/*      $NetBSD: cac.c,v 1.64 2024/02/10 09:24:17 andvar Exp $  */

/*-
* Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Driver for Compaq array controllers.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cac.c,v 1.64 2024/02/10 09:24:17 andvar Exp $");

#if defined(_KERNEL_OPT)
#include "bio.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/module.h>
#include <sys/bswap.h>
#include <sys/bus.h>

#include <dev/ic/cacreg.h>
#include <dev/ic/cacvar.h>

#if NBIO > 0
#include <dev/biovar.h>
#endif /* NBIO > 0 */

#include "ioconf.h"
#include "locators.h"

static struct   cac_ccb *cac_ccb_alloc(struct cac_softc *, int);
static void     cac_ccb_done(struct cac_softc *, struct cac_ccb *);
static void     cac_ccb_free(struct cac_softc *, struct cac_ccb *);
static int      cac_ccb_poll(struct cac_softc *, struct cac_ccb *, int);
static int      cac_ccb_start(struct cac_softc *, struct cac_ccb *);
static int      cac_print(void *, const char *);
static void     cac_shutdown(void *);

static struct   cac_ccb *cac_l0_completed(struct cac_softc *);
static int      cac_l0_fifo_full(struct cac_softc *);
static void     cac_l0_intr_enable(struct cac_softc *, int);
static int      cac_l0_intr_pending(struct cac_softc *);
static void     cac_l0_submit(struct cac_softc *, struct cac_ccb *);

static void     *cac_sdh;       /* shutdown hook */

#if NBIO > 0
int             cac_ioctl(device_t, u_long, void *);
int             cac_ioctl_vol(struct cac_softc *, struct bioc_vol *);
int             cac_create_sensors(struct cac_softc *);
void            cac_sensor_refresh(struct sysmon_envsys *, envsys_data_t *);
#endif /* NBIO > 0 */

const struct cac_linkage cac_l0 = {
       cac_l0_completed,
       cac_l0_fifo_full,
       cac_l0_intr_enable,
       cac_l0_intr_pending,
       cac_l0_submit
};

/*
* Initialise our interface to the controller.
*/
int
cac_init(struct cac_softc *sc, const char *intrstr, int startfw)
{
       struct cac_controller_info cinfo;
       int error, rseg, size, i;
       bus_dma_segment_t seg;
       struct cac_ccb *ccb;
       char firm[8];

       if (intrstr != NULL)
               aprint_normal_dev(sc->sc_dev, "interrupting at %s\n", intrstr);

       SIMPLEQ_INIT(&sc->sc_ccb_free);
       SIMPLEQ_INIT(&sc->sc_ccb_queue);
       mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_VM);
       cv_init(&sc->sc_ccb_cv, "cacccb");

       size = sizeof(struct cac_ccb) * CAC_MAX_CCBS;

       if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
           &rseg, BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to allocate CCBs, error = %d\n",
                   error);
               return (-1);
       }

       if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
           (void **)&sc->sc_ccbs,
           BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to map CCBs, error = %d\n",
                   error);
               return (-1);
       }

       if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
           BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to create CCB DMA map, error = %d\n",
                   error);
               return (-1);
       }

       if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_ccbs,
           size, NULL, BUS_DMA_NOWAIT)) != 0) {
               aprint_error_dev(sc->sc_dev, "unable to load CCB DMA map, error = %d\n",
                   error);
               return (-1);
       }

       sc->sc_ccbs_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
       memset(sc->sc_ccbs, 0, size);
       ccb = (struct cac_ccb *)sc->sc_ccbs;

       for (i = 0; i < CAC_MAX_CCBS; i++, ccb++) {
               /* Create the DMA map for this CCB's data */
               error = bus_dmamap_create(sc->sc_dmat, CAC_MAX_XFER,
                   CAC_SG_SIZE, CAC_MAX_XFER, 0,
                   BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
                   &ccb->ccb_dmamap_xfer);

               if (error) {
                       aprint_error_dev(sc->sc_dev, "can't create ccb dmamap (%d)\n",
                           error);
                       break;
               }

               ccb->ccb_flags = 0;
               ccb->ccb_paddr = sc->sc_ccbs_paddr + i * sizeof(struct cac_ccb);
               SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_chain);
       }

       /* Start firmware background tasks, if needed. */
       if (startfw) {
               if (cac_cmd(sc, CAC_CMD_START_FIRMWARE, &cinfo, sizeof(cinfo),
                   0, 0, CAC_CCB_DATA_IN, NULL)) {
                       aprint_error_dev(sc->sc_dev, "CAC_CMD_START_FIRMWARE failed\n");
                       return (-1);
               }
       }

       if (cac_cmd(sc, CAC_CMD_GET_CTRL_INFO, &cinfo, sizeof(cinfo), 0, 0,
           CAC_CCB_DATA_IN, NULL)) {
               aprint_error_dev(sc->sc_dev, "CAC_CMD_GET_CTRL_INFO failed\n");
               return (-1);
       }

       strlcpy(firm, cinfo.firm_rev, 4+1);
       printf("%s: %d channels, firmware <%s>\n", device_xname(sc->sc_dev),
           cinfo.scsi_chips, firm);

       /* Limit number of units to size of our sc_unitmask */
       sc->sc_nunits = cinfo.num_drvs;
       if (sc->sc_nunits > sizeof(sc->sc_unitmask) * NBBY)
               sc->sc_nunits = sizeof(sc->sc_unitmask) * NBBY;

       /* Attach our units */
       sc->sc_unitmask = 0;
       cac_rescan(sc->sc_dev, NULL, NULL);

       /* Set our `shutdownhook' before we start any device activity. */
       if (cac_sdh == NULL)
               cac_sdh = shutdownhook_establish(cac_shutdown, NULL);

       mutex_enter(&sc->sc_mutex);
       (*sc->sc_cl.cl_intr_enable)(sc, CAC_INTR_ENABLE);
       mutex_exit(&sc->sc_mutex);

#if NBIO > 0
       if (bio_register(sc->sc_dev, cac_ioctl) != 0)
               aprint_error_dev(sc->sc_dev, "controller registration failed");
       else
               sc->sc_ioctl = cac_ioctl;
       if (cac_create_sensors(sc) != 0)
               aprint_error_dev(sc->sc_dev, "unable to create sensors\n");
#endif

       return (0);
}

int
cac_rescan(device_t self, const char *attr, const int *locs)
{
       struct cac_softc *sc;
       struct cac_attach_args caca;
       int mlocs[CACCF_NLOCS];
       int i;

       sc = device_private(self);
       for (i = 0; i < sc->sc_nunits; i++) {
               if (sc->sc_unitmask & (1 << i))
                       continue;
               caca.caca_unit = i;

               mlocs[CACCF_UNIT] = i;

               if (config_found(self, &caca, cac_print,
                                CFARGS(.submatch = config_stdsubmatch,
                                       .locators = mlocs)) != NULL)
                       sc->sc_unitmask |= 1 << i;
       }
       return 0;
}

/*
* Shut down all `cac' controllers.
*/
static void
cac_shutdown(void *cookie)
{
       struct cac_softc *sc;
       u_int8_t tbuf[512];
       int i;

       for (i = 0; i < cac_cd.cd_ndevs; i++) {
               if ((sc = device_lookup_private(&cac_cd, i)) == NULL)
                       continue;
               memset(tbuf, 0, sizeof(tbuf));
               tbuf[0] = 1;
               cac_cmd(sc, CAC_CMD_FLUSH_CACHE, tbuf, sizeof(tbuf), 0, 0,
                   CAC_CCB_DATA_OUT, NULL);
       }
}

/*
* Print autoconfiguration message for a sub-device.
*/
static int
cac_print(void *aux, const char *pnp)
{
       struct cac_attach_args *caca;

       caca = (struct cac_attach_args *)aux;

       if (pnp != NULL)
               aprint_normal("block device at %s", pnp);
       aprint_normal(" unit %d", caca->caca_unit);
       return (UNCONF);
}

/*
* Handle an interrupt from the controller: process finished CCBs and
* dequeue any waiting CCBs.
*/
int
cac_intr(void *cookie)
{
       struct cac_softc *sc;
       struct cac_ccb *ccb;
       int rv;

       sc = cookie;

       mutex_enter(&sc->sc_mutex);

       if ((*sc->sc_cl.cl_intr_pending)(sc)) {
               while ((ccb = (*sc->sc_cl.cl_completed)(sc)) != NULL) {
                       cac_ccb_done(sc, ccb);
                       cac_ccb_start(sc, NULL);
               }
               rv = 1;
       } else
               rv = 0;

       mutex_exit(&sc->sc_mutex);

       return (rv);
}

/*
* Execute a [polled] command.
*/
int
cac_cmd(struct cac_softc *sc, int command, void *data, int datasize,
       int drive, int blkno, int flags, struct cac_context *context)
{
       struct cac_ccb *ccb;
       struct cac_sgb *sgb;
       int i, rv, size, nsegs;

       size = 0;

       if ((ccb = cac_ccb_alloc(sc, 1)) == NULL) {
               aprint_error_dev(sc->sc_dev, "unable to alloc CCB");
               return (EAGAIN);
       }

       if ((flags & (CAC_CCB_DATA_IN | CAC_CCB_DATA_OUT)) != 0) {
               bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer,
                   (void *)data, datasize, NULL, BUS_DMA_NOWAIT |
                   BUS_DMA_STREAMING | ((flags & CAC_CCB_DATA_IN) ?
                   BUS_DMA_READ : BUS_DMA_WRITE));

               bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, datasize,
                   (flags & CAC_CCB_DATA_IN) != 0 ? BUS_DMASYNC_PREREAD :
                   BUS_DMASYNC_PREWRITE);

               sgb = ccb->ccb_seg;
               nsegs = uimin(ccb->ccb_dmamap_xfer->dm_nsegs, CAC_SG_SIZE);

               for (i = 0; i < nsegs; i++, sgb++) {
                       size += ccb->ccb_dmamap_xfer->dm_segs[i].ds_len;
                       sgb->length =
                           htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
                       sgb->addr =
                           htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
               }
       } else {
               size = datasize;
               nsegs = 0;
       }

       ccb->ccb_hdr.drive = drive;
       ccb->ccb_hdr.priority = 0;
       ccb->ccb_hdr.size = htole16((sizeof(struct cac_req) +
           sizeof(struct cac_sgb) * CAC_SG_SIZE) >> 2);

       ccb->ccb_req.next = 0;
       ccb->ccb_req.error = 0;
       ccb->ccb_req.reserved = 0;
       ccb->ccb_req.bcount = htole16(howmany(size, DEV_BSIZE));
       ccb->ccb_req.command = command;
       ccb->ccb_req.sgcount = nsegs;
       ccb->ccb_req.blkno = htole32(blkno);

       ccb->ccb_flags = flags;
       ccb->ccb_datasize = size;

       mutex_enter(&sc->sc_mutex);

       if (context == NULL) {
               memset(&ccb->ccb_context, 0, sizeof(struct cac_context));

               /* Synchronous commands mustn't wait. */
               if ((*sc->sc_cl.cl_fifo_full)(sc)) {
                       cac_ccb_free(sc, ccb);
                       rv = EAGAIN;
               } else {
#ifdef DIAGNOSTIC
                       ccb->ccb_flags |= CAC_CCB_ACTIVE;
#endif
                       (*sc->sc_cl.cl_submit)(sc, ccb);
                       rv = cac_ccb_poll(sc, ccb, 2000);
                       cac_ccb_free(sc, ccb);
               }
       } else {
               memcpy(&ccb->ccb_context, context, sizeof(struct cac_context));
               (void)cac_ccb_start(sc, ccb);
               rv = 0;
       }

       mutex_exit(&sc->sc_mutex);
       return (rv);
}

/*
* Wait for the specified CCB to complete.
*/
static int
cac_ccb_poll(struct cac_softc *sc, struct cac_ccb *wantccb, int timo)
{
       struct cac_ccb *ccb;

       KASSERT(mutex_owned(&sc->sc_mutex));

       timo *= 1000;

       do {
               for (; timo != 0; timo--) {
                       ccb = (*sc->sc_cl.cl_completed)(sc);
                       if (ccb != NULL)
                               break;
                       DELAY(1);
               }

               if (timo == 0) {
                       printf("%s: timeout\n", device_xname(sc->sc_dev));
                       return (EBUSY);
               }
               cac_ccb_done(sc, ccb);
       } while (ccb != wantccb);

       return (0);
}

/*
* Enqueue the specified command (if any) and attempt to start all enqueued
* commands.
*/
static int
cac_ccb_start(struct cac_softc *sc, struct cac_ccb *ccb)
{

       KASSERT(mutex_owned(&sc->sc_mutex));

       if (ccb != NULL)
               SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain);

       while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
               if ((*sc->sc_cl.cl_fifo_full)(sc))
                       return (EAGAIN);
               SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain);
#ifdef DIAGNOSTIC
               ccb->ccb_flags |= CAC_CCB_ACTIVE;
#endif
               (*sc->sc_cl.cl_submit)(sc, ccb);
       }

       return (0);
}

/*
* Process a finished CCB.
*/
static void
cac_ccb_done(struct cac_softc *sc, struct cac_ccb *ccb)
{
       device_t dv;
       void *context;
       int error;

       error = 0;

       KASSERT(mutex_owned(&sc->sc_mutex));

#ifdef DIAGNOSTIC
       if ((ccb->ccb_flags & CAC_CCB_ACTIVE) == 0)
               panic("cac_ccb_done: CCB not active");
       ccb->ccb_flags &= ~CAC_CCB_ACTIVE;
#endif

       if ((ccb->ccb_flags & (CAC_CCB_DATA_IN | CAC_CCB_DATA_OUT)) != 0) {
               bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
                   ccb->ccb_datasize, ccb->ccb_flags & CAC_CCB_DATA_IN ?
                   BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
               bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
       }

       error = ccb->ccb_req.error;
       if (ccb->ccb_context.cc_handler != NULL) {
               dv = ccb->ccb_context.cc_dv;
               context = ccb->ccb_context.cc_context;
               cac_ccb_free(sc, ccb);
               (*ccb->ccb_context.cc_handler)(dv, context, error);
       } else {
               if ((error & CAC_RET_SOFT_ERROR) != 0)
                       aprint_error_dev(sc->sc_dev, "soft error; array may be degraded\n");
               if ((error & CAC_RET_HARD_ERROR) != 0)
                       aprint_error_dev(sc->sc_dev, "hard error\n");
               if ((error & CAC_RET_CMD_REJECTED) != 0) {
                       error = 1;
                       aprint_error_dev(sc->sc_dev, "invalid request\n");
               }
       }
}

/*
* Allocate a CCB.
*/
static struct cac_ccb *
cac_ccb_alloc(struct cac_softc *sc, int nosleep)
{
       struct cac_ccb *ccb;

       mutex_enter(&sc->sc_mutex);

       for (;;) {
               if ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free)) != NULL) {
                       SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb_chain);
                       break;
               }
               if (nosleep) {
                       ccb = NULL;
                       break;
               }
               cv_wait(&sc->sc_ccb_cv, &sc->sc_mutex);
       }

       mutex_exit(&sc->sc_mutex);
       return (ccb);
}

/*
* Put a CCB onto the freelist.
*/
static void
cac_ccb_free(struct cac_softc *sc, struct cac_ccb *ccb)
{

       KASSERT(mutex_owned(&sc->sc_mutex));

       ccb->ccb_flags = 0;
       if (SIMPLEQ_EMPTY(&sc->sc_ccb_free))
               cv_signal(&sc->sc_ccb_cv);
       SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_chain);
}

/*
* Board specific linkage shared between multiple bus types.
*/

static int
cac_l0_fifo_full(struct cac_softc *sc)
{

       KASSERT(mutex_owned(&sc->sc_mutex));

       return (cac_inl(sc, CAC_REG_CMD_FIFO) == 0);
}

static void
cac_l0_submit(struct cac_softc *sc, struct cac_ccb *ccb)
{

       KASSERT(mutex_owned(&sc->sc_mutex));

       bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
           (char *)ccb - (char *)sc->sc_ccbs,
           sizeof(struct cac_ccb), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
       cac_outl(sc, CAC_REG_CMD_FIFO, ccb->ccb_paddr);
}

static struct cac_ccb *
cac_l0_completed(struct cac_softc *sc)
{
       struct cac_ccb *ccb;
       paddr_t off;

       KASSERT(mutex_owned(&sc->sc_mutex));

       if ((off = cac_inl(sc, CAC_REG_DONE_FIFO)) == 0)
               return (NULL);

       if ((off & 3) != 0)
               aprint_error_dev(sc->sc_dev, "failed command list returned: %lx\n",
                   (long)off);

       off = (off & ~3) - sc->sc_ccbs_paddr;
       ccb = (struct cac_ccb *)((char *)sc->sc_ccbs + off);

       bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, off, sizeof(struct cac_ccb),
           BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);

       if ((off & 3) != 0 && ccb->ccb_req.error == 0)
               ccb->ccb_req.error = CAC_RET_CMD_REJECTED;

       return (ccb);
}

static int
cac_l0_intr_pending(struct cac_softc *sc)
{

       KASSERT(mutex_owned(&sc->sc_mutex));

       return (cac_inl(sc, CAC_REG_INTR_PENDING) & CAC_INTR_ENABLE);
}

static void
cac_l0_intr_enable(struct cac_softc *sc, int state)
{

       KASSERT(mutex_owned(&sc->sc_mutex));

       cac_outl(sc, CAC_REG_INTR_MASK,
           state ? CAC_INTR_ENABLE : CAC_INTR_DISABLE);
}

#if NBIO > 0
const int cac_level[] = { 0, 4, 1, 5, 51, 7 };
const int cac_stat[] = { BIOC_SVONLINE, BIOC_SVOFFLINE, BIOC_SVOFFLINE,
   BIOC_SVDEGRADED, BIOC_SVREBUILD, BIOC_SVREBUILD, BIOC_SVDEGRADED,
   BIOC_SVDEGRADED, BIOC_SVINVALID, BIOC_SVINVALID, BIOC_SVBUILDING,
   BIOC_SVOFFLINE, BIOC_SVBUILDING };

int
cac_ioctl(device_t dev, u_long cmd, void *addr)
{
       struct cac_softc *sc = device_private(dev);
       struct bioc_inq *bi;
       struct bioc_disk *bd;
       cac_lock_t lock;
       int error = 0;

       lock = CAC_LOCK(sc);
       switch (cmd) {
       case BIOCINQ:
               bi = (struct bioc_inq *)addr;
               strlcpy(bi->bi_dev, device_xname(sc->sc_dev), sizeof(bi->bi_dev));
               bi->bi_novol = sc->sc_nunits;
               bi->bi_nodisk = 0;
               break;

       case BIOCVOL:
               error = cac_ioctl_vol(sc, (struct bioc_vol *)addr);
               break;

       case BIOCDISK:
       case BIOCDISK_NOVOL:
               bd = (struct bioc_disk *)addr;
               if (bd->bd_volid > sc->sc_nunits) {
                       error = EINVAL;
                       break;
               }
               /* No disk information yet */
               break;

       default:
               error = EINVAL;
       }
       CAC_UNLOCK(sc, lock);

       return (error);
}

int
cac_ioctl_vol(struct cac_softc *sc, struct bioc_vol *bv)
{
       struct cac_drive_info dinfo;
       struct cac_drive_status dstatus;
       u_int32_t blks;

       if (bv->bv_volid > sc->sc_nunits) {
               return EINVAL;
       }
       if (cac_cmd(sc, CAC_CMD_GET_LOG_DRV_INFO, &dinfo, sizeof(dinfo),
           bv->bv_volid, 0, CAC_CCB_DATA_IN, NULL)) {
               return EIO;
       }
       if (cac_cmd(sc, CAC_CMD_SENSE_DRV_STATUS, &dstatus, sizeof(dstatus),
           bv->bv_volid, 0, CAC_CCB_DATA_IN, NULL)) {
               return EIO;
       }
       blks = CAC_GET2(dinfo.ncylinders) * CAC_GET1(dinfo.nheads) *
           CAC_GET1(dinfo.nsectors);
       bv->bv_size = (off_t)blks * CAC_GET2(dinfo.secsize);
       bv->bv_level = cac_level[CAC_GET1(dinfo.mirror)];       /*XXX limit check */
       bv->bv_nodisk = 0;              /* XXX */
       bv->bv_status = 0;              /* XXX */
       bv->bv_percent = -1;
       bv->bv_seconds = 0;
       if (dstatus.stat < sizeof(cac_stat)/sizeof(cac_stat[0]))
               bv->bv_status = cac_stat[dstatus.stat];
       if (bv->bv_status == BIOC_SVREBUILD ||
           bv->bv_status == BIOC_SVBUILDING)
               bv->bv_percent = ((blks - CAC_GET4(dstatus.prog)) * 1000ULL) /
                   blks;
       return 0;
}

int
cac_create_sensors(struct cac_softc *sc)
{
       int                     i;
       int nsensors = sc->sc_nunits;

       sc->sc_sme = sysmon_envsys_create();
       sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
           M_DEVBUF, M_WAITOK | M_ZERO);
       for (i = 0; i < nsensors; i++) {
               sc->sc_sensor[i].units = ENVSYS_DRIVE;
               sc->sc_sensor[i].state = ENVSYS_SINVALID;
               sc->sc_sensor[i].value_cur = ENVSYS_DRIVE_EMPTY;
               /* Enable monitoring for drive state changes */
               sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
               /* logical drives */
               snprintf(sc->sc_sensor[i].desc,
                   sizeof(sc->sc_sensor[i].desc), "%s:%d",
                   device_xname(sc->sc_dev), i);
               if (sysmon_envsys_sensor_attach(sc->sc_sme,
                   &sc->sc_sensor[i]))
                       goto out;
       }
       sc->sc_sme->sme_name = device_xname(sc->sc_dev);
       sc->sc_sme->sme_cookie = sc;
       sc->sc_sme->sme_refresh = cac_sensor_refresh;
       if (sysmon_envsys_register(sc->sc_sme)) {
               aprint_error_dev(sc->sc_dev, "unable to register with sysmon\n");
               return(1);
       }
       return (0);

out:
       free(sc->sc_sensor, M_DEVBUF);
       sysmon_envsys_destroy(sc->sc_sme);
       return EINVAL;
}

void
cac_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
       struct cac_softc        *sc = sme->sme_cookie;
       struct bioc_vol         bv;
       int s;

       if (edata->sensor >= sc->sc_nunits)
               return;

       memset(&bv, 0, sizeof(bv));
       bv.bv_volid = edata->sensor;
       s = splbio();
       if (cac_ioctl_vol(sc, &bv))
               bv.bv_status = BIOC_SVINVALID;
       splx(s);

       bio_vol_to_envsys(edata, &bv);
}
#endif /* NBIO > 0 */

MODULE(MODULE_CLASS_DRIVER, cac, NULL);

#ifdef _MODULE
CFDRIVER_DECL(cac, DV_DISK, NULL);
#endif

static int
cac_modcmd(modcmd_t cmd, void *opaque)
{
       int error = 0;

#ifdef _MODULE
       switch (cmd) {
       case MODULE_CMD_INIT:
               error = config_cfdriver_attach(&cac_cd);
               break;
       case MODULE_CMD_FINI:
               error = config_cfdriver_detach(&cac_cd);
               break;
       default:
               error = ENOTTY;
               break;
       }
#endif
       return error;
}