/*      $NetBSD: dm9000.c,v 1.40 2025/07/09 21:25:35 andvar Exp $       */

/*
* Copyright (c) 2009 Paul Fleischer
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/* based on sys/dev/ic/cs89x0.c */
/*
* Copyright (c) 2004 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
*    and retain this copyright notice and list of conditions as
*    they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
*    Digital Equipment Corporation. Neither the "Digital Equipment
*    Corporation" name nor any trademark or logo of Digital Equipment
*    Corporation may be used to endorse or promote products derived
*    from this software without the prior written permission of
*    Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
*    warranties, including but not limited to, any implied warranties
*    of merchantability, fitness for a particular purpose, or
*    non-infringement are disclaimed. In no event shall DIGITAL be
*    liable for any damages whatsoever, and in particular, DIGITAL
*    shall not be liable for special, indirect, consequential, or
*    incidental damages or damages for lost profits, loss of
*    revenue or loss of use, whether such damages arise in contract,
*    negligence, tort, under statute, in equity, at law or otherwise,
*    even if advised of the possibility of such damage.
*/

#include <sys/cdefs.h>

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/device.h>
#include <sys/mbuf.h>
#include <sys/sockio.h>
#include <sys/errno.h>
#include <sys/cprng.h>
#include <sys/rndsource.h>
#include <sys/kernel.h>
#include <sys/systm.h>

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>
#include <net/bpf.h>

#include <dev/ic/dm9000var.h>
#include <dev/ic/dm9000reg.h>

#if 1
#undef DM9000_DEBUG
#undef DM9000_TX_DEBUG
#undef DM9000_TX_DATA_DEBUG
#undef DM9000_RX_DEBUG
#undef  DM9000_RX_DATA_DEBUG
#else
#define DM9000_DEBUG
#define  DM9000_TX_DEBUG
#define DM9000_TX_DATA_DEBUG
#define DM9000_RX_DEBUG
#define  DM9000_RX_DATA_DEBUG
#endif

#ifdef DM9000_DEBUG
#define DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif

#ifdef DM9000_TX_DEBUG
#define TX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define TX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif

#ifdef DM9000_RX_DEBUG
#define RX_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define RX_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif

#ifdef DM9000_RX_DATA_DEBUG
#define RX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define RX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif

#ifdef DM9000_TX_DATA_DEBUG
#define TX_DATA_DPRINTF(s) do {printf s; } while (/*CONSTCOND*/0)
#else
#define TX_DATA_DPRINTF(s) do {} while (/*CONSTCOND*/0)
#endif

static void dme_reset(struct dme_softc *);
static int dme_init(struct ifnet *);
static void dme_stop(struct ifnet *, int);
static void dme_start(struct ifnet *);
static int dme_ioctl(struct ifnet *, u_long, void *);

static void dme_set_rcvfilt(struct dme_softc *);
static void mii_statchg(struct ifnet *);
static void lnkchg(struct dme_softc *);
static void phy_tick(void *);
static int mii_readreg(device_t, int, int, uint16_t *);
static int mii_writereg(device_t, int, int, uint16_t);

static void dme_prepare(struct ifnet *);
static void dme_transmit(struct ifnet *);
static void dme_receive(struct ifnet *);

static int pkt_read_2(struct dme_softc *, struct mbuf **);
static int pkt_write_2(struct dme_softc *, struct mbuf *);
static int pkt_read_1(struct dme_softc *, struct mbuf **);
static int pkt_write_1(struct dme_softc *, struct mbuf *);
#define PKT_READ(ii,m) (*(ii)->sc_pkt_read)((ii),(m))
#define PKT_WRITE(ii,m) (*(ii)->sc_pkt_write)((ii),(m))

#define ETHER_IS_ONE(x) \
          (((x)[0] & (x)[1] & (x)[2] & (x)[3] & (x)[4] & (x)[5]) == 255)
#define ETHER_IS_ZERO(x) \
          (((x)[0] | (x)[1] | (x)[2] | (x)[3] | (x)[4] | (x)[5]) == 0)

int
dme_attach(struct dme_softc *sc, const uint8_t *notusedanymore)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mii_data *mii = &sc->sc_mii;
       struct ifmedia *ifm = &mii->mii_media;
       uint8_t b[2];
       uint16_t io_mode;
       uint8_t enaddr[ETHER_ADDR_LEN];
       prop_dictionary_t dict;
       prop_data_t ea;

       dme_read_c(sc, DM9000_VID0, b, 2);
       sc->sc_vendor_id = le16toh((uint16_t)b[1] << 8 | b[0]);
       dme_read_c(sc, DM9000_PID0, b, 2);
       sc->sc_product_id = le16toh((uint16_t)b[1] << 8 | b[0]);

       /* TODO: Check the vendor ID as well */
       if (sc->sc_product_id != 0x9000) {
               panic("dme_attach: product id mismatch (0x%hx != 0x9000)",
                   sc->sc_product_id);
       }
#if 1 || DM9000_DEBUG
       {
               dme_read_c(sc, DM9000_PAB0, enaddr, 6);
               aprint_normal_dev(sc->sc_dev,
                   "DM9000 was configured with MAC address: %s\n",
                   ether_sprintf(enaddr));
       }
#endif
       dict = device_properties(sc->sc_dev);
       ea = (dict) ? prop_dictionary_get(dict, "mac-address") : NULL;
       if (ea != NULL) {
              /*
                * If the MAC address is overridden by a device property,
                * use that.
                */
               KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
               KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
               memcpy(enaddr, prop_data_value(ea), ETHER_ADDR_LEN);
               aprint_debug_dev(sc->sc_dev, "got MAC address!\n");
       } else {
               /*
                * If we did not get an externally configure address,
                * try to read one from the current setup, before
                * resetting the chip.
                */
               dme_read_c(sc, DM9000_PAB0, enaddr, 6);
               if (ETHER_IS_ONE(enaddr) || ETHER_IS_ZERO(enaddr)) {
                       /* make a random MAC address */
                       uint32_t maclo = 0x00f2 | (cprng_strong32() << 16);
                       uint32_t machi = cprng_strong32();
                       enaddr[0] = maclo;
                       enaddr[1] = maclo >> 8;
                       enaddr[2] = maclo >> 16;
                       enaddr[3] = maclo >> 26;
                       enaddr[4] = machi;
                       enaddr[5] = machi >> 8;
               }
       }
       /* TODO: perform explicit EEPROM read op if it's available */

       dme_reset(sc);

       mii->mii_ifp = ifp;
       mii->mii_readreg = mii_readreg;
       mii->mii_writereg = mii_writereg;
       mii->mii_statchg = mii_statchg;

       /* assume davicom PHY at 1. ext PHY could be hooked but only at 0-3 */
       sc->sc_ethercom.ec_mii = mii;
       ifmedia_init(ifm, 0, ether_mediachange, ether_mediastatus);
       mii_attach(sc->sc_dev, mii, 0xffffffff, 1 /* PHY 1 */,
               MII_OFFSET_ANY, 0);
       if (LIST_FIRST(&mii->mii_phys) == NULL) {
               ifmedia_add(ifm, IFM_ETHER | IFM_NONE, 0, NULL);
               ifmedia_set(ifm, IFM_ETHER | IFM_NONE);
       } else
               ifmedia_set(ifm, IFM_ETHER | IFM_AUTO);
       ifm->ifm_media = ifm->ifm_cur->ifm_media;

       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
       ifp->if_softc = sc;
       ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
       ifp->if_init = dme_init;
       ifp->if_start = dme_start;
       ifp->if_stop = dme_stop;
       ifp->if_ioctl = dme_ioctl;
       ifp->if_watchdog = NULL; /* no watchdog used */
       IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
       IFQ_SET_READY(&ifp->if_snd);

       if_attach(ifp);
       ether_ifattach(ifp, enaddr);
       if_deferred_start_init(ifp, NULL);

       rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
           RND_TYPE_NET, RND_FLAG_DEFAULT);

       /* might be unnecessary as link change interrupt works well */
       callout_init(&sc->sc_link_callout, 0);
       callout_setfunc(&sc->sc_link_callout, phy_tick, sc);

       io_mode = (dme_read(sc, DM9000_ISR) &
           DM9000_IOMODE_MASK) >> DM9000_IOMODE_SHIFT;

       /* frame body read/write ops in 2 byte quantity or byte-wise. */
       DPRINTF(("DM9000 Operation Mode: "));
       switch (io_mode) {
       case DM9000_MODE_8BIT:
               DPRINTF(("8-bit mode"));
               sc->sc_data_width = 1;
               sc->sc_pkt_write = pkt_write_1;
               sc->sc_pkt_read = pkt_read_1;
               break;
       case DM9000_MODE_16BIT:
               DPRINTF(("16-bit mode"));
               sc->sc_data_width = 2;
               sc->sc_pkt_write = pkt_write_2;
               sc->sc_pkt_read = pkt_read_2;
               break;
       case DM9000_MODE_32BIT:
               DPRINTF(("32-bit mode"));
               sc->sc_data_width = 4;
               panic("32bit mode is unsupported\n");
               break;
       default:
               DPRINTF(("Invalid mode"));
               break;
       }
       DPRINTF(("\n"));

       return 0;
}

int
dme_detach(struct dme_softc *sc)
{
       return 0;
}

/* Software Initialize/Reset of the DM9000 */
static void
dme_reset(struct dme_softc *sc)
{
       uint8_t misc;

       /* We only re-initialized the PHY in this function the first time it is
        * called. */
       if (!sc->sc_phy_initialized) {
               /* PHY Reset */
               mii_writereg(sc->sc_dev, 1, MII_BMCR, BMCR_RESET);

               /* PHY Power Down */
               misc = dme_read(sc, DM9000_GPR);
               dme_write(sc, DM9000_GPR, misc | DM9000_GPR_PHY_PWROFF);
       }

       /* Reset the DM9000 twice, as described in section 2 of the Programming
        * Guide.
        * The PHY is initialized and enabled between those two resets.
        */

       /* Software Reset */
       dme_write(sc, DM9000_NCR,
           DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
       delay(20);
       dme_write(sc, DM9000_NCR, 0x0);

       if (!sc->sc_phy_initialized) {
               /* PHY Enable */
               misc = dme_read(sc, DM9000_GPR);
               dme_write(sc, DM9000_GPR, misc & ~DM9000_GPR_PHY_PWROFF);
               misc = dme_read(sc, DM9000_GPCR);
               dme_write(sc, DM9000_GPCR, misc | DM9000_GPCR_GPIO0_OUT);

               dme_write(sc, DM9000_NCR,
                   DM9000_NCR_RST | DM9000_NCR_LBK_MAC_INTERNAL);
               delay(20);
               dme_write(sc, DM9000_NCR, 0x0);
       }

       /* Select internal PHY, no wakeup event, no collision mode,
        * normal loopback mode.
        */
       dme_write(sc, DM9000_NCR, DM9000_NCR_LBK_NORMAL);

       /* Will clear TX1END, TX2END, and WAKEST fields by reading DM9000_NSR*/
       dme_read(sc, DM9000_NSR);

       /* Enable wraparound of read/write pointer, frame received latch,
        * and frame transmitted latch.
        */
       dme_write(sc, DM9000_IMR,
           DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);

       dme_write(sc, DM9000_RCR,
           DM9000_RCR_DIS_CRC | DM9000_RCR_DIS_LONG | DM9000_RCR_WTDIS);

       sc->sc_phy_initialized = 1;
}

static int
dme_init(struct ifnet *ifp)
{
       struct dme_softc *sc = ifp->if_softc;

       dme_stop(ifp, 0);
       dme_reset(sc);
       dme_write_c(sc, DM9000_PAB0, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
       dme_set_rcvfilt(sc);
       (void)ether_mediachange(ifp);

       sc->txbusy = sc->txready = 0;

       ifp->if_flags |= IFF_RUNNING;
       callout_schedule(&sc->sc_link_callout, hz);

       return 0;
}

/* Configure multicast filter */
static void
dme_set_rcvfilt(struct dme_softc *sc)
{
       struct ethercom *ec = &sc->sc_ethercom;
       struct ifnet *ifp = &ec->ec_if;
       struct ether_multi *enm;
       struct ether_multistep step;
       uint8_t mchash[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; /* 64bit mchash */
       uint32_t h = 0;
       int rcr;

       rcr = dme_read(sc, DM9000_RCR);
       rcr &= ~(DM9000_RCR_PRMSC | DM9000_RCR_ALL);
       dme_write(sc, DM9000_RCR, rcr &~ DM9000_RCR_RXEN);

       ETHER_LOCK(ec);
       if (ifp->if_flags & IFF_PROMISC) {
               ec->ec_flags |= ETHER_F_ALLMULTI;
               ETHER_UNLOCK(ec);
               /* run promisc. mode */
               rcr |= DM9000_RCR_PRMSC;
               goto update;
       }
       ec->ec_flags &= ~ETHER_F_ALLMULTI;
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcpy(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                       /*
                        * We must listen to a range of multicast addresses.
                        * For now, just accept all multicasts, rather than
                        * trying to set only those filter bits needed to match
                        * the range.  (At this time, the only use of address
                        * ranges is for IP multicast routing, for which the
                        * range is big enough to require all bits set.)
                        */
                       ec->ec_flags |= ETHER_F_ALLMULTI;
                       ETHER_UNLOCK(ec);
                       memset(mchash, 0xff, sizeof(mchash)); /* necessary? */
                       /* accept all multicast frame */
                       rcr |= DM9000_RCR_ALL;
                       goto update;
               }
               h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) & 0x3f;
               /* 3(5:3) and 3(2:0) sampling to have uint8_t[8] */
               mchash[h / 8] |= 1 << (h % 8);
               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);
       /* DM9000 receive filter is always on */
       mchash[7] |= 0x80; /* to catch bcast frame */
update:
       dme_write_c(sc, DM9000_MAB0, mchash, sizeof(mchash));
       dme_write(sc, DM9000_RCR, rcr | DM9000_RCR_RXEN);
       return;
}

void
lnkchg(struct dme_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct ifmediareq ifmr;

       ether_mediastatus(ifp, &ifmr);
}

static void
mii_statchg(struct ifnet *ifp)
{
       struct dme_softc *sc = ifp->if_softc;
       struct mii_data *mii = &sc->sc_mii;
       uint8_t fcr, ncr;

#if 0
       const uint8_t Mbps[2] = { 10, 100 };
       uint8_t nsr = dme_read(sc, DM9000_NSR);
       int spd = Mbps[!!(nsr & DM9000_NSR_SPEED)];
       /* speed/duplexity available also in reg 0x11 of internal PHY */
       if (nsr & DM9000_NSR_LINKST)
               printf("link up,spd%d", spd);
       else
               printf("link down");

       /* show resolved mii(4) parameters */
       printf("MII spd%d",
           (int)(sc->sc_ethercom.ec_if.if_baudrate / IF_Mbps(1)));
       if (mii->mii_media_active & IFM_FDX)
               printf(",full-duplex");
       printf("\n");
#endif

       /* Adjust duplexity and PAUSE flow control. */
       fcr = dme_read(sc, DM9000_FCR) &~ DM9000_FCR_FLCE;
       ncr = dme_read(sc, DM9000_NCR) &~ DM9000_NCR_FDX;
       if ((mii->mii_media_active & IFM_FDX)
           && (mii->mii_media_active & IFM_FLOW)) {
               fcr |= DM9000_FCR_FLCE;
               ncr |= DM9000_NCR_FDX;
       }
       dme_write(sc, DM9000_FCR, fcr);
       dme_write(sc, DM9000_NCR, ncr);
}

static void
phy_tick(void *arg)
{
       struct dme_softc *sc = arg;
       struct mii_data *mii = &sc->sc_mii;
       int s;

       s = splnet();
       mii_tick(mii);
       splx(s);

       callout_schedule(&sc->sc_link_callout, hz);
}

static int
mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
       struct dme_softc *sc = device_private(self);

       if (phy != 1)
               return EINVAL;

       /* Select Register to read*/
       dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
           (reg & DM9000_EPAR_EROA_MASK));
       /* Select read operation (DM9000_EPCR_ERPRR) from the PHY */
       dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRR + DM9000_EPCR_EPOS_PHY);

       /* Wait until access to PHY has completed */
       while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
               ;

       /* Reset ERPRR-bit */
       dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);

       *val = dme_read(sc, DM9000_EPDRL) | (dme_read(sc, DM9000_EPDRH) << 8);
       return 0;
}

static int
mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
       struct dme_softc *sc = device_private(self);

       if (phy != 1)
               return EINVAL;

       /* Select Register to write */
       dme_write(sc, DM9000_EPAR, DM9000_EPAR_INT_PHY +
           (reg & DM9000_EPAR_EROA_MASK));

       /* Write data to the two data registers */
       dme_write(sc, DM9000_EPDRL, val & 0xFF);
       dme_write(sc, DM9000_EPDRH, (val >> 8) & 0xFF);

       /* Select write operation (DM9000_EPCR_ERPRW) from the PHY */
       dme_write(sc, DM9000_EPCR, DM9000_EPCR_ERPRW + DM9000_EPCR_EPOS_PHY);

       /* Wait until access to PHY has completed */
       while (dme_read(sc, DM9000_EPCR) & DM9000_EPCR_ERRE)
               ;

       /* Reset ERPRR-bit */
       dme_write(sc, DM9000_EPCR, DM9000_EPCR_EPOS_PHY);

       return 0;
}

void
dme_stop(struct ifnet *ifp, int disable)
{
       struct dme_softc *sc = ifp->if_softc;

       /* Not quite sure what to do when called with disable == 0 */
       if (disable) {
               /* Disable RX */
               dme_write(sc, DM9000_RCR, 0x0);
       }
       mii_down(&sc->sc_mii);
       callout_stop(&sc->sc_link_callout);

       ifp->if_flags &= ~IFF_RUNNING;
       ifp->if_timer = 0;
}

static void
dme_start(struct ifnet *ifp)
{
       struct dme_softc *sc = ifp->if_softc;

       if ((ifp->if_flags & IFF_RUNNING) == 0) {
               return;
       }
       if (!sc->txready) {
               dme_prepare(ifp);
       }
       if (sc->txbusy) {
               /*
                * We need to wait until the current frame has
                * been transmitted.
                */
               return;
       }
       if (sc->txready) {
               /* We are ready to transmit right away */
               dme_transmit(ifp);
       }
       dme_prepare(ifp); /* Prepare next one */
}

/* Prepare data to be transmitted (i.e. dequeue and load it into the DM9000) */
static void
dme_prepare(struct ifnet *ifp)
{
       struct dme_softc *sc = ifp->if_softc;
       uint16_t length;
       struct mbuf *m;

       KASSERT(!sc->txready);

       IFQ_DEQUEUE(&ifp->if_snd, m);
       if (m == NULL) {
               TX_DPRINTF(("dme_prepare: Nothing to transmit\n"));
               return; /* Nothing to transmit */
       }

       /* Element has now been removed from the queue, so we better send it */

       bpf_mtap(ifp, m, BPF_D_OUT);

       /* Setup the DM9000 to accept the writes, and then write each buf in
          the chain. */

       TX_DATA_DPRINTF(("dme_prepare: Writing data: "));
       bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io, DM9000_MWCMD);
       length = PKT_WRITE(sc, m);
       bpf_mtap(ifp, m, BPF_D_OUT);
       TX_DATA_DPRINTF(("\n"));

       if (length % sc->sc_data_width != 0)
               panic("dme_prepare: length is not compatible with IO_MODE");

       sc->txready_length = length;
       sc->txready = 1;
       m_freem(m);
}

/* Transmit prepared data */
static void
dme_transmit(struct ifnet *ifp)
{
       struct dme_softc *sc = ifp->if_softc;

       TX_DPRINTF(("dme_transmit: PRE: txready: %d, txbusy: %d\n",
               sc->txready, sc->txbusy));

       /* prime frame length first */
       dme_write(sc, DM9000_TXPLL, sc->txready_length & 0xff);
       dme_write(sc, DM9000_TXPLH, (sc->txready_length >> 8) & 0xff);
       /* read isr next */
       dme_read(sc, DM9000_ISR);
       /* finally issue a request to send */
       dme_write(sc, DM9000_TCR, DM9000_TCR_TXREQ);
       sc->txready = 0;
       sc->txbusy = 1;
       sc->txready_length = 0;
}

/* Receive data */
static void
dme_receive(struct ifnet *ifp)
{
       struct dme_softc *sc = ifp->if_softc;
       struct mbuf *m;
       uint8_t avail, rsr;

       DPRINTF(("inside dme_receive\n"));

       /* frame has just arrived, retrieve it */
       /* called right after Rx frame available interrupt */
       do {
               /* "no increment" read to get the avail byte without
                  moving past it. */
               bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
                       DM9000_MRCMDX);
               /* Read twice */
               avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
               avail = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
               avail &= 03;    /* 1:0 we only want these bits */
               if (avail == 01) {
                       /* Read with address increment. */
                       bus_space_write_1(sc->sc_iot, sc->sc_ioh, sc->dme_io,
                               DM9000_MRCMD);
                       rsr = PKT_READ(sc, &m);
                       if (m == NULL) {
                               /* failed to allocate a receive buffer */
                               RX_DPRINTF(("dme_receive: "
                                       "Error allocating buffer\n"));
                               if_statinc(ifp, if_ierrors);
                               continue;
                       }
                       if (rsr & (DM9000_RSR_CE | DM9000_RSR_PLE)) {
                               /* Error while receiving the frame,
                                * discard it and keep track of counters
                                */
                               RX_DPRINTF(("dme_receive: "
                                       "Error reciving frame\n"));
                               if_statinc(ifp, if_ierrors);
                               continue;
                       }
                       if (rsr & DM9000_RSR_LCS) {
                               if_statinc(ifp, if_collisions);
                               continue;
                       }
                       /* pick and forward this frame to ifq */
                       if_percpuq_enqueue(ifp->if_percpuq, m);
               } else if (avail != 00) {
                       /* Should this be logged somehow? */
                       printf("%s: Resetting chip\n",
                              device_xname(sc->sc_dev));
                       dme_reset(sc);
                       break;
               }
       } while (avail == 01);
       /* frame received successfully */
}

int
dme_intr(void *arg)
{
       struct dme_softc *sc = arg;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       uint8_t isr, nsr, tsr;

       DPRINTF(("dme_intr: Begin\n"));

       /* Disable interrupts */
       dme_write(sc, DM9000_IMR, DM9000_IMR_PAR);

       isr = dme_read(sc, DM9000_ISR);
       dme_write(sc, DM9000_ISR, isr); /* write to clear */

       if (isr & DM9000_ISR_PRS) {
               KASSERT(ifp->if_flags & IFF_RUNNING);
               dme_receive(ifp);
       }
       if (isr & DM9000_ISR_LNKCHNG)
               lnkchg(sc);
       if (isr & DM9000_ISR_PTS) {
               tsr = 0x01; /* Initialize to an error value */

               /* A frame has been transmitted */
               sc->txbusy = 0;

               nsr = dme_read(sc, DM9000_NSR);
               if (nsr & DM9000_NSR_TX1END) {
                       tsr = dme_read(sc, DM9000_TSR1);
                       TX_DPRINTF(("dme_intr: Sent using channel 0\n"));
               } else if (nsr & DM9000_NSR_TX2END) {
                       tsr = dme_read(sc, DM9000_TSR2);
                       TX_DPRINTF(("dme_intr: Sent using channel 1\n"));
               }

               if (tsr == 0x0) {
                       /* Frame successfully sent */
                       if_statinc(ifp, if_opackets);
               } else {
                       if_statinc(ifp, if_oerrors);
               }

               /* If we have nothing ready to transmit, prepare something */
               if (!sc->txready)
                       dme_prepare(ifp);

               if (sc->txready)
                       dme_transmit(ifp);

               /* Prepare the next frame */
               dme_prepare(ifp);

               if_schedule_deferred_start(ifp);
       }

       /* Enable interrupts again */
       dme_write(sc, DM9000_IMR,
           DM9000_IMR_PAR | DM9000_IMR_PRM | DM9000_IMR_PTM);

       DPRINTF(("dme_intr: End\n"));

       return (isr != 0);
}

static int
dme_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct dme_softc *sc = ifp->if_softc;
       struct ifreq *ifr = (struct ifreq *)data;
       struct ifmedia *ifm = &sc->sc_mii.mii_media;
       int s, error;

       s = splnet();
       switch (cmd) {
       case SIOCSIFMEDIA:
               /* Flow control requires full-duplex mode. */
               if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
                   (ifr->ifr_media & IFM_FDX) == 0)
                       ifr->ifr_media &= ~IFM_ETH_FMASK;
               if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
                       if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
                               ifr->ifr_media |=
                                       IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
                       }
               }
               error = ifmedia_ioctl(ifp, ifr, ifm, cmd);
               break;
       default:
               if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
                       break;
               error = 0;
               if (cmd == SIOCSIFCAP)
                       error = if_init(ifp);
               else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
                       ;
               else if (ifp->if_flags && IFF_RUNNING) {
                       /* Address list has changed, reconfigure filter */
                       dme_set_rcvfilt(sc);
               }
               break;
       }
       splx(s);
       return error;
}

static struct mbuf *
dme_alloc_receive_buffer(struct ifnet *ifp, unsigned int frame_length)
{
       struct dme_softc *sc = ifp->if_softc;
       struct mbuf *m;
       int pad, quantum;

       quantum = sc->sc_data_width;
       MGETHDR(m, M_DONTWAIT, MT_DATA);
       if (m == NULL)
               return NULL;

       m_set_rcvif(m, ifp);
       /* Ensure that we always allocate an even number of
        * bytes in order to avoid writing beyond the buffer
        */
       m->m_pkthdr.len = frame_length + (frame_length % quantum);
       pad = ALIGN(sizeof(struct ether_header)) -
               sizeof(struct ether_header);
       /* All our frames have the CRC attached */
       m->m_flags |= M_HASFCS;
       if (m->m_pkthdr.len + pad > MHLEN) {
               MCLGET(m, M_DONTWAIT);
               if ((m->m_flags & M_EXT) == 0) {
                       m_freem(m);
                       return NULL;
               }
       }

       m->m_data += pad;
       m->m_len = frame_length + (frame_length % quantum);

       return m;
}

static int
pkt_write_2(struct dme_softc *sc, struct mbuf *bufChain)
{
       int left_over_count = 0; /* Number of bytes from previous mbuf, which
                                   need to be written with the next.*/
       uint16_t left_over_buf = 0;
       int length = 0;
       struct mbuf *buf;
       uint8_t *write_ptr;

       /* We expect that the DM9000 has been setup to accept writes before
          this function is called. */

       for (buf = bufChain; buf != NULL; buf = buf->m_next) {
               int to_write = buf->m_len;

               length += to_write;

               write_ptr = buf->m_data;
               while (to_write > 0 ||
                   (buf->m_next == NULL && left_over_count > 0)) {
                       if (left_over_count > 0) {
                               uint8_t b = 0;
                               DPRINTF(("pkt_write_16: "
                                        "Writing left over byte\n"));

                               if (to_write > 0) {
                                       b = *write_ptr;
                                       to_write--;
                                       write_ptr++;

                                       DPRINTF(("Took single byte\n"));
                               } else {
                                       DPRINTF(("Leftover in last run\n"));
                                       length++;
                               }

                               /* Does shift direction depend on endianness? */
                               left_over_buf = left_over_buf | (b << 8);

                               bus_space_write_2(sc->sc_iot, sc->sc_ioh,
                                                 sc->dme_data, left_over_buf);
                               TX_DATA_DPRINTF(("%02X ", left_over_buf));
                               left_over_count = 0;
                       } else if ((long)write_ptr % 2 != 0) {
                               /* Misaligned data */
                               DPRINTF(("pkt_write_16: "
                                        "Detected misaligned data\n"));
                               left_over_buf = *write_ptr;
                               left_over_count = 1;
                               write_ptr++;
                               to_write--;
                       } else {
                               int i;
                               uint16_t *dptr = (uint16_t *)write_ptr;

                               /* A block of aligned data. */
                               for (i = 0; i < to_write / 2; i++) {
                                       /* buf will be half-word aligned
                                        * all the time
                                        */
                                       bus_space_write_2(sc->sc_iot,
                                           sc->sc_ioh, sc->dme_data, *dptr);
                                       TX_DATA_DPRINTF(("%02X %02X ",
                                           *dptr & 0xFF, (*dptr >> 8) & 0xFF));
                                       dptr++;
                               }

                               write_ptr += i * 2;
                               if (to_write % 2 != 0) {
                                       DPRINTF(("pkt_write_16: "
                                                "to_write %% 2: %d\n",
                                                to_write % 2));
                                       left_over_count = 1;
                                       /* XXX: Does this depend on
                                        * the endianness?
                                        */
                                       left_over_buf = *write_ptr;

                                       write_ptr++;
                                       to_write--;
                                       DPRINTF(("pkt_write_16: "
                                                "to_write (after): %d\n",
                                                to_write));
                                       DPRINTF(("pkt_write_16: i * 2: %d\n",
                                                i*2));
                               }
                               to_write -= i * 2;
                       }
               } /* while (...) */
       } /* for (...) */

       return length;
}

static int
pkt_read_2(struct dme_softc *sc, struct mbuf **outBuf)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       uint8_t rx_status;
       struct mbuf *m;
       uint16_t data;
       uint16_t frame_length;
       uint16_t i;
       uint16_t *buf;

       data = bus_space_read_2(sc->sc_iot, sc->sc_ioh, sc->dme_data);
       rx_status = data & 0xFF;

       frame_length = bus_space_read_2(sc->sc_iot,
                                       sc->sc_ioh, sc->dme_data);
       if (frame_length > ETHER_MAX_LEN) {
               printf("Got frame of length: %d\n", frame_length);
               printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
               panic("Something is rotten");
       }
       RX_DPRINTF(("dme_receive: rx_statux: 0x%x, frame_length: %d\n",
               rx_status, frame_length));

       m = dme_alloc_receive_buffer(ifp, frame_length);
       if (m == NULL) {
               /*
                * didn't get a receive buffer, so we read the rest of the
                * frame, throw it away and return an error
                */
               for (i = 0; i < frame_length; i += 2) {
                       data = bus_space_read_2(sc->sc_iot,
                                       sc->sc_ioh, sc->dme_data);
               }
               *outBuf = NULL;
               return 0;
       }

       buf = mtod(m, uint16_t*);

       RX_DPRINTF(("dme_receive: "));

       for (i = 0; i < frame_length; i += 2) {
               data = bus_space_read_2(sc->sc_iot,
                                       sc->sc_ioh, sc->dme_data);
               if ( (frame_length % 2 != 0) &&
                    (i == frame_length - 1) ) {
                       data = data & 0xff;
                       RX_DPRINTF((" L "));
               }
               *buf = data;
               buf++;
               RX_DATA_DPRINTF(("%02X %02X ", data & 0xff,
                                (data >> 8) & 0xff));
       }

       RX_DATA_DPRINTF(("\n"));
       RX_DPRINTF(("Read %d bytes\n", i));

       *outBuf = m;
       return rx_status;
}

static int
pkt_write_1(struct dme_softc *sc, struct mbuf *bufChain)
{
       int length = 0, i;
       struct mbuf *buf;
       uint8_t *write_ptr;

       /*
        * We expect that the DM9000 has been setup to accept writes before
        * this function is called.
        */

       for (buf = bufChain; buf != NULL; buf = buf->m_next) {
               int to_write = buf->m_len;

               length += to_write;

               write_ptr = buf->m_data;
               for (i = 0; i < to_write; i++) {
                       bus_space_write_1(sc->sc_iot, sc->sc_ioh,
                           sc->dme_data, *write_ptr);
                       write_ptr++;
               }
       } /* for (...) */

       return length;
}

static int
pkt_read_1(struct dme_softc *sc, struct mbuf **outBuf)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       uint8_t rx_status;
       struct mbuf *m;
       uint8_t *buf;
       uint16_t frame_length;
       uint16_t i, reg;
       uint8_t data;

       reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
       reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
       rx_status = reg & 0xFF;

       reg = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
       reg |= bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data) << 8;
       frame_length = reg;

       if (frame_length > ETHER_MAX_LEN) {
               printf("Got frame of length: %d\n", frame_length);
               printf("ETHER_MAX_LEN is: %d\n", ETHER_MAX_LEN);
               panic("Something is rotten");
       }
       RX_DPRINTF(("dme_receive: "
                   "rx_statux: 0x%x, frame_length: %d\n",
                   rx_status, frame_length));

       m = dme_alloc_receive_buffer(ifp, frame_length);
       if (m == NULL) {
               /*
                * didn't get a receive buffer, so we read the rest of the
                * frame, throw it away and return an error
                */
               for (i = 0; i < frame_length; i++ ) {
                       data = bus_space_read_2(sc->sc_iot,
                                       sc->sc_ioh, sc->dme_data);
               }
               *outBuf = NULL;
               return 0;
       }

       buf = mtod(m, uint8_t *);

       RX_DPRINTF(("dme_receive: "));
       for (i = 0; i< frame_length; i += 1) {
               data = bus_space_read_1(sc->sc_iot, sc->sc_ioh, sc->dme_data);
               *buf = data;
               buf++;
               RX_DATA_DPRINTF(("%02X ", data));
       }

       RX_DATA_DPRINTF(("\n"));
       RX_DPRINTF(("Read %d bytes\n", i));

       *outBuf = m;
       return rx_status;
}