/*      $NetBSD: cs89x0.c,v 1.56 2025/01/07 20:24:10 andvar Exp $       */

/*
* Copyright (c) 2004 Christopher Gilbert
* All rights reserved.
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. The name of the company nor the name of the author may be used to
*    endorse or promote products derived from this software without specific
*    prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

/*
* Copyright 1997
* Digital Equipment Corporation. All rights reserved.
*
* This software is furnished under license and may be used and
* copied only in accordance with the following terms and conditions.
* Subject to these conditions, you may download, copy, install,
* use, modify and distribute this software in source and/or binary
* form. No title or ownership is transferred hereby.
*
* 1) Any source code used, modified or distributed must reproduce
*    and retain this copyright notice and list of conditions as
*    they appear in the source file.
*
* 2) No right is granted to use any trade name, trademark, or logo of
*    Digital Equipment Corporation. Neither the "Digital Equipment
*    Corporation" name nor any trademark or logo of Digital Equipment
*    Corporation may be used to endorse or promote products derived
*    from this software without the prior written permission of
*    Digital Equipment Corporation.
*
* 3) This software is provided "AS-IS" and any express or implied
*    warranties, including but not limited to, any implied warranties
*    of merchantability, fitness for a particular purpose, or
*    non-infringement are disclaimed. In no event shall DIGITAL be
*    liable for any damages whatsoever, and in particular, DIGITAL
*    shall not be liable for special, indirect, consequential, or
*    incidental damages or damages for lost profits, loss of
*    revenue or loss of use, whether such damages arise in contract,
*    negligence, tort, under statute, in equity, at law or otherwise,
*    even if advised of the possibility of such damage.
*/

/*
**++
**  FACILITY
**
**     Device Driver for the Crystal CS8900 ISA Ethernet Controller.
**
**  ABSTRACT
**
**     This module provides standard ethernet access for INET protocols
**     only.
**
**  AUTHORS
**
**     Peter Dettori     SEA - Software Engineering.
**
**  CREATION DATE:
**
**     13-Feb-1997.
**
**  MODIFICATION HISTORY (Digital):
**
**     Revision 1.27  1998/01/20  17:59:40  cgd
**     update for moved headers
**
**     Revision 1.26  1998/01/12  19:29:36  cgd
**     use arm32/isa versions of isadma code.
**
**     Revision 1.25  1997/12/12  01:35:27  cgd
**     convert to use new arp code (from Brini)
**
**     Revision 1.24  1997/12/10  22:31:56  cgd
**     trim some fat (get rid of ability to explicitly supply enet addr, since
**     it was never used and added a bunch of code which really doesn't belong in
**     an enet driver), and clean up slightly.
**
**     Revision 1.23  1997/10/06  16:42:12  cgd
**     copyright notices
**
**     Revision 1.22  1997/06/20  19:38:01  chaiken
**     fixes some smartcard problems
**
**     Revision 1.21  1997/06/10 02:56:20  grohn
**     Added call to ledNetActive
**
**     Revision 1.20  1997/06/05 00:47:06  dettori
**     Changed cs_process_rx_dma to reset and re-initialise the
**     ethernet chip when DMA gets out of sync, or mbufs
**     can't be allocated.
**
**     Revision 1.19  1997/06/03 03:09:58  dettori
**     Turn off sc_txbusy flag when a transmit underrun
**     occurs.
**
**     Revision 1.18  1997/06/02 00:04:35  dettori
**     redefined the transmit table to get around the nfs_timer bug while we are
**     looking into it further.
**
**     Also changed interrupts from EDGE to LEVEL.
**
**     Revision 1.17  1997/05/27 23:31:01  dettori
**     Pulled out changes to DMAMODE defines.
**
**     Revision 1.16  1997/05/23 04:25:16  cgd
**     reformat log so it fits in 80cols
**
**     Revision 1.15  1997/05/23  04:22:18  cgd
**     remove the existing copyright notice (which Peter Dettori indicated
**     was incorrect, copied from an existing NetBSD file only so that the
**     file would have a copyright notice on it, and which he'd intended to
**     replace).  Replace it with a Digital copyright notice, cloned from
**     ess.c.  It's not really correct either (it indicates that the source
**     is Digital confidential!), but is better than nothing and more
**     correct than what was there before.
**
**     Revision 1.14  1997/05/23  04:12:50  cgd
**     use an adaptive transmit start algorithm: start by telling the chip
**     to start transmitting after 381 bytes have been fed to it.  if that
**     gets transmit underruns, ramp down to 1021 bytes then "whole
**     packet."  If successful at a given level for a while, try the next
**     more aggressive level.  This code doesn't ever try to start
**     transmitting after 5 bytes have been sent to the NIC, because
**     that underruns rather regularly.  The back-off and ramp-up mechanism
**     could probably be tuned a little bit, but this works well enough to
**     support > 1MB/s transmit rates on a clear ethernet (which is about
**     20-25% better than the driver had previously been getting).
**
**     Revision 1.13  1997/05/22  21:06:54  cgd
**     redo cs_copy_tx_frame() from scratch.  It had a fatal flaw: it was blindly
**     casting from uint8_t * to uint16_t * without worrying about alignment
**     issues.  This would cause bogus data to be spit out for mbufs with
**     misaligned data.  For instance, it caused the following bits to appear
**     on the wire:
**      ... etBND 1S2C .SHA(K) R ...
**          11112222333344445555
**     which should have appeared as:
**      ... NetBSD 1.2C (SHARK) ...
**          11112222333344445555
**     Note the apparent 'rotate' of the bytes in the word, which was due to
**     incorrect unaligned accesses.  This data corruption was the cause of
**     incoming telnet/rlogin hangs.
**
**     Revision 1.12  1997/05/22  01:55:32  cgd
**     reformat log so it fits in 80cols
**
**     Revision 1.11  1997/05/22  01:50:27  cgd
**     * enable input packet address checking in the BPF+IFF_PROMISCUOUS case,
**       so packets aimed at other hosts don't get sent to ether_input().
**     * Add a static const char *rcsid initialized with an RCS Id tag, so that
**       you can easily tell (`strings`) what version of the driver is in your
**       kernel binary.
**     * get rid of ether_cmp().  It was inconsistently used, not necessarily
**       safe, and not really a performance win anyway.  (It was only used when
**       setting up the multicast logical address filter, which is an
**       infrequent event.  It could have been used in the IFF_PROMISCUOUS
**       address check above, but the benefit of it vs. memcmp would be
**       inconsequential, there.)  Use memcmp() instead.
**     * restructure csStartOutput to avoid the following bugs in the case where
**       txWait was being set:
**         * it would accidentally drop the outgoing packet if told to wait
**           but the outgoing packet queue was empty.
**         * it would bpf_mtap() the outgoing packet multiple times (once for
**           each time it was told to wait), and would also recalculate
**           the length of the outgoing packet each time it was told to
**           wait.
**       While there, rename txWait to txLoop, since with the new structure of
**       the code, the latter name makes more sense.
**
**     Revision 1.10  1997/05/19  02:03:20  cgd
**     Set RX_CTL in cs_set_ladr_filt(), rather than cs_initChip().  cs_initChip()
**     is the only caller of cs_set_ladr_filt(), and always calls it, so this
**     ends up being logically the same.  In cs_set_ladr_filt(), if IFF_PROMISC
**     is set, enable promiscuous mode (and set IFF_ALLMULTI), otherwise behave
**     as before.
**
**     Revision 1.9  1997/05/19  01:45:37  cgd
**     create a new function, cs_ether_input(), which does received-packet
**     BPF and ether_input processing.  This code used to be in three places,
**     and centralizing it will make adding IFF_PROMISC support much easier.
**     Also, in cs_copy_tx_frame(), put it some (currently disabled) code to
**     do copies with bus_space_write_region_2().  It's more correct, and
**     potentially more efficient.  That function needs to be gutted (to
**     deal properly with alignment issues, which it currently does wrong),
**     however, and the change doesn't gain much, so there's no point in
**     enabling it now.
**
**     Revision 1.8  1997/05/19  01:17:10  cgd
**     fix a comment re: the setting of the TxConfig register.  Clean up
**     interface counter maintenance (make it use standard idiom).
**
**--
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cs89x0.c,v 1.56 2025/01/07 20:24:10 andvar Exp $");

#include "opt_inet.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/syslog.h>
#include <sys/socket.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/bus.h>
#include <sys/intr.h>
#include <sys/rndsource.h>

#include <net/if.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/bpf.h>

#ifdef INET
#include <netinet/in.h>
#include <netinet/if_inarp.h>
#endif

#include <dev/ic/cs89x0reg.h>
#include <dev/ic/cs89x0var.h>

#ifdef SHARK
#include <shark/shark/sequoia.h>
#endif

/*
* MACRO DEFINITIONS
*/
#define CS_OUTPUT_LOOP_MAX 100  /* max times round notorious tx loop */

/*
* FUNCTION PROTOTYPES
*/
static void     cs_get_default_media(struct cs_softc *);
static int      cs_get_params(struct cs_softc *);
static int      cs_get_enaddr(struct cs_softc *);
static int      cs_reset_chip(struct cs_softc *);
static void     cs_reset(struct cs_softc *);
static int      cs_ioctl(struct ifnet *, u_long, void *);
static void     cs_initChip(struct cs_softc *);
static void     cs_buffer_event(struct cs_softc *, uint16_t);
static void     cs_transmit_event(struct cs_softc *, uint16_t);
static void     cs_receive_event(struct cs_softc *, uint16_t);
static void     cs_process_receive(struct cs_softc *);
static void     cs_process_rx_early(struct cs_softc *);
static void     cs_start_output(struct ifnet *);
static void     cs_copy_tx_frame(struct cs_softc *, struct mbuf *);
static void     cs_set_ladr_filt(struct cs_softc *, struct ethercom *);
static uint16_t cs_hash_index(char *);
static void     cs_counter_event(struct cs_softc *, uint16_t);

static int      cs_mediachange(struct ifnet *);
static void     cs_mediastatus(struct ifnet *, struct ifmediareq *);

static bool cs_shutdown(device_t, int);
static int cs_enable(struct cs_softc *);
static void cs_disable(struct cs_softc *);
static void cs_stop(struct ifnet *, int);
static int cs_scan_eeprom(struct cs_softc *);
static int cs_read_pktpg_from_eeprom(struct cs_softc *, int, uint16_t *);


/*
* GLOBAL DECLARATIONS
*/

/*
* Xmit-early table.
*
* To get better performance, we tell the chip to start packet
* transmission before the whole packet is copied to the chip.
* However, this can fail under load.  When it fails, we back off
* to a safer setting for a little while.
*
* txcmd is the value of txcmd used to indicate when to start transmission.
* better is the next 'better' state in the table.
* better_count is the number of output packets before transition to the
*   better state.
* worse is the next 'worse' state in the table.
*
* Transition to the next worse state happens automatically when a
* transmission underrun occurs.
*/
struct cs_xmit_early {
       uint16_t        txcmd;
       int             better;
       int             better_count;
       int             worse;
} cs_xmit_early_table[3] = {
       { TX_CMD_START_381,     0,      INT_MAX,        1, },
       { TX_CMD_START_1021,    0,      50000,          2, },
       { TX_CMD_START_ALL,     1,      5000,           2, },
};

int cs_default_media[] = {
       IFM_ETHER | IFM_10_2,
       IFM_ETHER | IFM_10_5,
       IFM_ETHER | IFM_10_T,
       IFM_ETHER | IFM_10_T | IFM_FDX,
};
int cs_default_nmedia = __arraycount(cs_default_media);

int
cs_attach(struct cs_softc *sc, uint8_t *enaddr, int *media,
         int nmedia, int defmedia)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       const char *chipname, *medname;
       uint16_t reg;
       int i;

       /* Start out in IO mode */
       sc->sc_memorymode = FALSE;

       /* Make sure we're right */
       for (i = 0; i < 10000; i++) {
               reg = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);
               if (reg == EISA_NUM_CRYSTAL)
                       break;
       }
       if (i == 10000) {
               aprint_error_dev(sc->sc_dev, "wrong id(0x%x)\n", reg);
               return 1; /* XXX should panic? */
       }

       reg = CS_READ_PACKET_PAGE(sc, PKTPG_PRODUCT_ID);
       sc->sc_prodid = reg & PROD_ID_MASK;
       sc->sc_prodrev = (reg & PROD_REV_MASK) >> 8;

       switch (sc->sc_prodid) {
       case PROD_ID_CS8900:
               chipname = "CS8900";
               break;
       case PROD_ID_CS8920:
               chipname = "CS8920";
               break;
       case PROD_ID_CS8920M:
               chipname = "CS8920M";
               break;
       default:
               panic("cs_attach: impossible");
       }

       /*
        * The first thing to do is check that the mbuf cluster size is
        * greater than the MTU for an ethernet frame. The code depends on
        * this and to port this to a OS where this was not the case would
        * not be straightforward.
        *
        * We need 1 byte spare because our packet read loop can overrun.
        * and we may need pad bytes to align ip header.
        */
       if (MCLBYTES < ETHER_MAX_LEN + 1 + ALIGN(sizeof(struct ether_header))
           - sizeof(struct ether_header)) {
               printf("%s: MCLBYTES too small for Ethernet frame\n",
                   device_xname(sc->sc_dev));
               return 1;
       }

       /* Start out not transmitting */
       sc->sc_txbusy = FALSE;

       /* Set up early transmit threshold */
       sc->sc_xe_ent = 0;
       sc->sc_xe_togo = cs_xmit_early_table[sc->sc_xe_ent].better_count;

       /* Initialize ifnet structure. */
       strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
       ifp->if_softc = sc;
       ifp->if_start = cs_start_output;
       ifp->if_init = cs_init;
       ifp->if_ioctl = cs_ioctl;
       ifp->if_stop = cs_stop;
       ifp->if_watchdog = NULL;        /* No watchdog at this stage */
       ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
       IFQ_SET_READY(&ifp->if_snd);

       /* Initialize ifmedia structures. */
       sc->sc_ethercom.ec_ifmedia = &sc->sc_media;
       ifmedia_init(&sc->sc_media, 0, cs_mediachange, cs_mediastatus);

       if (media != NULL) {
               for (i = 0; i < nmedia; i++)
                       ifmedia_add(&sc->sc_media, media[i], 0, NULL);
               ifmedia_set(&sc->sc_media, defmedia);
       } else {
               for (i = 0; i < cs_default_nmedia; i++)
                       ifmedia_add(&sc->sc_media, cs_default_media[i],
                           0, NULL);
               cs_get_default_media(sc);
       }

       if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
               if (cs_scan_eeprom(sc) == CS_ERROR) {
                       /*
                        * Failed to scan the eeprom, pretend there isn't an
                        * eeprom
                        */
                       aprint_error_dev(sc->sc_dev,
                           "unable to scan EEPROM\n");
                       sc->sc_cfgflags |= CFGFLG_NOT_EEPROM;
               }
       }

       if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
               /* Get parameters from the EEPROM */
               if (cs_get_params(sc) == CS_ERROR) {
                       aprint_error_dev(sc->sc_dev,
                           "unable to get settings from EEPROM\n");
                       return 1;
               }
       }

       if (enaddr != NULL)
               memcpy(sc->sc_enaddr, enaddr, sizeof(sc->sc_enaddr));
       else if ((sc->sc_cfgflags & CFGFLG_NOT_EEPROM) == 0) {
               /* Get and store the Ethernet address */
               if (cs_get_enaddr(sc) == CS_ERROR) {
                       aprint_error_dev(sc->sc_dev,
                           "unable to read Ethernet address\n");
                       return 1;
               }
       } else {
#if 1
               int j;
               uint v;

               for (j = 0; j < 6; j += 2) {
                       v = CS_READ_PACKET_PAGE(sc, PKTPG_IND_ADDR + j);
                       sc->sc_enaddr[j + 0] = v;
                       sc->sc_enaddr[j + 1] = v >> 8;
               }
#else
               printf("%s: no Ethernet address!\n", device_xname(sc->sc_dev));
               return 1;
#endif
       }

       switch (IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media)) {
       case IFM_10_2:
               medname = "BNC";
               break;
       case IFM_10_5:
               medname = "AUI";
               break;
       case IFM_10_T:
               if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
                       medname = "UTP <full-duplex>";
               else
                       medname = "UTP";
               break;
       default:
               panic("cs_attach: impossible");
       }
       printf("%s: %s rev. %c, address %s, media %s\n",
           device_xname(sc->sc_dev),
           chipname, sc->sc_prodrev + 'A', ether_sprintf(sc->sc_enaddr),
           medname);

       if (sc->sc_dma_attach)
               (*sc->sc_dma_attach)(sc);

       /* Attach the interface. */
       if_attach(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, sc->sc_enaddr);

       rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
                         RND_TYPE_NET, RND_FLAG_DEFAULT);
       sc->sc_cfgflags |= CFGFLG_ATTACHED;

       if (pmf_device_register1(sc->sc_dev, NULL, NULL, cs_shutdown))
               pmf_class_network_register(sc->sc_dev, ifp);
       else
               aprint_error_dev(sc->sc_dev,
                   "couldn't establish power handler\n");

       /* Reset the chip */
       if (cs_reset_chip(sc) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev, "reset failed\n");
               cs_detach(sc);
               return 1;
       }

       return 0;
}

int
cs_detach(struct cs_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       if (sc->sc_cfgflags & CFGFLG_ATTACHED) {
               rnd_detach_source(&sc->rnd_source);
               ether_ifdetach(ifp);
               if_detach(ifp);
               ifmedia_fini(&sc->sc_media);
               sc->sc_cfgflags &= ~CFGFLG_ATTACHED;
       }

#if 0
       /* XXX not necessary */
       if (sc->sc_cfgflags & CFGFLG_DMA_MODE) {
               isa_dmamem_unmap(sc->sc_ic, sc->sc_drq, sc->sc_dmabase,
                   sc->sc_dmasize);
               isa_dmamem_free(sc->sc_ic, sc->sc_drq, sc->sc_dmaaddr,
                   sc->sc_dmasize);
               isa_dmamap_destroy(sc->sc_ic, sc->sc_drq);
               sc->sc_cfgflags &= ~CFGFLG_DMA_MODE;
       }
#endif

       pmf_device_deregister(sc->sc_dev);

       return 0;
}

bool
cs_shutdown(device_t self, int howto)
{
       struct cs_softc *sc;

       sc = device_private(self);
       cs_reset(sc);

       return true;
}

void
cs_get_default_media(struct cs_softc *sc)
{
       uint16_t adp_cfg, xmit_ctl;

       if (cs_verify_eeprom(sc) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev,
                   "cs_get_default_media: EEPROM missing or bad\n");
               goto fakeit;
       }

       if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adp_cfg) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev,
                   "unable to read adapter config from EEPROM\n");
               goto fakeit;
       }

       if (cs_read_eeprom(sc, EEPROM_XMIT_CTL, &xmit_ctl) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev,
                   "unable to read transmit control from EEPROM\n");
               goto fakeit;
       }

       switch (adp_cfg & ADPTR_CFG_MEDIA) {
       case ADPTR_CFG_AUI:
               ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_5);
               break;
       case ADPTR_CFG_10BASE2:
               ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_2);
               break;
       case ADPTR_CFG_10BASET:
       default:
               if (xmit_ctl & XMIT_CTL_FDX)
                       ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T
                           | IFM_FDX);
               else
                       ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T);
               break;
       }
       return;

fakeit:
       aprint_error_dev(sc->sc_dev,
           "WARNING: default media setting may be inaccurate\n");
       /* XXX Arbitrary... */
       ifmedia_set(&sc->sc_media, IFM_ETHER | IFM_10_T);
}

/*
* cs_scan_eeprom
*
* Attempt to take a complete copy of the eeprom into main memory.
* this will allow faster parsing of the eeprom data.
*
* Only tested against a 8920M's eeprom, but the data sheet for the
* 8920A indicates that is uses the same layout.
*/
int
cs_scan_eeprom(struct cs_softc *sc)
{
       uint16_t result;
       int     i;
       int     eeprom_size;
       uint8_t checksum = 0;

       if (cs_verify_eeprom(sc) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev,
                   "cs_scan_params: EEPROM missing or bad\n");
               return CS_ERROR;
       }

       /*
        * Read the 0th word from the eeprom, it will tell us the length
        * and if the eeprom is valid
        */
       cs_read_eeprom(sc, 0, &result);

       /* Check the eeprom signature */
       if ((result & 0xE000) != 0xA000) {
               /* Empty eeprom */
               return CS_ERROR;
       }

       /*
        * Take the eeprom size (note the read value doesn't include the header
        * word)
        */
       eeprom_size = (result & 0xff) + 2;

       sc->eeprom_data = malloc(eeprom_size, M_DEVBUF, M_WAITOK);
       if (sc->eeprom_data == NULL) {
               /* No memory, treat this as if there's no eeprom */
               return CS_ERROR;
       }

       sc->eeprom_size = eeprom_size;

       /* Read the eeprom into the buffer, also calculate the checksum  */
       for (i = 0; i < (eeprom_size >> 1); i++) {
               cs_read_eeprom(sc, i, &(sc->eeprom_data[i]));
               checksum += (sc->eeprom_data[i] & 0xff00) >> 8;
               checksum += (sc->eeprom_data[i] & 0x00ff);
       }

       /*
        * Validate checksum calculation, the sum of all the bytes should be 0,
        * as the high byte of the last word is the 2's complement of the
        * sum to that point.
        */
       if (checksum != 0) {
               aprint_error_dev(sc->sc_dev, "eeprom checksum failure\n");
               return CS_ERROR;
       }

       return CS_OK;
}

static int
cs_read_pktpg_from_eeprom(struct cs_softc *sc, int pktpg, uint16_t *pValue)
{
       int x, maxword;

       /* Check that we have eeprom data */
       if ((sc->eeprom_data == NULL) || (sc->eeprom_size < 2))
               return CS_ERROR;

       /*
        * We only want to read the data words, the last word contains the
        * checksum
        */
       maxword = (sc->eeprom_size - 2) >> 1;

       /* Start 1 word in, as the first word is the length and signature */
       x = 1;

       while ( x < (maxword)) {
               uint16_t header;
               int group_size;
               int offset;
               int offset_max;

               /* Read in the group header word */
               header = sc->eeprom_data[x];
               x++;    /* Skip group header */

               /*
                * Size of group in words is in the top 4 bits, note that it
                * is one less than the number of words
                */
               group_size = header & 0xF000;

               /*
                * CS8900 Data sheet says this should be 0x01ff,
                * but my cs8920 eeprom has higher offsets,
                * perhaps the 8920 allows higher offsets, otherwise
                * it's writing to places that it shouldn't
                */
               /* Work out the offsets this group covers */
               offset = header & 0x0FFF;
               offset_max = offset + (group_size << 1);

               /* Check if the pkgpg we're after is in this group */
               if ((offset <= pktpg) && (pktpg <= offset_max)) {
                       /* The pkgpg value we want is in here */
                       int eeprom_location;

                       eeprom_location = ((pktpg - offset) >> 1) ;

                       *pValue = sc->eeprom_data[x + eeprom_location];
                       return CS_OK;
               } else {
                       /* Skip this group (+ 1 for first entry) */
                       x += group_size + 1;
               }
       }

       /*
        * If we've fallen out here then we don't have a value in the EEPROM
        * for this pktpg so return an error
        */
       return CS_ERROR;
}

int
cs_get_params(struct cs_softc *sc)
{
       uint16_t isaConfig;
       uint16_t adapterConfig;

       if (cs_verify_eeprom(sc) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev,
                   "cs_get_params: EEPROM missing or bad\n");
               return CS_ERROR;
       }

       if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
               /* Get ISA configuration from the EEPROM */
               if (cs_read_pktpg_from_eeprom(sc, PKTPG_BUS_CTL, &isaConfig)
                   == CS_ERROR) {
                       /*
                        * Eeprom doesn't have this value, use data sheet
                        * default
                        */
                       isaConfig = 0x0017;
               }

               /* Get adapter configuration from the EEPROM */
               if (cs_read_pktpg_from_eeprom(sc, PKTPG_SELF_CTL,
                   &adapterConfig) == CS_ERROR) {
                       /*
                        * Eeprom doesn't have this value, use data sheet
                        * default
                        */
                       adapterConfig = 0x0015;
               }

               /* Copy the USE_SA flag */
               if (isaConfig & BUS_CTL_USE_SA)
                       sc->sc_cfgflags |= CFGFLG_USE_SA;

               /* Copy the IO Channel Ready flag */
               if (isaConfig & BUS_CTL_IOCHRDY)
                       sc->sc_cfgflags |= CFGFLG_IOCHRDY;

               /* Copy the DC/DC Polarity flag */
               if (adapterConfig & SELF_CTL_HCB1)
                       sc->sc_cfgflags |= CFGFLG_DCDC_POL;
       } else {
               /* Get ISA configuration from the EEPROM */
               if (cs_read_eeprom(sc, EEPROM_ISA_CFG, &isaConfig) == CS_ERROR)
                       goto eeprom_bad;

               /* Get adapter configuration from the EEPROM */
               if (cs_read_eeprom(sc, EEPROM_ADPTR_CFG, &adapterConfig)
                   == CS_ERROR)
                       goto eeprom_bad;

               /* Copy the USE_SA flag */
               if (isaConfig & ISA_CFG_USE_SA)
                       sc->sc_cfgflags |= CFGFLG_USE_SA;

               /* Copy the IO Channel Ready flag */
               if (isaConfig & ISA_CFG_IOCHRDY)
                       sc->sc_cfgflags |= CFGFLG_IOCHRDY;

               /* Copy the DC/DC Polarity flag */
               if (adapterConfig & ADPTR_CFG_DCDC_POL)
                       sc->sc_cfgflags |= CFGFLG_DCDC_POL;
       }

       return CS_OK;
eeprom_bad:
       aprint_error_dev(sc->sc_dev,
           "cs_get_params: unable to read from EEPROM\n");
       return CS_ERROR;
}

int
cs_get_enaddr(struct cs_softc *sc)
{
       uint16_t myea[ETHER_ADDR_LEN / sizeof(uint16_t)];
       int i;

       if (cs_verify_eeprom(sc) == CS_ERROR) {
               aprint_error_dev(sc->sc_dev,
                   "cs_get_enaddr: EEPROM missing or bad\n");
               return CS_ERROR;
       }

       /* Get Ethernet address from the EEPROM */
       if (sc->sc_cfgflags & CFGFLG_PARSE_EEPROM) {
               if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR, &myea[0])
                               == CS_ERROR)
                       goto eeprom_bad;
               if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 2, &myea[1])
                               == CS_ERROR)
                       goto eeprom_bad;
               if (cs_read_pktpg_from_eeprom(sc, PKTPG_IND_ADDR + 4, &myea[2])
                               == CS_ERROR)
                       goto eeprom_bad;
       } else {
               if (cs_read_eeprom(sc, EEPROM_IND_ADDR_H, &myea[0]) == CS_ERROR)
                       goto eeprom_bad;
               if (cs_read_eeprom(sc, EEPROM_IND_ADDR_M, &myea[1]) == CS_ERROR)
                       goto eeprom_bad;
               if (cs_read_eeprom(sc, EEPROM_IND_ADDR_L, &myea[2]) == CS_ERROR)
                       goto eeprom_bad;
       }

       for (i = 0; i < __arraycount(myea); i++) {
               sc->sc_enaddr[i * 2 + 0] = myea[i];
               sc->sc_enaddr[i * 2 + 1] = myea[i] >> 8;
       }

       return CS_OK;

eeprom_bad:
       aprint_error_dev(sc->sc_dev,
           "cs_get_enaddr: unable to read from EEPROM\n");
       return CS_ERROR;
}

int
cs_reset_chip(struct cs_softc *sc)
{
       int intState;
       int x;

       /* Disable interrupts at the CPU so reset command is atomic */
       intState = splnet();

       /*
        * We are now resetting the chip
        *
        * A spurious interrupt is generated by the chip when it is reset. This
        * variable informs the interrupt handler to ignore this interrupt.
        */
       sc->sc_resetting = TRUE;

       /* Issue a reset command to the chip */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, SELF_CTL_RESET);

       /* Re-enable interrupts at the CPU */
       splx(intState);

       /* The chip is always in IO mode after a reset */
       sc->sc_memorymode = FALSE;

       /* If transmission was in progress, it is not now */
       sc->sc_txbusy = FALSE;

       /*
        * There was a delay(125); here, but it seems unnecessary 125 usec is
        * 1/8000 of a second, not 1/8 of a second. the data sheet advises
        * 1/10 of a second here, but the SI_BUSY and INIT_DONE loops below
        * should be sufficient.
        */

       /* Transition SBHE to switch chip from 8-bit to 16-bit */
       IO_READ_1(sc, PORT_PKTPG_PTR + 0);
       IO_READ_1(sc, PORT_PKTPG_PTR + 1);
       IO_READ_1(sc, PORT_PKTPG_PTR + 0);
       IO_READ_1(sc, PORT_PKTPG_PTR + 1);

       /* Wait until the EEPROM is not busy */
       for (x = 0; x < MAXLOOP; x++) {
               if (!(CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_SI_BUSY))
                       break;
       }

       if (x == MAXLOOP)
               return CS_ERROR;

       /* Wait until initialization is done */
       for (x = 0; x < MAXLOOP; x++) {
               if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_INIT_DONE)
                       break;
       }

       if (x == MAXLOOP)
               return CS_ERROR;

       /* Reset is no longer in progress */
       sc->sc_resetting = FALSE;

       return CS_OK;
}

int
cs_verify_eeprom(struct cs_softc *sc)
{
       uint16_t self_status;

       /* Verify that the EEPROM is present and OK */
       self_status = CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST);
       if (((self_status & SELF_ST_EEP_PRES) &&
            (self_status & SELF_ST_EEP_OK)) == 0)
               return CS_ERROR;

       return CS_OK;
}

int
cs_read_eeprom(struct cs_softc *sc, int offset, uint16_t *pValue)
{
       int x;

       /* Ensure that the EEPROM is not busy */
       for (x = 0; x < MAXLOOP; x++) {
               if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
                     SELF_ST_SI_BUSY))
                       break;
       }

       if (x == MAXLOOP)
               return CS_ERROR;

       /* Issue the command to read the offset within the EEPROM */
       CS_WRITE_PACKET_PAGE_IO(sc, PKTPG_EEPROM_CMD,
           offset | EEPROM_CMD_READ);

       /* Wait until the command is completed */
       for (x = 0; x < MAXLOOP; x++) {
               if (!(CS_READ_PACKET_PAGE_IO(sc, PKTPG_SELF_ST) &
                     SELF_ST_SI_BUSY))
                       break;
       }

       if (x == MAXLOOP)
               return CS_ERROR;

       /* Get the EEPROM data from the EEPROM Data register */
       *pValue = CS_READ_PACKET_PAGE_IO(sc, PKTPG_EEPROM_DATA);

       return CS_OK;
}

void
cs_initChip(struct cs_softc *sc)
{
       uint16_t busCtl;
       uint16_t selfCtl;
       uint16_t v;
       uint16_t isaId;
       int i;
       int media = IFM_SUBTYPE(sc->sc_media.ifm_cur->ifm_media);

       /* Disable reception and transmission of frames */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
           CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) &
           ~LINE_CTL_RX_ON & ~LINE_CTL_TX_ON);

       /* Disable interrupt at the chip */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
           CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) & ~BUS_CTL_INT_ENBL);

       /* If IOCHRDY is enabled then clear the bit in the busCtl register */
       busCtl = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL);
       if (sc->sc_cfgflags & CFGFLG_IOCHRDY) {
               CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
                   busCtl & ~BUS_CTL_IOCHRDY);
       } else {
               CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
                   busCtl | BUS_CTL_IOCHRDY);
       }

       /* Set the Line Control register to match the media type */
       if (media == IFM_10_T)
               CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_10BASET);
       else
               CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL, LINE_CTL_AUI_ONLY);

       /*
        * Set the BSTATUS/HC1 pin to be used as HC1.  HC1 is used to
        * enable the DC/DC converter
        */
       selfCtl = SELF_CTL_HC1E;

       /* If the media type is 10Base2 */
       if (media == IFM_10_2) {
               /* Enable the DC/DC converter if it has a low enable. */
               if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) == 0)
                       /*
                        * Set the HCB1 bit, which causes the HC1 pin to go
                        * low.
                        */
                       selfCtl |= SELF_CTL_HCB1;
       } else { /* Media type is 10BaseT or AUI */
               /* Disable the DC/DC converter if it has a high enable. */
               if ((sc->sc_cfgflags & CFGFLG_DCDC_POL) != 0) {
                       /*
                        * Set the HCB1 bit, which causes the HC1 pin to go
                        * low.
                        */
                       selfCtl |= SELF_CTL_HCB1;
               }
       }
       CS_WRITE_PACKET_PAGE(sc, PKTPG_SELF_CTL, selfCtl);

       /* Enable normal link pulse */
       if (sc->sc_prodid == PROD_ID_CS8920 || sc->sc_prodid == PROD_ID_CS8920M)
               CS_WRITE_PACKET_PAGE(sc, PKTPG_AUTONEG_CTL, AUTOCTL_NLP_ENABLE);

       /* Enable full-duplex, if appropriate */
       if (sc->sc_media.ifm_cur->ifm_media & IFM_FDX)
               CS_WRITE_PACKET_PAGE(sc, PKTPG_TEST_CTL, TEST_CTL_FDX);

       /* RX_CTL set in cs_set_ladr_filt(), below */

       /* Enable all transmission interrupts */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, TX_CFG_ALL_IE);

       /* Accept all receive interrupts */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, RX_CFG_ALL_IE);

       /*
        * Configure Operational Modes
        *
        * I have turned off the BUF_CFG_RX_MISS_IE, to speed things up, this
        * is a better way to do it because the card has a counter which can be
        * read to update the RX_MISS counter. This saves many interrupts.
        *
        * I have turned on the tx and rx overflow interrupts to counter using
        * the receive miss interrupt. This is a better estimate of errors
        * and requires lower system overhead.
        */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, BUF_CFG_TX_UNDR_IE |
                         BUF_CFG_RX_DMA_IE);

       if (sc->sc_dma_chipinit)
               (*sc->sc_dma_chipinit)(sc);

       /* If memory mode is enabled */
       if (sc->sc_cfgflags & CFGFLG_MEM_MODE) {
               /* If external logic is present for address decoding */
               if (CS_READ_PACKET_PAGE(sc, PKTPG_SELF_ST) & SELF_ST_EL_PRES) {
                       /*
                        * Program the external logic to decode address bits
                        * SA20-SA23
                        */
                       CS_WRITE_PACKET_PAGE(sc, PKTPG_EEPROM_CMD,
                           ((sc->sc_pktpgaddr & 0xffffff) >> 20) |
                           EEPROM_CMD_ELSEL);
               }

               /*
                * Write the packet page base physical address to the memory
                * base register.
                */
               CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 0,
                   sc->sc_pktpgaddr & 0xFFFF);
               CS_WRITE_PACKET_PAGE(sc, PKTPG_MEM_BASE + 2,
                   sc->sc_pktpgaddr >> 16);
               busCtl = BUS_CTL_MEM_MODE;

               /* Tell the chip to read the addresses off the SA pins */
               if (sc->sc_cfgflags & CFGFLG_USE_SA) {
                       busCtl |= BUS_CTL_USE_SA;
               }
               CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
                   CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | busCtl);

               /* We are in memory mode now! */
               sc->sc_memorymode = TRUE;

               /*
                * Wait here (10ms) for the chip to swap over. this is the
                * maximum time that this could take.
                */
               delay(10000);

               /* Verify that we can read from the chip */
               isaId = CS_READ_PACKET_PAGE(sc, PKTPG_EISA_NUM);

               /*
                * As a last minute sanity check before actually using mapped
                * memory we verify that we can read the isa number from the
                * chip in memory mode.
                */
               if (isaId != EISA_NUM_CRYSTAL) {
                       aprint_error_dev(sc->sc_dev,
                           "failed to enable memory mode\n");
                       sc->sc_memorymode = FALSE;
               } else {
                       /*
                        * We are in memory mode so if we aren't using DMA,
                        * then program the chip to interrupt early.
                        */
                       if ((sc->sc_cfgflags & CFGFLG_DMA_MODE) == 0) {
                               CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG,
                                   BUF_CFG_RX_DEST_IE |
                                   BUF_CFG_RX_MISS_OVER_IE |
                                   BUF_CFG_TX_COL_OVER_IE);
                       }
               }

       }

       /* Put Ethernet address into the Individual Address register */
       for (i = 0; i < 6; i += 2) {
               v = sc->sc_enaddr[i + 0] | (sc->sc_enaddr[i + 1]) << 8;
               CS_WRITE_PACKET_PAGE(sc, PKTPG_IND_ADDR + i, v);
       }

       if (sc->sc_irq != -1) {
               /* Set the interrupt level in the chip */
               if (sc->sc_prodid == PROD_ID_CS8900) {
                       if (sc->sc_irq == 5)
                               CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM, 3);
                       else
                               CS_WRITE_PACKET_PAGE(sc, PKTPG_INT_NUM,
                                   (sc->sc_irq) - 10);
               } else { /* CS8920 */
                       CS_WRITE_PACKET_PAGE(sc, PKTPG_8920_INT_NUM,
                           sc->sc_irq);
               }
       }

       /* Write the multicast mask to the address filter register */
       cs_set_ladr_filt(sc, &sc->sc_ethercom);

       /* Enable reception and transmission of frames */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_LINE_CTL,
           CS_READ_PACKET_PAGE(sc, PKTPG_LINE_CTL) |
           LINE_CTL_RX_ON | LINE_CTL_TX_ON);

       /* Enable interrupt at the chip */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL,
           CS_READ_PACKET_PAGE(sc, PKTPG_BUS_CTL) | BUS_CTL_INT_ENBL);
}

int
cs_init(struct ifnet *ifp)
{
       int intState;
       int error = CS_OK;
       struct cs_softc *sc = ifp->if_softc;

       if (cs_enable(sc))
               goto out;

       cs_stop(ifp, 0);

       intState = splnet();

#if 0
       /* Mark the interface as down */
       sc->sc_ethercom.ec_if.if_flags &= ~(IFF_UP | IFF_RUNNING);
#endif

#ifdef CS_DEBUG
       /* Enable debugging */
       sc->sc_ethercom.ec_if.if_flags |= IFF_DEBUG;
#endif

       /* Reset the chip */
       if ((error = cs_reset_chip(sc)) == CS_OK) {
               /* Initialize the chip */
               cs_initChip(sc);

               /* Mark the interface as running */
               sc->sc_ethercom.ec_if.if_flags |= IFF_RUNNING;
               sc->sc_ethercom.ec_if.if_timer = 0;

               /* Assume we have carrier until we are told otherwise. */
               sc->sc_carrier = 1;
       } else
               aprint_error_dev(sc->sc_dev, "unable to reset chip\n");

       splx(intState);
out:
       if (error == CS_OK)
               return 0;
       return EIO;
}

void
cs_set_ladr_filt(struct cs_softc *sc, struct ethercom *ec)
{
       struct ifnet *ifp = &ec->ec_if;
       struct ether_multi *enm;
       struct ether_multistep step;
       uint16_t af[4];
       uint16_t port, mask, index;

       /*
        * Set up multicast address filter by passing all multicast addresses
        * through a crc generator, and then using the high order 6 bits as an
        * index into the 64 bit logical address filter.  The high order bit
        * selects the word, while the rest of the bits select the bit within
        * the word.
        */
       if (ifp->if_flags & IFF_PROMISC) {
               /* Accept all valid frames. */
               CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
                   RX_CTL_PROMISC_A | RX_CTL_RX_OK_A |
                   RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);
               ifp->if_flags |= IFF_ALLMULTI;
               return;
       }

       /*
        * Accept frames if a. crc valid, b. individual address match c.
        * broadcast address,and d. multicast addresses matched in the hash
        * filter
        */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CTL,
           RX_CTL_RX_OK_A | RX_CTL_IND_A | RX_CTL_BCAST_A | RX_CTL_MCAST_A);


       /*
        * Start off with all multicast flag clear, set it if we need to
        * later, otherwise we will leave it.
        */
       ifp->if_flags &= ~IFF_ALLMULTI;
       af[0] = af[1] = af[2] = af[3] = 0x0000;

       /*
        * Loop through all the multicast addresses unless we get a range of
        * addresses, in which case we will just accept all packets.
        * Justification for this is given in the next comment.
        */
       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
                   sizeof enm->enm_addrlo)) {
                       /*
                        * We must listen to a range of multicast addresses.
                        * For now, just accept all multicasts, rather than
                        * trying to set only those filter bits needed to match
                        * the range.  (At this time, the only use of address
                        * ranges is for IP multicast routing, for which the
                        * range is big enough to require all bits set.)
                        */
                       ifp->if_flags |= IFF_ALLMULTI;
                       af[0] = af[1] = af[2] = af[3] = 0xffff;
                       break;
               } else {
                       /*
                        * We have got an individual address so just set that
                        * bit.
                        */
                       index = cs_hash_index(enm->enm_addrlo);

                       /* Set the bit the Logical address filter. */
                       port = (uint16_t) (index >> 4);
                       mask = (uint16_t) (1 << (index & 0xf));
                       af[port] |= mask;

                       ETHER_NEXT_MULTI(step, enm);
               }
       }
       ETHER_UNLOCK(ec);

       /* Now program the chip with the addresses */
       CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 0, af[0]);
       CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 2, af[1]);
       CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 4, af[2]);
       CS_WRITE_PACKET_PAGE(sc, PKTPG_LOG_ADDR + 6, af[3]);
       return;
}

uint16_t
cs_hash_index(char *addr)
{
       uint32_t crc;
       uint16_t hash_code;

       crc = ether_crc32_le(addr, ETHER_ADDR_LEN);

       hash_code = crc >> 26;
       return hash_code;
}

void
cs_reset(struct cs_softc *sc)
{

       /* Mark the interface as down */
       sc->sc_ethercom.ec_if.if_flags &= ~IFF_RUNNING;

       /* Reset the chip */
       cs_reset_chip(sc);
}

int
cs_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct cs_softc *sc = ifp->if_softc;
       int state;
       int result;

       state = splnet();

       result = 0;             /* Only set if something goes wrong */

       switch (cmd) {
       default:
               result = ether_ioctl(ifp, cmd, data);
               if (result == ENETRESET) {
                       if (ifp->if_flags & IFF_RUNNING) {
                               /*
                                * Multicast list has changed.  Set the
                                * hardware filter accordingly.
                                */
                               cs_set_ladr_filt(sc, &sc->sc_ethercom);
                       }
                       result = 0;
               }
               break;
       }

       splx(state);

       return result;
}

int
cs_mediachange(struct ifnet *ifp)
{

       /*
        * Current media is already set up.  Just reset the interface
        * to let the new value take hold.
        */
       cs_init(ifp);
       return 0;
}

void
cs_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
       struct cs_softc *sc = ifp->if_softc;

       /* The currently selected media is always the active media. */
       ifmr->ifm_active = sc->sc_media.ifm_cur->ifm_media;

       if (ifp->if_flags & IFF_UP) {
               /* Interface up, status is valid. */
               ifmr->ifm_status = IFM_AVALID |
                   (sc->sc_carrier ? IFM_ACTIVE : 0);
       }
               else ifmr->ifm_status = 0;
}

int
cs_intr(void *arg)
{
       struct cs_softc *sc = arg;
       uint16_t Event;
       uint16_t rndEvent;

/*printf("cs_intr %p\n", sc);*/
       /* Ignore any interrupts that happen while the chip is being reset */
       if (sc->sc_resetting) {
               printf("%s: cs_intr: reset in progress\n",
                   device_xname(sc->sc_dev));
               return 1;
       }

       /* Read an event from the Interrupt Status Queue */
       if (sc->sc_memorymode)
               Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
       else
               Event = CS_READ_PORT(sc, PORT_ISQ);

       if ((Event & REG_NUM_MASK) == 0 || Event == 0xffff)
               return 0;       /* Not ours */

       rndEvent = Event;

       /* Process all the events in the Interrupt Status Queue */
       while ((Event & REG_NUM_MASK) != 0 && Event != 0xffff) {
               /* Dispatch to an event handler based on the register number */
               switch (Event & REG_NUM_MASK) {
               case REG_NUM_RX_EVENT:
                       cs_receive_event(sc, Event);
                       break;
               case REG_NUM_TX_EVENT:
                       cs_transmit_event(sc, Event);
                       break;
               case REG_NUM_BUF_EVENT:
                       cs_buffer_event(sc, Event);
                       break;
               case REG_NUM_TX_COL:
               case REG_NUM_RX_MISS:
                       cs_counter_event(sc, Event);
                       break;
               default:
                       printf("%s: unknown interrupt event 0x%x\n",
                           device_xname(sc->sc_dev), Event);
                       break;
               }

               /* Read another event from the Interrupt Status Queue */
               if (sc->sc_memorymode)
                       Event = CS_READ_PACKET_PAGE(sc, PKTPG_ISQ);
               else
                       Event = CS_READ_PORT(sc, PORT_ISQ);
       }

       /* have handled the interrupt */
       rnd_add_uint32(&sc->rnd_source, rndEvent);
       return 1;
}

void
cs_counter_event(struct cs_softc *sc, uint16_t cntEvent)
{
       struct ifnet *ifp;
       uint16_t errorCount;

       ifp = &sc->sc_ethercom.ec_if;

       switch (cntEvent & REG_NUM_MASK) {
       case REG_NUM_TX_COL:
               /* The count should be read before an overflow occurs. */
               errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_TX_COL);
               /*
                * The transmit event routine always checks the number of
                * collisions for any packet so we don't increment any
                * counters here, as they should already have been
                * considered.
                */
               break;
       case REG_NUM_RX_MISS:
               /* The count should be read before an overflow occurs. */
               errorCount = CS_READ_PACKET_PAGE(sc, PKTPG_RX_MISS);
               /*
                * Increment the input error count, the first 6bits are the
                * register id.
                */
               if_statadd(ifp, if_ierrors, (errorCount & 0xffC0) >> 6);
               break;
       default:
               /* Do nothing */
               break;
       }
}

void
cs_buffer_event(struct cs_softc *sc, uint16_t bufEvent)
{

       /*
        * Multiple events can be in the buffer event register at one time so
        * a standard switch statement will not suffice, here every event
        * must be checked.
        */

       /*
        * If 128 bits have been rxed by the time we get here, the dest event
        * will be cleared and 128 event will be set.
        */
       if ((bufEvent & (BUF_EVENT_RX_DEST | BUF_EVENT_RX_128)) != 0)
               cs_process_rx_early(sc);

       if (bufEvent & BUF_EVENT_RX_DMA) {
               /* Process the receive data */
               if (sc->sc_dma_process_rx)
                       (*sc->sc_dma_process_rx)(sc);
               else
                       /* Should panic? */
                       aprint_error_dev(sc->sc_dev, "unexpected DMA event\n");
       }

       if (bufEvent & BUF_EVENT_TX_UNDR) {
#if 0
               /*
                * This can happen occasionally, and it's not worth worrying
                * about.
                */
               printf("%s: transmit underrun (%d -> %d)\n",
                   device_xname(sc->sc_dev), sc->sc_xe_ent,
                   cs_xmit_early_table[sc->sc_xe_ent].worse);
#endif
               sc->sc_xe_ent = cs_xmit_early_table[sc->sc_xe_ent].worse;
               sc->sc_xe_togo =
                   cs_xmit_early_table[sc->sc_xe_ent].better_count;

               /* had an underrun, transmit is finished */
               sc->sc_txbusy = FALSE;
       }

       if (bufEvent & BUF_EVENT_SW_INT)
               printf("%s: software initiated interrupt\n",
                   device_xname(sc->sc_dev));
}

void
cs_transmit_event(struct cs_softc *sc, uint16_t txEvent)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       /* If there were any errors transmitting this frame */
       if (txEvent & (TX_EVENT_LOSS_CRS | TX_EVENT_SQE_ERR |
           TX_EVENT_OUT_WIN | TX_EVENT_JABBER | TX_EVENT_16_COLL)) {
               /* Increment the output error count */
               if_statinc(ifp, if_oerrors);

               /* Note carrier loss. */
               if (txEvent & TX_EVENT_LOSS_CRS)
                       sc->sc_carrier = 0;

               /* If debugging is enabled then log error messages */
               if (ifp->if_flags & IFF_DEBUG) {
                       if (txEvent & TX_EVENT_LOSS_CRS)
                               aprint_error_dev(sc->sc_dev, "lost carrier\n");

                       if (txEvent & TX_EVENT_SQE_ERR)
                               aprint_error_dev(sc->sc_dev, "SQE error\n");

                       if (txEvent & TX_EVENT_OUT_WIN)
                               aprint_error_dev(sc->sc_dev,
                                   "out-of-window collision\n");

                       if (txEvent & TX_EVENT_JABBER)
                               aprint_error_dev(sc->sc_dev, "jabber\n");

                       if (txEvent & TX_EVENT_16_COLL)
                               aprint_error_dev(sc->sc_dev,
                                   "16 collisions\n");
               }
       } else {
               /* Transmission successful, carrier is up. */
               sc->sc_carrier = 1;
#ifdef SHARK
               ledNetActive();
#endif
       }

       /* Add the number of collisions for this frame */
       net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
       if (txEvent & TX_EVENT_16_COLL)
               if_statadd_ref(ifp, nsr, if_collisions, 16);
       else
               if_statadd_ref(ifp, nsr, if_collisions,
                   ((txEvent & TX_EVENT_COLL_MASK) >> 11));

       if_statinc_ref(ifp, nsr, if_opackets);
       IF_STAT_PUTREF(ifp);

       /* Transmission is no longer in progress */
       sc->sc_txbusy = FALSE;

       /* If there is more to transmit, start the next transmission */
       if_schedule_deferred_start(ifp);
}

void
cs_print_rx_errors(struct cs_softc *sc, uint16_t rxEvent)
{

       if (rxEvent & RX_EVENT_RUNT)
               aprint_error_dev(sc->sc_dev, "runt\n");

       if (rxEvent & RX_EVENT_X_DATA)
               aprint_error_dev(sc->sc_dev, "extra data\n");

       if (rxEvent & RX_EVENT_CRC_ERR) {
               if (rxEvent & RX_EVENT_DRIBBLE)
                       aprint_error_dev(sc->sc_dev, "alignment error\n");
               else
                       aprint_error_dev(sc->sc_dev, "CRC error\n");
       } else {
               if (rxEvent & RX_EVENT_DRIBBLE)
                       aprint_error_dev(sc->sc_dev, "dribble bits\n");
       }
}

void
cs_receive_event(struct cs_softc *sc, uint16_t rxEvent)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       /* If the frame was not received OK */
       if (!(rxEvent & RX_EVENT_RX_OK)) {
               /* Increment the input error count */
               if_statinc(ifp, if_ierrors);

               /* If debugging is enabled then log error messages. */
               if (ifp->if_flags & IFF_DEBUG) {
                       if (rxEvent != REG_NUM_RX_EVENT) {
                               cs_print_rx_errors(sc, rxEvent);

                               /*
                                * Must read the length of all received
                                * frames
                                */
                               CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);

                               /* Skip the received frame */
                               CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
                                       CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) |
                                                 RX_CFG_SKIP);
                       } else
                               aprint_error_dev(sc->sc_dev, "implied skip\n");
               }
       } else {
               /*
                * Process the received frame and pass it up to the upper
                * layers.
                */
               cs_process_receive(sc);
       }
}

void
cs_ether_input(struct cs_softc *sc, struct mbuf *m)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;

       /* Pass the packet up. */
       if_percpuq_enqueue(ifp->if_percpuq, m);
}

void
cs_process_receive(struct cs_softc *sc)
{
       struct ifnet *ifp;
       struct mbuf *m;
       int totlen;
       uint16_t *pBuff, *pBuffLimit;
       int pad;
       unsigned int frameOffset = 0;   /* XXX: gcc */

#ifdef SHARK
       ledNetActive();
#endif

       ifp = &sc->sc_ethercom.ec_if;

       /* Received a packet; carrier is up. */
       sc->sc_carrier = 1;

       if (sc->sc_memorymode) {
               /* Initialize the frame offset */
               frameOffset = PKTPG_RX_LENGTH;

               /* Get the length of the received frame */
               totlen = CS_READ_PACKET_PAGE(sc, frameOffset);
               frameOffset += 2;
       } else {
               /* Drop status */
               CS_READ_PORT(sc, PORT_RXTX_DATA);

               /* Get the length of the received frame */
               totlen = CS_READ_PORT(sc, PORT_RXTX_DATA);
       }

       if (totlen > ETHER_MAX_LEN) {
               aprint_error_dev(sc->sc_dev, "invalid packet length %d\n",
                   totlen);

               /* Skip the received frame */
               CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
                       CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
               return;
       }

       MGETHDR(m, M_DONTWAIT, MT_DATA);
       if (m == 0) {
               aprint_error_dev(sc->sc_dev,
                   "cs_process_receive: unable to allocate mbuf\n");
               if_statinc(ifp, if_ierrors);
               /*
                * Couldn't allocate an mbuf so things are not good, may as
                * well drop the packet I think.
                *
                * have already read the length so we should be right to skip
                * the packet.
                */
               CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
                   CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
               return;
       }
       m_set_rcvif(m, ifp);
       m->m_pkthdr.len = totlen;

       /* Number of bytes to align ip header on word boundary for ipintr */
       pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);

       /*
        * Alloc mbuf cluster if we need.
        * We need 1 byte spare because following packet read loop can overrun.
        */
       if (totlen + pad + 1 > MHLEN) {
               MCLGET(m, M_DONTWAIT);
               if ((m->m_flags & M_EXT) == 0) {
                       /* Couldn't allocate an mbuf cluster */
                       aprint_error_dev(sc->sc_dev,
                           "cs_process_receive: "
                           "unable to allocate a cluster\n");
                       m_freem(m);

                       /* Skip the received frame */
                       CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
                           CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG)
                           | RX_CFG_SKIP);
                       return;
               }
       }

       /* Align ip header on word boundary for ipintr */
       m->m_data += pad;

       m->m_len = totlen;
       pBuff = mtod(m, uint16_t *);

       /* Now read the data from the chip */
       if (sc->sc_memorymode) {
               /* Don't want to go over */
               pBuffLimit = pBuff + (totlen + 1) / 2;

               while (pBuff < pBuffLimit) {
                       *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
                       frameOffset += 2;
               }
       } else
               IO_READ_MULTI_2(sc, PORT_RXTX_DATA, pBuff, (totlen + 1)>>1);

       cs_ether_input(sc, m);
}

void
cs_process_rx_early(struct cs_softc *sc)
{
       struct ifnet *ifp;
       struct mbuf *m;
       uint16_t frameCount, oldFrameCount;
       uint16_t rxEvent;
       uint16_t *pBuff;
       int pad;
       unsigned int frameOffset;


       ifp = &sc->sc_ethercom.ec_if;

       /* Initialize the frame offset */
       frameOffset = PKTPG_RX_FRAME;
       frameCount = 0;

       MGETHDR(m, M_DONTWAIT, MT_DATA);
       if (m == 0) {
               aprint_error_dev(sc->sc_dev,
                   "cs_process_rx_early: unable to allocate mbuf\n");
               if_statinc(ifp, if_ierrors);
               /*
                * Couldn't allocate an mbuf so things are not good, may as
                * well drop the packet I think.
                *
                * have already read the length so we should be right to skip
                * the packet.
                */
               CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
                   CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
               return;
       }
       m_set_rcvif(m, ifp);
       /*
        * Save processing by always using a mbuf cluster, guaranteed to fit
        * packet
        */
       MCLGET(m, M_DONTWAIT);
       if ((m->m_flags & M_EXT) == 0) {
               /* Couldn't allocate an mbuf cluster */
               aprint_error_dev(sc->sc_dev,
                   "cs_process_rx_early: unable to allocate a cluster\n");
               m_freem(m);
               /* Skip the frame */
               CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG,
                   CS_READ_PACKET_PAGE(sc, PKTPG_RX_CFG) | RX_CFG_SKIP);
               return;
       }

       /* Align ip header on word boundary for ipintr */
       pad = ALIGN(sizeof(struct ether_header)) - sizeof(struct ether_header);
       m->m_data += pad;

       /* Set up the buffer pointer to point to the data area */
       pBuff = mtod(m, uint16_t *);

       /*
        * Now read the frame byte counter until we have finished reading the
        * frame
        */
       oldFrameCount = 0;
       frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
       while ((frameCount != 0) && (frameCount < MCLBYTES)) {
               for (; oldFrameCount < frameCount; oldFrameCount += 2) {
                       *pBuff++ = CS_READ_PACKET_PAGE(sc, frameOffset);
                       frameOffset += 2;
               }

               /* Read the new count from the chip */
               frameCount = CS_READ_PACKET_PAGE(sc, PKTPG_FRAME_BYTE_COUNT);
       }

       /* Update the mbuf counts */
       m->m_len = oldFrameCount;
       m->m_pkthdr.len = oldFrameCount;

       /* Now check the Rx Event register */
       rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);

       if ((rxEvent & RX_EVENT_RX_OK) != 0) {
               /*
                * Do an implied skip, it seems to be more reliable than a
                * forced skip.
                */
               rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_STATUS);
               rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_LENGTH);

               /*
                * Now read the RX_EVENT register to perform an implied skip.
                */
               rxEvent = CS_READ_PACKET_PAGE(sc, PKTPG_RX_EVENT);

               cs_ether_input(sc, m);
       } else {
               m_freem(m);
               if_statinc(ifp, if_ierrors);
       }
}

void
cs_start_output(struct ifnet *ifp)
{
       struct cs_softc *sc;
       struct mbuf *pMbuf;
       struct mbuf *pMbufChain;
       uint16_t BusStatus;
       uint16_t Length;
       int txLoop = 0;
       int dropout = 0;

       sc = ifp->if_softc;

       /* Check that the interface is up and running */
       if ((ifp->if_flags & IFF_RUNNING) == 0)
               return;

       /* Don't interrupt a transmission in progress */
       if (sc->sc_txbusy)
               return;

       /* This loop will only run through once if transmission is successful */
       /*
        * While there are packets to transmit and a transmit is not in
        * progress
        */
       while (sc->sc_txbusy == 0 && dropout == 0) {
               IFQ_DEQUEUE(&ifp->if_snd, pMbufChain);
               if (pMbufChain == NULL)
                       break;

               /*
                * If BPF is listening on this interface, let it see the packet
                * before we commit it to the wire.
                */
               bpf_mtap(ifp, pMbufChain, BPF_D_OUT);

               /* Find the total length of the data to transmit */
               Length = 0;
               for (pMbuf = pMbufChain; pMbuf != NULL; pMbuf = pMbuf->m_next)
                       Length += pMbuf->m_len;

               do {
                       /*
                        * Request that the transmit be started after all
                        * data has been copied
                        *
                        * In IO mode must write to the IO port not the packet
                        * page address
                        *
                        * If this is changed to start transmission after a
                        * small amount of data has been copied you tend to
                        * get packet missed errors i think because the ISA
                        * bus is too slow. Or possibly the copy routine is
                        * not streamlined enough.
                        */
                       if (sc->sc_memorymode) {
                               CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CMD,
                                   cs_xmit_early_table[sc->sc_xe_ent].txcmd);
                               CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_LENGTH, Length);
                       } else {
                               CS_WRITE_PORT(sc, PORT_TX_CMD,
                                   cs_xmit_early_table[sc->sc_xe_ent].txcmd);
                               CS_WRITE_PORT(sc, PORT_TX_LENGTH, Length);
                       }

                       /* Adjust early-transmit machinery. */
                       if (--sc->sc_xe_togo == 0) {
                               sc->sc_xe_ent =
                                   cs_xmit_early_table[sc->sc_xe_ent].better;
                               sc->sc_xe_togo =
                           cs_xmit_early_table[sc->sc_xe_ent].better_count;
                       }
                       /*
                        * Read the BusStatus register which indicates
                        * success of the request
                        */
                       BusStatus = CS_READ_PACKET_PAGE(sc, PKTPG_BUS_ST);

                       /*
                        * If there was an error in the transmit bid free the
                        * mbuf and go on. This is presuming that mbuf is
                        * corrupt.
                        */
                       if (BusStatus & BUS_ST_TX_BID_ERR) {
                               aprint_error_dev(sc->sc_dev,
                                   "transmit bid error (too big)");

                               /* Discard the bad mbuf chain */
                               m_freem(pMbufChain);
                               if_statinc(&sc->sc_ethercom.ec_if, if_oerrors);

                               /* Loop up to transmit the next chain */
                               txLoop = 0;
                       } else {
                               if (BusStatus & BUS_ST_RDY4TXNOW) {
                                       /*
                                        * The chip is ready for transmission
                                        * now
                                        */
                                       /*
                                        * Copy the frame to the chip to
                                        * start transmission
                                        */
                                       cs_copy_tx_frame(sc, pMbufChain);

                                       /* Free the mbuf chain */
                                       m_freem(pMbufChain);

                                       /* Transmission is now in progress */
                                       sc->sc_txbusy = TRUE;
                                       txLoop = 0;
                               } else {
                                       /*
                                        * If we get here we want to try
                                        * again with the same mbuf, until
                                        * the chip lets us transmit.
                                        */
                                       txLoop++;
                                       if (txLoop > CS_OUTPUT_LOOP_MAX) {
                                               /* Free the mbuf chain */
                                               m_freem(pMbufChain);
                                               /*
                                                * Transmission is not in
                                                * progress
                                                */
                                               sc->sc_txbusy = FALSE;
                                               /*
                                                * Increment the output error
                                                * count
                                                */
                                               if_statinc(ifp, if_oerrors);
                                               /*
                                                * exit the routine and drop
                                                * the packet.
                                                */
                                               txLoop = 0;
                                               dropout = 1;
                                       }
                               }
                       }
               } while (txLoop);
       }
}

void
cs_copy_tx_frame(struct cs_softc *sc, struct mbuf *m0)
{
       struct mbuf *m;
       int len, leftover, frameoff;
       uint16_t dbuf;
       uint8_t *p;
#ifdef DIAGNOSTIC
       uint8_t *lim;
#endif

       /* Initialize frame pointer and data port address */
       frameoff = PKTPG_TX_FRAME;

       /* Start out with no leftover data */
       leftover = 0;
       dbuf = 0;

       /* Process the chain of mbufs */
       for (m = m0; m != NULL; m = m->m_next) {
               /* Process all of the data in a single mbuf. */
               p = mtod(m, uint8_t *);
               len = m->m_len;
#ifdef DIAGNOSTIC
               lim = p + len;
#endif

               while (len > 0) {
                       if (leftover) {
                               /*
                                * Data left over (from mbuf or realignment).
                                * Buffer the next byte, and write it and
                                * the leftover data out.
                                */
                               dbuf |= *p++ << 8;
                               len--;
                               if (sc->sc_memorymode) {
                                       CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
                                       frameoff += 2;
                               }
                               else {
                                       CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
                               }
                               leftover = 0;
                       } else if ((long) p & 1) {
                               /* Misaligned data.  Buffer the next byte. */
                               dbuf = *p++;
                               len--;
                               leftover = 1;
                       } else {
                               /*
                                * Aligned data.  This is the case we like.
                                *
                                * Write-region out as much as we can, then
                                * buffer the remaining byte (if any).
                                */
                               leftover = len & 1;
                               len &= ~1;
                               if (sc->sc_memorymode) {
                                       MEM_WRITE_REGION_2(sc, frameoff,
                                           (uint16_t *) p, len >> 1);
                                       frameoff += len;
                               } else
                                       IO_WRITE_MULTI_2(sc, PORT_RXTX_DATA,
                                           (uint16_t *)p, len >> 1);
                               p += len;

                               if (leftover)
                                       dbuf = *p++;
                               len = 0;
                       }
               }
               if (len < 0)
                       panic("cs_copy_tx_frame: negative len");
#ifdef DIAGNOSTIC
               if (p != lim)
                       panic("cs_copy_tx_frame: p != lim");
#endif
       }
       if (leftover) {
               if (sc->sc_memorymode)
                       CS_WRITE_PACKET_PAGE(sc, frameoff, dbuf);
               else
                       CS_WRITE_PORT(sc, PORT_RXTX_DATA, dbuf);
       }
}

static int
cs_enable(struct cs_softc *sc)
{

       if (CS_IS_ENABLED(sc) == 0) {
               if (sc->sc_enable != NULL) {
                       int error;

                       error = (*sc->sc_enable)(sc);
                       if (error)
                               return error;
               }
               sc->sc_cfgflags |= CFGFLG_ENABLED;
       }

       return 0;
}

static void
cs_disable(struct cs_softc *sc)
{

       if (CS_IS_ENABLED(sc)) {
               if (sc->sc_disable != NULL)
                       (*sc->sc_disable)(sc);

               sc->sc_cfgflags &= ~CFGFLG_ENABLED;
       }
}

static void
cs_stop(struct ifnet *ifp, int disable)
{
       struct cs_softc *sc = ifp->if_softc;

       CS_WRITE_PACKET_PAGE(sc, PKTPG_RX_CFG, 0);
       CS_WRITE_PACKET_PAGE(sc, PKTPG_TX_CFG, 0);
       CS_WRITE_PACKET_PAGE(sc, PKTPG_BUF_CFG, 0);
       CS_WRITE_PACKET_PAGE(sc, PKTPG_BUS_CTL, 0);

       if (disable)
               cs_disable(sc);

       ifp->if_flags &= ~IFF_RUNNING;
}

int
cs_activate(device_t self, enum devact act)
{
       struct cs_softc *sc = device_private(self);

       switch (act) {
       case DVACT_DEACTIVATE:
               if_deactivate(&sc->sc_ethercom.ec_if);
               return 0;
       default:
               return EOPNOTSUPP;
       }
}