc_mii.mii_media.ifm_cur->ifm_data <<
                   CONFIG_MEDIAMASK_SHIFT);

               bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG, config0);
               bus_space_write_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2,
                   config1);

               mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
               if (sc->sc_mii.mii_media.ifm_cur->ifm_media & IFM_FDX)
                       mctl |= MAC_CONTROL_FDX;
               else
                       mctl &= ~MAC_CONTROL_FDX;
               bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
               break;
           }
       default:
           {
               int w0_addr_cfg;

               GO_WINDOW(0);
               w0_addr_cfg = bus_space_read_2(iot, ioh, ELINK_W0_ADDRESS_CFG);
               w0_addr_cfg &= 0x3fff;
               bus_space_write_2(iot, ioh, ELINK_W0_ADDRESS_CFG, w0_addr_cfg |
                   (sc->sc_mii.mii_media.ifm_cur->ifm_data << 14));
               DELAY(1000);
               break;
           }
       }

       GO_WINDOW(1);           /* Window 1 is operating window */
}

/*
* Get currently-selected media from card.
* (if_media callback, may be called before interface is brought up).
*/
void
ep_media_status(struct ifnet *ifp, struct ifmediareq *req)
{
       struct ep_softc *sc = ifp->if_softc;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;

       if (sc->enabled == 0) {
               req->ifm_active = IFM_ETHER | IFM_NONE;
               req->ifm_status = 0;
               return;
       }

       /*
        * If we have MII, go ask the PHY what's going on.
        */
       if (sc->ep_flags & ELINK_FLAGS_MII) {
               mii_pollstat(&sc->sc_mii);
               req->ifm_active = sc->sc_mii.mii_media_active;
               req->ifm_status = sc->sc_mii.mii_media_status;
               return;
       }

       /*
        * Ok, at this point we claim that our active media is
        * the currently selected media.  We'll update our status
        * if our chipset allows us to detect link.
        */
       req->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
       req->ifm_status = 0;

       switch (sc->ep_chipset) {
       case ELINK_CHIPSET_VORTEX:
       case ELINK_CHIPSET_BOOMERANG:
               GO_WINDOW(4);
               req->ifm_status = IFM_AVALID;
               if (bus_space_read_2(iot, ioh, ELINK_W4_MEDIA_TYPE) &
                   LINKBEAT_DETECT)
                       req->ifm_status |= IFM_ACTIVE;
               GO_WINDOW(1);   /* back to operating window */
               break;
       }
}



/*
* Start outputting on the interface.
* Always called as splnet().
*/
void
epstart(struct ifnet *ifp)
{
       struct ep_softc *sc = ifp->if_softc;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct mbuf *m, *m0;
       int sh, len, pad;
       bus_size_t txreg;

       /* Don't transmit if interface is busy or not running */
       if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
               return;

startagain:
       /* Sneak a peek at the next packet */
       IFQ_POLL(&ifp->if_snd, m0);
       if (m0 == 0)
               return;

       /* We need to use m->m_pkthdr.len, so require the header */
       if ((m0->m_flags & M_PKTHDR) == 0)
               panic("epstart: no header mbuf");
       len = m0->m_pkthdr.len;

       pad = (4 - len) & 3;

       /*
        * The 3c509 automatically pads short packets to minimum ethernet
        * length, but we drop packets that are too large. Perhaps we should
        * truncate them instead?
        */
       if (len + pad > ETHER_MAX_LEN) {
               /* packet is obviously too large: toss it */
               if_statinc(ifp, if_oerrors);
               IFQ_DEQUEUE(&ifp->if_snd, m0);
               m_freem(m0);
               goto readcheck;
       }

       if (bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_FREE_TX)) <
           len + pad + 4) {
               bus_space_write_2(iot, ioh, ELINK_COMMAND,
                   SET_TX_AVAIL_THRESH |
                   ((len + pad + 4) >> sc->ep_pktlenshift));
               /* not enough room in FIFO */
               ifp->if_flags |= IFF_OACTIVE;
               return;
       } else {
               bus_space_write_2(iot, ioh, ELINK_COMMAND,
                   SET_TX_AVAIL_THRESH | ELINK_THRESH_DISABLE);
       }

       IFQ_DEQUEUE(&ifp->if_snd, m0);
       if (m0 == 0)            /* not really needed */
               return;

       bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_TX_START_THRESH |
           ((len / 4 + sc->tx_start_thresh) /* >> sc->ep_pktlenshift*/));

       bpf_mtap(ifp, m0, BPF_D_OUT);

       /*
        * Do the output at a high interrupt priority level so that an
        * interrupt from another device won't cause a FIFO underrun.
        * We choose splsched() since that blocks essentially everything
        * except for interrupts from serial devices (which typically
        * lose data if their interrupt isn't serviced fast enough).
        *
        * XXX THIS CAN CAUSE CLOCK DRIFT!
        */
       sh = splsched();

       txreg = ep_w1_reg(sc, ELINK_W1_TX_PIO_WR_1);

       if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
               /*
                * Prime the FIFO buffer counter (number of 16-bit
                * words about to be written to the FIFO).
                *
                * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
                * COUNTER IS NON-ZERO!
                */
               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL,
                   (len + pad) >> 1);
       }

       bus_space_write_2(iot, ioh, txreg, len);
       bus_space_write_2(iot, ioh, txreg, 0xffff); /* Second is meaningless */
       if (ELINK_IS_BUS_32(sc->bustype)) {
               for (m = m0; m;) {
                       if (m->m_len > 3) {
                               /* align our reads from core */
                               if (mtod(m, u_long) & 3) {
                                       u_long count =
                                           4 - (mtod(m, u_long) & 3);
                                       bus_space_write_multi_1(iot, ioh,
                                           txreg, mtod(m, u_int8_t *), count);
                                       m->m_data =
                                           (void *)(mtod(m, u_long) + count);
                                       m->m_len -= count;
                               }
                               bus_space_write_multi_stream_4(iot, ioh,
                                   txreg, mtod(m, u_int32_t *), m->m_len >> 2);
                               m->m_data = (void *)(mtod(m, u_long) +
                                       (u_long)(m->m_len & ~3));
                               m->m_len -= m->m_len & ~3;
                       }
                       if (m->m_len) {
                               bus_space_write_multi_1(iot, ioh,
                                   txreg, mtod(m, u_int8_t *), m->m_len);
                       }
                       m = m0 = m_free(m);
               }
       } else {
               for (m = m0; m;) {
                       if (m->m_len > 1) {
                               if (mtod(m, u_long) & 1) {
                                       bus_space_write_1(iot, ioh,
                                           txreg, *(mtod(m, u_int8_t *)));
                                       m->m_data =
                                           (void *)(mtod(m, u_long) + 1);
                                       m->m_len -= 1;
                               }
                               bus_space_write_multi_stream_2(iot, ioh,
                                   txreg, mtod(m, u_int16_t *),
                                   m->m_len >> 1);
                       }
                       if (m->m_len & 1) {
                               bus_space_write_1(iot, ioh, txreg,
                                    *(mtod(m, u_int8_t *) + m->m_len - 1));
                       }
                       m = m0 = m_free(m);
               }
       }
       while (pad--)
               bus_space_write_1(iot, ioh, txreg, 0);

       splx(sh);

       if_statinc(ifp, if_opackets);

readcheck:
       if ((bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS)) &
           ERR_INCOMPLETE) == 0) {
               /* We received a complete packet. */
               u_int16_t status = bus_space_read_2(iot, ioh, ELINK_STATUS);

               if ((status & INTR_LATCH) == 0) {
                       /*
                        * No interrupt, read the packet and continue
                        * Is  this supposed to happen? Is my motherboard
                        * completely busted?
                        */
                       epread(sc);
               } else {
                       /* Got an interrupt, return so that it gets serviced. */
                       return;
               }
       } else {
               /* Check if we are stuck and reset [see XXX comment] */
               if (epstatus(sc)) {
                       if (ifp->if_flags & IFF_DEBUG)
                               printf("%s: adapter reset\n",
                                   device_xname(sc->sc_dev));
                       epreset(sc);
               }
       }

       goto startagain;
}


/*
* XXX: The 3c509 card can get in a mode where both the fifo status bit
*      FIFOS_RX_OVERRUN and the status bit ERR_INCOMPLETE are set
*      We detect this situation and we reset the adapter.
*      It happens at times when there is a lot of broadcast traffic
*      on the cable (once in a blue moon).
*/
static int
epstatus(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       u_int16_t fifost;

       /*
        * Check the FIFO status and act accordingly
        */
       GO_WINDOW(4);
       fifost = bus_space_read_2(iot, ioh, ELINK_W4_FIFO_DIAG);
       GO_WINDOW(1);

       if (fifost & FIFOS_RX_UNDERRUN) {
               if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
                       printf("%s: RX underrun\n", device_xname(sc->sc_dev));
               epreset(sc);
               return 0;
       }

       if (fifost & FIFOS_RX_STATUS_OVERRUN) {
               if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
                       printf("%s: RX Status overrun\n", device_xname(sc->sc_dev));
               return 1;
       }

       if (fifost & FIFOS_RX_OVERRUN) {
               if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
                       printf("%s: RX overrun\n", device_xname(sc->sc_dev));
               return 1;
       }

       if (fifost & FIFOS_TX_OVERRUN) {
               if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
                       printf("%s: TX overrun\n", device_xname(sc->sc_dev));
               epreset(sc);
               return 0;
       }

       return 0;
}


static void
eptxstat(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       int i;

       /*
        * We need to read+write TX_STATUS until we get a 0 status
        * in order to turn off the interrupt flag.
        */
       while ((i = bus_space_read_2(iot, ioh,
            ep_w1_reg(sc, ELINK_W1_TX_STATUS))) & TXS_COMPLETE) {
               bus_space_write_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_TX_STATUS),
                   0x0);

               if (i & TXS_JABBER) {
                       if_statinc(ifp, if_oerrors);
                       if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
                               printf("%s: jabber (%x)\n",
                                      device_xname(sc->sc_dev), i);
                       epreset(sc);
               } else if (i & TXS_UNDERRUN) {
                       if_statinc(ifp, if_oerrors);
                       if (sc->sc_ethercom.ec_if.if_flags & IFF_DEBUG)
                               printf("%s: fifo underrun (%x) @%d\n",
                                      device_xname(sc->sc_dev), i,
                                      sc->tx_start_thresh);
                       if (sc->tx_succ_ok < 100)
                                   sc->tx_start_thresh = uimin(ETHER_MAX_LEN,
                                           sc->tx_start_thresh + 20);
                       sc->tx_succ_ok = 0;
                       epreset(sc);
               } else if (i & TXS_MAX_COLLISION) {
                       if_statinc(ifp, if_collisions);
                       bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
                       sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
               } else
                       sc->tx_succ_ok = (sc->tx_succ_ok+1) & 127;
       }
}

int
epintr(void *arg)
{
       struct ep_softc *sc = arg;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       u_int16_t status;
       int ret = 0;

       if (sc->enabled == 0 || !device_is_active(sc->sc_dev))
               return (0);


       for (;;) {
               status = bus_space_read_2(iot, ioh, ELINK_STATUS);

               if ((status & WATCHED_INTERRUPTS) == 0) {
                       if ((status & INTR_LATCH) == 0) {
#if 0
                               printf("%s: intr latch cleared\n",
                                      device_xname(sc->sc_dev));
#endif
                               break;
                       }
               }

               ret = 1;

               /*
                * Acknowledge any interrupts.  It's important that we do this
                * first, since there would otherwise be a race condition.
                * Due to the i386 interrupt queueing, we may get spurious
                * interrupts occasionally.
                */
               bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
                   (status & (INTR_LATCH | ALL_INTERRUPTS)));

#if 0
               status = bus_space_read_2(iot, ioh, ELINK_STATUS);

               printf("%s: intr%s%s%s%s\n", device_xname(sc->sc_dev),
                      (status & RX_COMPLETE)?" RX_COMPLETE":"",
                      (status & TX_COMPLETE)?" TX_COMPLETE":"",
                      (status & TX_AVAIL)?" TX_AVAIL":"",
                      (status & CARD_FAILURE)?" CARD_FAILURE":"");
#endif

               if (status & RX_COMPLETE) {
                       epread(sc);
               }
               if (status & TX_AVAIL) {
                       sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
                       epstart(&sc->sc_ethercom.ec_if);
               }
               if (status & CARD_FAILURE) {
                       printf("%s: adapter failure (%x)\n",
                           device_xname(sc->sc_dev), status);
#if 1
                       epinit(ifp);
#else
                       epreset(sc);
#endif
                       return (1);
               }
               if (status & TX_COMPLETE) {
                       eptxstat(sc);
                       epstart(ifp);
               }

               if (status)
                       rnd_add_uint32(&sc->rnd_source, status);
       }

       /* no more interrupts */
       return (ret);
}

void
epread(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mbuf *m;
       int len;

       len = bus_space_read_2(iot, ioh, ep_w1_reg(sc, ELINK_W1_RX_STATUS));

again:
       if (ifp->if_flags & IFF_DEBUG) {
               int err = len & ERR_MASK;
               const char *s = NULL;

               if (len & ERR_INCOMPLETE)
                       s = "incomplete packet";
               else if (err == ERR_OVERRUN)
                       s = "packet overrun";
               else if (err == ERR_RUNT)
                       s = "runt packet";
               else if (err == ERR_ALIGNMENT)
                       s = "bad alignment";
               else if (err == ERR_CRC)
                       s = "bad crc";
               else if (err == ERR_OVERSIZE)
                       s = "oversized packet";
               else if (err == ERR_DRIBBLE)
                       s = "dribble bits";

               if (s)
                       printf("%s: %s\n", device_xname(sc->sc_dev), s);
       }

       if (len & ERR_INCOMPLETE)
               return;

       if (len & ERR_RX) {
               if_statinc(ifp, if_ierrors);
               goto abort;
       }

       len &= RX_BYTES_MASK;   /* Lower 11 bits = RX bytes. */

       /* Pull packet off interface. */
       m = epget(sc, len);
       if (m == 0) {
               if_statinc(ifp, if_ierrors);
               goto abort;
       }

       if_percpuq_enqueue(ifp->if_percpuq, m);

       /*
        * In periods of high traffic we can actually receive enough
        * packets so that the fifo overrun bit will be set at this point,
        * even though we just read a packet. In this case we
        * are not going to receive any more interrupts. We check for
        * this condition and read again until the fifo is not full.
        * We could simplify this test by not using epstatus(), but
        * rechecking the RX_STATUS register directly. This test could
        * result in unnecessary looping in cases where there is a new
        * packet but the fifo is not full, but it will not fix the
        * stuck behavior.
        *
        * Even with this improvement, we still get packet overrun errors
        * which are hurting performance. Maybe when I get some more time
        * I'll modify epread() so that it can handle RX_EARLY interrupts.
        */
       if (epstatus(sc)) {
               len = bus_space_read_2(iot, ioh,
                   ep_w1_reg(sc, ELINK_W1_RX_STATUS));
               /* Check if we are stuck and reset [see XXX comment] */
               if (len & ERR_INCOMPLETE) {
                       if (ifp->if_flags & IFF_DEBUG)
                               printf("%s: adapter reset\n",
                                   device_xname(sc->sc_dev));
                       epreset(sc);
                       return;
               }
               goto again;
       }

       return;

abort:
       ep_discard_rxtop(iot, ioh);

}

struct mbuf *
epget(struct ep_softc *sc, int totlen)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mbuf *m;
       bus_size_t rxreg;
       int len, remaining;
       int s;
       void *newdata;
       u_long offset;

       m = sc->mb[sc->next_mb];
       sc->mb[sc->next_mb] = 0;
       if (m == 0) {
               MGETHDR(m, M_DONTWAIT, MT_DATA);
               if (m == 0)
                       return 0;
       } else {
               /* If the queue is no longer full, refill. */
               if (sc->last_mb == sc->next_mb)
                       callout_schedule(&sc->sc_mbuf_callout, 1);

               /* Convert one of our saved mbuf's. */
               sc->next_mb = (sc->next_mb + 1) % MAX_MBS;
               m->m_data = m->m_pktdat;
               m->m_flags = M_PKTHDR;
               memset(&m->m_pkthdr, 0, sizeof(m->m_pkthdr));
       }
       m_set_rcvif(m, ifp);
       m->m_pkthdr.len = totlen;
       len = MHLEN;

       /*
        * Allocate big enough space to hold whole packet, to avoid
        * allocating new mbufs on splsched().
        */
       if (totlen + ALIGNBYTES > len) {
               if (totlen + ALIGNBYTES > MCLBYTES) {
                       len = ALIGN(totlen + ALIGNBYTES);
                       MEXTMALLOC(m, len, M_DONTWAIT);
               } else {
                       len = MCLBYTES;
                       MCLGET(m, M_DONTWAIT);
               }
               if ((m->m_flags & M_EXT) == 0) {
                       m_free(m);
                       return 0;
               }
       }

       /* align the struct ip header */
       newdata = (char *)ALIGN(m->m_data + sizeof(struct ether_header))
           - sizeof(struct ether_header);
       m->m_data = newdata;
       m->m_len = totlen;

       rxreg = ep_w1_reg(sc, ELINK_W1_RX_PIO_RD_1);
       remaining = totlen;
       offset = mtod(m, u_long);

       /*
        * We read the packet at a high interrupt priority level so that
        * an interrupt from another device won't cause the card's packet
        * buffer to overflow.  We choose splsched() since that blocks
        * essentially everything except for interrupts from serial
        * devices (which typically lose data if their interrupt isn't
        * serviced fast enough).
        *
        * XXX THIS CAN CAUSE CLOCK DRIFT!
        */
       s = splsched();

       if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER) {
               /*
                * Prime the FIFO buffer counter (number of 16-bit
                * words about to be read from the FIFO).
                *
                * NOTE: NO OTHER ACCESS CAN BE PERFORMED WHILE THIS
                * COUNTER IS NON-ZERO!
                */
               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, totlen >> 1);
       }

       if (ELINK_IS_BUS_32(sc->bustype)) {
               /*
                * Read bytes up to the point where we are aligned.
                * (We can align to 4 bytes, rather than ALIGNBYTES,
                * here because we're later reading 4-byte chunks.)
                */
               if ((remaining > 3) && (offset & 3)) {
                       int count = (4 - (offset & 3));
                       bus_space_read_multi_1(iot, ioh,
                           rxreg, (u_int8_t *) offset, count);
                       offset += count;
                       remaining -= count;
               }
               if (remaining > 3) {
                       bus_space_read_multi_stream_4(iot, ioh,
                           rxreg, (u_int32_t *) offset,
                                   remaining >> 2);
                       offset += remaining & ~3;
                       remaining &= 3;
               }
               if (remaining) {
                       bus_space_read_multi_1(iot, ioh,
                           rxreg, (u_int8_t *) offset, remaining);
               }
       } else {
               /* (offset & 1) == 0 since IP header is aligned */
               if (remaining > 1) {
                       bus_space_read_multi_stream_2(iot, ioh,
                           rxreg, (u_int16_t *) offset,
                           remaining >> 1);
                       offset += remaining & ~1;
               }
               if (remaining & 1) {
                       *(uint8_t *)offset =
                           bus_space_read_1(iot, ioh, rxreg);
               }
       }

       ep_discard_rxtop(iot, ioh);

       if (sc->ep_flags & ELINK_FLAGS_USEFIFOBUFFER)
               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
       splx(s);

       return (m);
}

int
epioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct ep_softc *sc = ifp->if_softc;
       int s, error = 0;

       s = splnet();

       switch (cmd) {
       case SIOCADDMULTI:
       case SIOCDELMULTI:
               if (sc->enabled == 0) {
                       error = EIO;
                       break;
               }

               /* FALLTHROUGH */
       default:
               error = ether_ioctl(ifp, cmd, data);

               if (error == ENETRESET) {
                       /*
                        * Multicast list has changed; set the hardware filter
                        * accordingly.
                        */
                       if (ifp->if_flags & IFF_RUNNING)
                               epreset(sc);
                       error = 0;
               }
               break;
       }

       splx(s);
       return (error);
}

void
epreset(struct ep_softc *sc)
{
       int s;

       s = splnet();
       epinit(&sc->sc_ethercom.ec_if);
       splx(s);
}

void
epwatchdog(struct ifnet *ifp)
{
       struct ep_softc *sc = ifp->if_softc;

       log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
       if_statinc(ifp, if_oerrors);

       epreset(sc);
}

void
epstop(struct ifnet *ifp, int disable)
{
       struct ep_softc *sc = ifp->if_softc;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;

       if (sc->ep_flags & ELINK_FLAGS_MII) {
               /* Stop the one second clock. */
               callout_stop(&sc->sc_mbuf_callout);

               /* Down the MII. */
               mii_down(&sc->sc_mii);
       }

       if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER) {
               /*
                * Clear the FIFO buffer count, thus halting
                * any currently-running transactions.
                */
               GO_WINDOW(1);           /* sanity */
               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_WRCTL, 0);
               bus_space_write_2(iot, ioh, ELINK_W1_RUNNER_RDCTL, 0);
       }

       bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
       ep_discard_rxtop(iot, ioh);

       bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
       bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);

       ep_reset_cmd(sc, ELINK_COMMAND, RX_RESET);
       ep_reset_cmd(sc, ELINK_COMMAND, TX_RESET);

       bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
       bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RD_0_MASK);
       bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_INTR_MASK);
       bus_space_write_2(iot, ioh, ELINK_COMMAND, SET_RX_FILTER);

       epmbufempty(sc);

       if (disable)
               epdisable(sc);

       ifp->if_flags &= ~IFF_RUNNING;
}


/*
* Before reboots, reset card completely.
*/
static bool
epshutdown(device_t self, int howto)
{
       struct ep_softc *sc = device_private(self);
       int s = splnet();

       if (sc->enabled) {
               epstop(&sc->sc_ethercom.ec_if, 0);
               ep_reset_cmd(sc, ELINK_COMMAND, GLOBAL_RESET);
               epdisable(sc);
               sc->enabled = 0;
       }
       splx(s);

       return true;
}

/*
* We get eeprom data from the id_port given an offset into the
* eeprom.  Basically; after the ID_sequence is sent to all of
* the cards; they enter the ID_CMD state where they will accept
* command requests. 0x80-0xbf loads the eeprom data.  We then
* read the port 16 times and with every read; the cards check
* for contention (ie: if one card writes a 0 bit and another
* writes a 1 bit then the host sees a 0. At the end of the cycle;
* each card compares the data on the bus; if there is a difference
* then that card goes into ID_WAIT state again). In the meantime;
* one bit of data is returned in the AX register which is conveniently
* returned to us by bus_space_read_2().  Hence; we read 16 times getting one
* bit of data with each read.
*
* NOTE: the caller must provide an i/o handle for ELINK_ID_PORT!
*/
u_int16_t
epreadeeprom(bus_space_tag_t iot, bus_space_handle_t ioh, int offset)
{
       u_int16_t data = 0;
       int i;

       bus_space_write_2(iot, ioh, 0, 0x80 + offset);
       delay(1000);
       for (i = 0; i < 16; i++)
               data = (data << 1) | (bus_space_read_2(iot, ioh, 0) & 1);
       return (data);
}

static int
epbusyeeprom(struct ep_softc *sc)
{
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       bus_size_t eecmd;
       int i = 100, j;
       uint16_t busybit;

       if (sc->bustype == ELINK_BUS_PCMCIA) {
               delay(1000);
               return 0;
       }

       if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
               eecmd = CORK_ASIC_EEPROM_COMMAND;
               busybit = CORK_EEPROM_BUSY;
       } else {
               eecmd = ELINK_W0_EEPROM_COMMAND;
               busybit = EEPROM_BUSY;
       }

       j = 0;          /* bad GCC flow analysis */
       while (i--) {
               j = bus_space_read_2(iot, ioh, eecmd);
               if (j & busybit)
                       delay(100);
               else
                       break;
       }
       if (i == 0) {
               aprint_normal("\n");
               aprint_error_dev(sc->sc_dev, "eeprom failed to come ready\n");
               return (1);
       }
       if (sc->ep_chipset != ELINK_CHIPSET_CORKSCREW &&
           (j & EEPROM_TST_MODE) != 0) {
               /* XXX PnP mode? */
               printf("\n%s: erase pencil mark!\n", device_xname(sc->sc_dev));
               return (1);
       }
       return (0);
}

u_int16_t
ep_read_eeprom(struct ep_softc *sc, u_int16_t offset)
{
       bus_size_t eecmd, eedata;
       u_int16_t readcmd;

       if (sc->ep_chipset == ELINK_CHIPSET_CORKSCREW) {
               eecmd = CORK_ASIC_EEPROM_COMMAND;
               eedata = CORK_ASIC_EEPROM_DATA;
       } else {
               eecmd = ELINK_W0_EEPROM_COMMAND;
               eedata = ELINK_W0_EEPROM_DATA;
       }

       /*
        * RoadRunner has a larger EEPROM, so a different read command
        * is required.
        */
       if (sc->ep_chipset == ELINK_CHIPSET_ROADRUNNER)
               readcmd = READ_EEPROM_RR;
       else
               readcmd = READ_EEPROM;

       if (epbusyeeprom(sc))
               return (0);             /* XXX why is eeprom busy? */

       bus_space_write_2(sc->sc_iot, sc->sc_ioh, eecmd, readcmd | offset);

       if (epbusyeeprom(sc))
               return (0);             /* XXX why is eeprom busy? */

       return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, eedata));
}

void
epmbuffill(void *v)
{
       struct ep_softc *sc = v;
       struct mbuf *m;
       int s, i;

       s = splnet();
       i = sc->last_mb;
       do {
               if (sc->mb[i] == 0) {
                       MGET(m, M_DONTWAIT, MT_DATA);
                       if (m == 0)
                               break;
                       sc->mb[i] = m;
               }
               i = (i + 1) % MAX_MBS;
       } while (i != sc->next_mb);
       sc->last_mb = i;
       /* If the queue was not filled, try again. */
       if (sc->last_mb != sc->next_mb)
               callout_schedule(&sc->sc_mbuf_callout, 1);
       splx(s);
}

void
epmbufempty(struct ep_softc *sc)
{
       int s, i;

       s = splnet();
       for (i = 0; i < MAX_MBS; i++) {
               m_freem(sc->mb[i]);
               sc->mb[i] = NULL;
       }
       sc->last_mb = sc->next_mb = 0;
       callout_stop(&sc->sc_mbuf_callout);
       splx(s);
}

int
epenable(struct ep_softc *sc)
{

       if (sc->enabled == 0 && sc->enable != NULL) {
               if ((*sc->enable)(sc) != 0) {
                       aprint_error_dev(sc->sc_dev, "device enable failed\n");
                       return (EIO);
               }
       }

       sc->enabled = 1;
       return (0);
}

void
epdisable(struct ep_softc *sc)
{

       if (sc->enabled != 0 && sc->disable != NULL) {
               (*sc->disable)(sc);
               sc->enabled = 0;
       }
}

/*
* ep_activate:
*
*      Handle device activation/deactivation requests.
*/
int
ep_activate(device_t self, enum devact act)
{
       struct ep_softc *sc = device_private(self);

       switch (act) {
       case DVACT_DEACTIVATE:
               if_deactivate(&sc->sc_ethercom.ec_if);
               return 0;
       default:
               return EOPNOTSUPP;
       }
}

/*
* ep_detach:
*
*      Detach a elink3 interface.
*/
int
ep_detach(device_t self, int flags)
{
       struct ep_softc *sc = device_private(self);
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       /* Succeed now if there's no work to do. */
       if ((sc->sc_flags & ELINK_FLAGS_ATTACHED) == 0)
               return (0);

       epdisable(sc);

       callout_stop(&sc->sc_mii_callout);
       callout_stop(&sc->sc_mbuf_callout);

       if (sc->ep_flags & ELINK_FLAGS_MII) {
               /* Detach all PHYs */
               mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
       }

       rnd_detach_source(&sc->rnd_source);
       ether_ifdetach(ifp);
       if_detach(ifp);

       /* Delete all remaining media. */
       ifmedia_fini(&sc->sc_mii.mii_media);

       pmf_device_deregister(sc->sc_dev);

       return (0);
}

u_int32_t
ep_mii_bitbang_read(device_t self)
{
       struct ep_softc *sc = device_private(self);

       /* We're already in Window 4. */
       return (bus_space_read_2(sc->sc_iot, sc->sc_ioh,
           ELINK_W4_BOOM_PHYSMGMT));
}

void
ep_mii_bitbang_write(device_t self, u_int32_t val)
{
       struct ep_softc *sc = device_private(self);

       /* We're already in Window 4. */
       bus_space_write_2(sc->sc_iot, sc->sc_ioh,
           ELINK_W4_BOOM_PHYSMGMT, val);
}

int
ep_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
       struct ep_softc *sc = device_private(self);
       int rv;

       GO_WINDOW(4);

       rv = mii_bitbang_readreg(self, &ep_mii_bitbang_ops, phy, reg, val);

       GO_WINDOW(1);

       return rv;
}

int
ep_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
       struct ep_softc *sc = device_private(self);
       int rv;

       GO_WINDOW(4);

       rv = mii_bitbang_writereg(self, &ep_mii_bitbang_ops, phy, reg, val);

       GO_WINDOW(1);

       return rv;
}

void
ep_statchg(struct ifnet *ifp)
{
       struct ep_softc *sc = ifp->if_softc;
       bus_space_tag_t iot = sc->sc_iot;
       bus_space_handle_t ioh = sc->sc_ioh;
       int mctl;

       GO_WINDOW(3);
       mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
       if (sc->sc_mii.mii_media_active & IFM_FDX)
               mctl |= MAC_CONTROL_FDX;
       else
               mctl &= ~MAC_CONTROL_FDX;
       bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
       GO_WINDOW(1);   /* back to operating window */
}

void
ep_power(int why, void *arg)
{
       struct ep_softc *sc = arg;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       int s;

       s = splnet();
       switch (why) {
       case PWR_SUSPEND:
       case PWR_STANDBY:
               epstop(ifp, 1);
               break;
       case PWR_RESUME:
               if (ifp->if_flags & IFF_UP) {
                       (void)epinit(ifp);
               }
               break;
       case PWR_SOFTSUSPEND:
       case PWR_SOFTSTANDBY:
       case PWR_SOFTRESUME:
               break;
       }
       splx(s);
}