/* $NetBSD: bwfm.c,v 1.36 2023/12/31 21:32:43 gutteridge Exp $ */
/* $OpenBSD: bwfm.c,v 1.5 2017/10/16 22:27:16 patrick Exp $ */
/*
* Copyright (c) 2010-2016 Broadcom Corporation
* Copyright (c) 2016,2017 Patrick Wildt <
[email protected]>
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/types.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/workqueue.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <net80211/ieee80211_var.h>
#include <dev/firmload.h>
#include <dev/ic/bwfmreg.h>
#include <dev/ic/bwfmvar.h>
/* #define BWFM_DEBUG */
#ifdef BWFM_DEBUG
#define DPRINTF(x) do { if (bwfm_debug > 0) printf x; } while (0)
#define DPRINTFN(n, x) do { if (bwfm_debug >= (n)) printf x; } while (0)
static int bwfm_debug = 1;
#else
#define DPRINTF(x) do { ; } while (0)
#define DPRINTFN(n, x) do { ; } while (0)
#endif
#define DEVNAME(sc) device_xname((sc)->sc_dev)
void bwfm_start(struct ifnet *);
int bwfm_init(struct ifnet *);
void bwfm_stop(struct ifnet *, int);
void bwfm_watchdog(struct ifnet *);
int bwfm_ioctl(struct ifnet *, u_long, void *);
int bwfm_media_change(struct ifnet *);
int bwfm_send_mgmt(struct ieee80211com *, struct ieee80211_node *,
int, int);
void bwfm_recv_mgmt(struct ieee80211com *, struct mbuf *,
struct ieee80211_node *, int, int, uint32_t);
int bwfm_key_set(struct ieee80211com *, const struct ieee80211_key *,
const uint8_t[IEEE80211_ADDR_LEN]);
int bwfm_key_delete(struct ieee80211com *, const struct ieee80211_key *);
int bwfm_newstate(struct ieee80211com *, enum ieee80211_state, int);
void bwfm_newstate_cb(struct bwfm_softc *, struct bwfm_cmd_newstate *);
void bwfm_newassoc(struct ieee80211_node *, int);
void bwfm_task(struct work *, void *);
int bwfm_chip_attach(struct bwfm_softc *);
int bwfm_chip_detach(struct bwfm_softc *, int);
struct bwfm_core *bwfm_chip_get_core(struct bwfm_softc *, int);
struct bwfm_core *bwfm_chip_get_pmu(struct bwfm_softc *);
int bwfm_chip_ai_isup(struct bwfm_softc *, struct bwfm_core *);
void bwfm_chip_ai_disable(struct bwfm_softc *, struct bwfm_core *,
uint32_t, uint32_t);
void bwfm_chip_ai_reset(struct bwfm_softc *, struct bwfm_core *,
uint32_t, uint32_t, uint32_t);
void bwfm_chip_dmp_erom_scan(struct bwfm_softc *);
int bwfm_chip_dmp_get_regaddr(struct bwfm_softc *, uint32_t *,
uint32_t *, uint32_t *);
int bwfm_chip_cr4_set_active(struct bwfm_softc *, const uint32_t);
void bwfm_chip_cr4_set_passive(struct bwfm_softc *);
int bwfm_chip_ca7_set_active(struct bwfm_softc *, const uint32_t);
void bwfm_chip_ca7_set_passive(struct bwfm_softc *);
int bwfm_chip_cm3_set_active(struct bwfm_softc *);
void bwfm_chip_cm3_set_passive(struct bwfm_softc *);
void bwfm_chip_socram_ramsize(struct bwfm_softc *, struct bwfm_core *);
void bwfm_chip_sysmem_ramsize(struct bwfm_softc *, struct bwfm_core *);
void bwfm_chip_tcm_ramsize(struct bwfm_softc *, struct bwfm_core *);
void bwfm_chip_tcm_rambase(struct bwfm_softc *);
void bwfm_process_blob(struct bwfm_softc *, const char *, uint8_t **,
size_t *);
int bwfm_proto_bcdc_query_dcmd(struct bwfm_softc *, int,
int, char *, size_t *);
int bwfm_proto_bcdc_set_dcmd(struct bwfm_softc *, int,
int, char *, size_t);
int bwfm_fwvar_cmd_get_data(struct bwfm_softc *, int, void *, size_t);
int bwfm_fwvar_cmd_set_data(struct bwfm_softc *, int, void *, size_t);
int bwfm_fwvar_cmd_get_int(struct bwfm_softc *, int, uint32_t *);
int bwfm_fwvar_cmd_set_int(struct bwfm_softc *, int, uint32_t);
int bwfm_fwvar_var_get_data(struct bwfm_softc *, const char *, void *, size_t);
int bwfm_fwvar_var_set_data(struct bwfm_softc *, const char *, void *, size_t);
int bwfm_fwvar_var_get_int(struct bwfm_softc *, const char *, uint32_t *);
int bwfm_fwvar_var_set_int(struct bwfm_softc *, const char *, uint32_t);
struct ieee80211_channel *bwfm_bss2chan(struct bwfm_softc *, struct bwfm_bss_info *);
void bwfm_scan(struct bwfm_softc *);
void bwfm_connect(struct bwfm_softc *);
void bwfm_get_sta_info(struct bwfm_softc *, struct ifmediareq *);
void bwfm_rx(struct bwfm_softc *, struct mbuf *);
void bwfm_rx_event(struct bwfm_softc *, struct mbuf *);
void bwfm_rx_event_cb(struct bwfm_softc *, struct mbuf *);
void bwfm_scan_node(struct bwfm_softc *, struct bwfm_bss_info *, size_t);
static const uint8_t bwfm_2ghz_channels[] = {
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
};
static const uint8_t bwfm_5ghz_channels[] = {
34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64, 100, 104, 108, 112,
116, 120, 124, 128, 132, 136, 140, 144, 149, 153, 157, 161, 165,
};
const struct bwfm_proto_ops bwfm_proto_bcdc_ops = {
.proto_query_dcmd = bwfm_proto_bcdc_query_dcmd,
.proto_set_dcmd = bwfm_proto_bcdc_set_dcmd,
};
static const struct {
const char *suffix;
const char *description;
} bwfm_firmware_filetypes[] = {
[BWFM_FILETYPE_UCODE] = {
.suffix = "bin",
.description = "Firmware",
},
[BWFM_FILETYPE_NVRAM] = {
.suffix = "txt",
.description = "NVRAM",
},
[BWFM_FILETYPE_CLM] = {
.suffix = "clm_blob",
.description = "CLM",
},
[BWFM_FILETYPE_TXCAP] = {
.suffix = "txcap_blob",
.description = "TXCAP",
},
[BWFM_FILETYPE_CAL] = {
.suffix = "cal_blob",
.description = "CAL",
},
};
static void
bwfm_firmware_read_file(struct bwfm_softc * const sc,
const struct bwfm_firmware_selector * const fwp,
struct bwfm_firmware_context * const ctx,
unsigned int const which)
{
firmware_handle_t fwh;
char *names[2];
int i, error;
names[1] = kmem_asprintf("%s.%s", fwp->fwsel_basename,
bwfm_firmware_filetypes[which].suffix);
names[0] = ctx->ctx_model ? kmem_asprintf("%s.%s.%s",
fwp->fwsel_basename, ctx->ctx_model,
bwfm_firmware_filetypes[which].suffix) : NULL;
aprint_verbose_dev(sc->sc_dev, "%s file default: %s\n",
bwfm_firmware_filetypes[which].description, names[1]);
if (names[0]) {
aprint_verbose_dev(sc->sc_dev, "%s file model-spec: %s\n",
bwfm_firmware_filetypes[which].description, names[0]);
}
for (i = 0; i < 2; i++) {
if (names[i] == NULL)
continue;
error = firmware_open("if_bwfm", names[i], &fwh);
if (error == 0)
break;
}
if (i == 2)
goto out;
aprint_verbose_dev(sc->sc_dev, "Found %s file: %s\n",
bwfm_firmware_filetypes[which].description, names[i]);
size_t size = firmware_get_size(fwh);
void *data = firmware_malloc(size);
if (data == NULL) {
aprint_error_dev(sc->sc_dev,
"unable to allocate %zu bytes for %s image\n", size,
bwfm_firmware_filetypes[which].description);
firmware_close(fwh);
goto out;
}
error = firmware_read(fwh, 0, data, size);
firmware_close(fwh);
if (error) {
aprint_error_dev(sc->sc_dev,
"failed to read %s file, error %d\n",
bwfm_firmware_filetypes[which].description,
error);
firmware_free(data, size);
goto out;
}
ctx->ctx_file[which].ctx_f_data = data;
ctx->ctx_file[which].ctx_f_size = size;
out:
for (i = 0; i < 2; i++) {
if (names[i])
kmem_free(names[i], strlen(names[i])+1);
}
}
void
bwfm_firmware_context_init(struct bwfm_firmware_context * const ctx,
uint32_t const chip, uint32_t const chiprev, const char * const model,
uint32_t req)
{
memset(ctx, 0, sizeof(*ctx));
ctx->ctx_chip = chip;
ctx->ctx_chiprev = chiprev;
ctx->ctx_model = model;
/* all devices require ucode */
ctx->ctx_req = req | BWFM_FWREQ(BWFM_FILETYPE_UCODE);
}
bool
bwfm_firmware_open(struct bwfm_softc * const sc,
const struct bwfm_firmware_selector * const fwtab,
struct bwfm_firmware_context * const ctx)
{
const struct bwfm_firmware_selector *fwp;
unsigned int i;
KASSERT(fwtab != NULL);
KASSERT(ctx != NULL);
/* First locate the appropriate entry for this chip / rev. */
for (fwp = fwtab; fwp->fwsel_basename != NULL; fwp++) {
if (fwp->fwsel_chip == ctx->ctx_chip &&
fwp->fwsel_revmask & __BIT(ctx->ctx_chiprev))
break;
}
if (fwp->fwsel_basename == NULL) {
aprint_error_dev(sc->sc_dev,
"No firmware entry for chip 0x%x/%u rev %u model %s\n",
ctx->ctx_chip, ctx->ctx_chip, ctx->ctx_chiprev,
ctx->ctx_model);
return false;
}
bool rv = true;
/*
* Read in each file that the front-end has requested as
* either required or optional.
*/
for (i = 0; i < BWFM_NFILETYPES; i++) {
if (ctx->ctx_req & (BWFM_FWREQ(i) | BWFM_FWOPT(i)))
bwfm_firmware_read_file(sc, fwp, ctx, i);
if ((ctx->ctx_req & BWFM_FWREQ(i)) &&
ctx->ctx_file[i].ctx_f_data == NULL) {
aprint_error_dev(sc->sc_dev,
"%s file not available\n",
bwfm_firmware_filetypes[i].description);
rv = false;
}
}
if (rv == false)
bwfm_firmware_close(ctx);
return rv;
}
void
bwfm_firmware_close(struct bwfm_firmware_context * const ctx)
{
for (int i = 0; i < BWFM_NFILETYPES; i++) {
if (ctx->ctx_file[i].ctx_f_data == NULL)
continue;
firmware_free(ctx->ctx_file[i].ctx_f_data,
ctx->ctx_file[i].ctx_f_size);
ctx->ctx_file[i].ctx_f_data = NULL;
}
}
void *
bwfm_firmware_data(struct bwfm_firmware_context * const ctx,
unsigned int const which, size_t *sizep)
{
KASSERT(which < BWFM_NFILETYPES);
KASSERT(sizep != NULL);
*sizep = ctx->ctx_file[which].ctx_f_size;
return ctx->ctx_file[which].ctx_f_data;
}
const char *
bwfm_firmware_description(unsigned int const which)
{
KASSERT(which < BWFM_NFILETYPES);
return bwfm_firmware_filetypes[which].description;
}
void
bwfm_attach(struct bwfm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
char fw_version[BWFM_DCMD_SMLEN];
uint32_t bandlist[3];
int nmode, vhtmode;
uint32_t tmp;
int i, j, error;
error = workqueue_create(&sc->sc_taskq, DEVNAME(sc),
bwfm_task, sc, PRI_NONE, IPL_NET, 0);
if (error != 0) {
printf("%s: could not create workqueue\n", DEVNAME(sc));
return;
}
sc->sc_freetask = pool_cache_init(sizeof(struct bwfm_task), 0, 0, 0,
"bwfmtask", NULL, IPL_NET /* XXX IPL_SOFTNET? */,
NULL, NULL, NULL);
pool_cache_prime(sc->sc_freetask, BWFM_TASK_COUNT);
/* Stop the device in case it was previously initialized */
bwfm_fwvar_cmd_set_int(sc, BWFM_C_DOWN, 1);
if (bwfm_fwvar_cmd_get_int(sc, BWFM_C_GET_VERSION, &tmp)) {
printf("%s: could not read io type\n", DEVNAME(sc));
return;
} else
sc->sc_io_type = tmp;
if (bwfm_fwvar_var_get_data(sc, "cur_etheraddr", ic->ic_myaddr,
sizeof(ic->ic_myaddr))) {
printf("%s: could not read mac address\n", DEVNAME(sc));
return;
}
printf("%s: address %s\n", DEVNAME(sc), ether_sprintf(ic->ic_myaddr));
bwfm_process_blob(sc, "clmload", &sc->sc_clm, &sc->sc_clmsize);
bwfm_process_blob(sc, "txcapload", &sc->sc_txcap, &sc->sc_txcapsize);
bwfm_process_blob(sc, "calload", &sc->sc_cal, &sc->sc_calsize);
memset(fw_version, 0, sizeof(fw_version));
if (bwfm_fwvar_var_get_data(sc, "ver", fw_version, sizeof(fw_version)) == 0)
printf("%s: %s", DEVNAME(sc), fw_version);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
ic->ic_caps =
IEEE80211_C_WEP |
IEEE80211_C_TKIP |
IEEE80211_C_AES |
IEEE80211_C_AES_CCM |
IEEE80211_C_PMGT |
#if notyet
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_IBSS |
IEEE80211_C_TXPMGT |
IEEE80211_C_WME |
#endif
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WPA | /* 802.11i */
/* IEEE80211_C_WPA_4WAY */0; /* WPA 4-way handshake in hw */
/* IBSS channel undefined for now. */
ic->ic_ibss_chan = &ic->ic_channels[0];
if (bwfm_fwvar_var_get_int(sc, "nmode", &nmode))
nmode = 0;
if (bwfm_fwvar_var_get_int(sc, "vhtmode", &vhtmode))
vhtmode = 0;
if (bwfm_fwvar_cmd_get_data(sc, BWFM_C_GET_BANDLIST, bandlist,
sizeof(bandlist))) {
printf("%s: couldn't get supported band list\n", DEVNAME(sc));
return;
}
const u_int nbands = le32toh(bandlist[0]);
for (i = 1; i <= MIN(nbands, __arraycount(bandlist) - 1); i++) {
switch (le32toh(bandlist[i])) {
case BWFM_BAND_2G:
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
for (j = 0; j < __arraycount(bwfm_2ghz_channels); j++) {
uint8_t chan = bwfm_2ghz_channels[j];
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
if (nmode)
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_HT;
}
break;
case BWFM_BAND_5G:
ic->ic_sup_rates[IEEE80211_MODE_11A] = ieee80211_std_rateset_11a;
for (j = 0; j < __arraycount(bwfm_5ghz_channels); j++) {
uint8_t chan = bwfm_5ghz_channels[j];
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_A;
if (nmode)
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_HT;
if (vhtmode)
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_VHT;
}
break;
default:
printf("%s: unsupported band 0x%x\n", DEVNAME(sc),
le32toh(bandlist[i]));
break;
}
}
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = bwfm_init;
ifp->if_ioctl = bwfm_ioctl;
ifp->if_start = bwfm_start;
ifp->if_stop = bwfm_stop;
ifp->if_watchdog = bwfm_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, DEVNAME(sc), IFNAMSIZ);
if_initialize(ifp);
ieee80211_ifattach(ic);
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = bwfm_newstate;
ic->ic_newassoc = bwfm_newassoc;
ic->ic_send_mgmt = bwfm_send_mgmt;
ic->ic_recv_mgmt = bwfm_recv_mgmt;
ic->ic_crypto.cs_key_set = bwfm_key_set;
ic->ic_crypto.cs_key_delete = bwfm_key_delete;
ifp->if_percpuq = if_percpuq_create(ifp);
if_deferred_start_init(ifp, NULL);
if_register(ifp);
ieee80211_media_init(ic, bwfm_media_change, ieee80211_media_status);
ieee80211_announce(ic);
sc->sc_if_attached = true;
}
int
bwfm_detach(struct bwfm_softc *sc, int flags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
if (sc->sc_if_attached) {
bpf_detach(ifp);
ieee80211_ifdetach(ic);
if_detach(ifp);
}
if (sc->sc_taskq)
workqueue_destroy(sc->sc_taskq);
if (sc->sc_freetask)
pool_cache_destroy(sc->sc_freetask);
return 0;
}
void
bwfm_start(struct ifnet *ifp)
{
struct bwfm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m;
int error;
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
/* TODO: return if no link? */
if (sc->sc_setpm) {
sc->sc_setpm = false;
if (bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_PM, sc->sc_pm))
printf("%s: could not set power\n", DEVNAME(sc));
}
for (;;) {
/* Discard management packets (fw handles this for us) */
IF_DEQUEUE(&ic->ic_mgtq, m);
if (m != NULL) {
m_freem(m);
continue;
}
if (sc->sc_bus_ops->bs_txcheck(sc)) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
error = sc->sc_bus_ops->bs_txdata(sc, &m);
if (error == ENOBUFS) {
IF_PREPEND(&ifp->if_snd, m);
ifp->if_flags |= IFF_OACTIVE;
break;
}
if (error != 0) {
if_statinc(ifp, if_oerrors);
m_freem(m);
continue;
}
bpf_mtap(ifp, m, BPF_D_OUT);
}
}
int
bwfm_init(struct ifnet *ifp)
{
struct bwfm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint8_t evmask[BWFM_EVENT_MASK_LEN];
struct bwfm_join_pref_params join_pref[2];
if (bwfm_fwvar_var_set_int(sc, "mpc", 1)) {
printf("%s: could not set mpc\n", DEVNAME(sc));
return EIO;
}
/* Select target by RSSI (boost on 5GHz) */
join_pref[0].type = BWFM_JOIN_PREF_RSSI_DELTA;
join_pref[0].len = 2;
join_pref[0].rssi_gain = BWFM_JOIN_PREF_RSSI_BOOST;
join_pref[0].band = BWFM_JOIN_PREF_BAND_5G;
join_pref[1].type = BWFM_JOIN_PREF_RSSI;
join_pref[1].len = 2;
join_pref[1].rssi_gain = 0;
join_pref[1].band = 0;
if (bwfm_fwvar_var_set_data(sc, "join_pref", join_pref,
sizeof(join_pref))) {
printf("%s: could not set join pref\n", DEVNAME(sc));
return EIO;
}
memset(evmask, 0, sizeof(evmask));
#define ENABLE_EVENT(e) evmask[(e) / 8] |= 1 << ((e) % 8)
/* Events used to drive the state machine */
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
ENABLE_EVENT(BWFM_E_IF);
ENABLE_EVENT(BWFM_E_LINK);
ENABLE_EVENT(BWFM_E_AUTH);
ENABLE_EVENT(BWFM_E_ASSOC);
ENABLE_EVENT(BWFM_E_DEAUTH);
ENABLE_EVENT(BWFM_E_DISASSOC);
ENABLE_EVENT(BWFM_E_SET_SSID);
ENABLE_EVENT(BWFM_E_ESCAN_RESULT);
break;
#ifndef IEEE80211_STA_ONLY
case IEEE80211_M_HOSTAP:
ENABLE_EVENT(BWFM_E_AUTH_IND);
ENABLE_EVENT(BWFM_E_ASSOC_IND);
ENABLE_EVENT(BWFM_E_REASSOC_IND);
ENABLE_EVENT(BWFM_E_DEAUTH_IND);
ENABLE_EVENT(BWFM_E_DISASSOC_IND);
ENABLE_EVENT(BWFM_E_ESCAN_RESULT);
ENABLE_EVENT(BWFM_E_ESCAN_RESULT);
break;
#endif
default:
break;
}
#undef ENABLE_EVENT
#ifdef BWFM_DEBUG
memset(evmask, 0xff, sizeof(evmask));
#endif
if (bwfm_fwvar_var_set_data(sc, "event_msgs", evmask, sizeof(evmask))) {
printf("%s: could not set event mask\n", DEVNAME(sc));
return EIO;
}
if (bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_SCAN_CHANNEL_TIME,
BWFM_DEFAULT_SCAN_CHANNEL_TIME)) {
printf("%s: could not set scan channel time\n", DEVNAME(sc));
return EIO;
}
if (bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_SCAN_UNASSOC_TIME,
BWFM_DEFAULT_SCAN_UNASSOC_TIME)) {
printf("%s: could not set scan unassoc time\n", DEVNAME(sc));
return EIO;
}
if (bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_SCAN_PASSIVE_TIME,
BWFM_DEFAULT_SCAN_PASSIVE_TIME)) {
printf("%s: could not set scan passive time\n", DEVNAME(sc));
return EIO;
}
/*
* Use CAM (constantly awake) when we are running as AP
* otherwise use fast power saving.
*/
if (ic->ic_flags & IEEE80211_F_PMGTON) {
sc->sc_pm = BWFM_PM_FAST_PS;
#ifndef IEEE80211_STA_ONLY
if (ic->ic_opmode == IEEE80211_M_HOSTAP)
sc->sc_pm = BWFM_PM_CAM;
#endif
} else {
sc->sc_pm = BWFM_PM_CAM;
}
sc->sc_setpm = true;
bwfm_fwvar_var_set_int(sc, "txbf", 1);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_UP, 0);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_INFRA, 1);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_AP, 0);
/* Disable all offloading (ARP, NDP, TCP/UDP cksum). */
bwfm_fwvar_var_set_int(sc, "arp_ol", 0);
bwfm_fwvar_var_set_int(sc, "arpoe", 0);
bwfm_fwvar_var_set_int(sc, "ndoe", 0);
bwfm_fwvar_var_set_int(sc, "toe", 0);
/* Accept all multicast frames. */
bwfm_fwvar_var_set_int(sc, "allmulti", 1);
/* Setup promiscuous mode */
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_PROMISC,
(ifp->if_flags & IFF_PROMISC) ? 1 : 0);
/*
* Tell the firmware supplicant that we are going to handle the
* WPA handshake ourselves.
*/
bwfm_fwvar_var_set_int(sc, "sup_wpa", 0);
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
} else {
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
}
return 0;
}
void
bwfm_stop(struct ifnet *ifp, int disable)
{
struct bwfm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct bwfm_join_params join;
sc->sc_tx_timer = 0;
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
memset(&join, 0, sizeof(join));
bwfm_fwvar_cmd_set_data(sc, BWFM_C_SET_SSID, &join, sizeof(join));
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_PM, 0);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_DOWN, 1);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_AP, 0);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_INFRA, 0);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_UP, 1);
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_PM, BWFM_PM_FAST_PS);
bwfm_fwvar_var_set_int(sc, "mpc", 1);
if (sc->sc_bus_ops->bs_stop)
sc->sc_bus_ops->bs_stop(sc);
sc->sc_setpm = true;
}
void
bwfm_watchdog(struct ifnet *ifp)
{
struct bwfm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
printf("%s: device timeout\n", DEVNAME(sc));
if_statinc(ifp, if_oerrors);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(ic);
}
int
bwfm_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct bwfm_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0, oflags;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
oflags = ifp->if_flags;
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
switch (ifp->if_flags & (IFF_UP | IFF_RUNNING)) {
case IFF_UP | IFF_RUNNING:
break;
case IFF_UP:
if ((oflags & IFF_UP) == 0)
bwfm_init(ifp);
break;
case IFF_RUNNING:
if ((oflags & IFF_UP) != 0)
bwfm_stop(ifp, 1);
break;
case 0:
break;
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
case SIOCGIFMEDIA:
error = ieee80211_ioctl(ic, cmd, data);
if (error == 0 && ic->ic_state == IEEE80211_S_RUN)
bwfm_get_sta_info(sc, (struct ifmediareq *)data);
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
bwfm_init(ifp);
}
error = 0;
}
splx(s);
return error;
}
int
bwfm_send_mgmt(struct ieee80211com *ic, struct ieee80211_node *ni,
int type, int arg)
{
return 0;
}
void
bwfm_recv_mgmt(struct ieee80211com *ic, struct mbuf *m0,
struct ieee80211_node *ni, int subtype, int rssi, uint32_t rstamp)
{
}
int
bwfm_key_set(struct ieee80211com *ic, const struct ieee80211_key *wk,
const uint8_t mac[IEEE80211_ADDR_LEN])
{
struct bwfm_softc *sc = ic->ic_ifp->if_softc;
struct bwfm_task *t;
t = pool_cache_get(sc->sc_freetask, PR_NOWAIT);
if (t == NULL) {
printf("%s: no free tasks\n", DEVNAME(sc));
return 0;
}
t->t_sc = sc;
t->t_cmd = BWFM_TASK_KEY_SET;
t->t_key.key = wk;
memcpy(t->t_key.mac, mac, sizeof(t->t_key.mac));
workqueue_enqueue(sc->sc_taskq, (struct work *)t, NULL);
return 1;
}
static void
bwfm_key_set_cb(struct bwfm_softc *sc, struct bwfm_cmd_key *ck)
{
const struct ieee80211_key *wk = ck->key;
const uint8_t *mac = ck->mac;
struct bwfm_wsec_key wsec_key;
uint32_t wsec_enable, wsec;
bool ext_key;
#ifdef BWFM_DEBUG
printf("key_set: key cipher %s len %d: ", wk->wk_cipher->ic_name, wk->wk_keylen);
for (int j = 0; j < sizeof(wk->wk_key); j++)
printf("%02x", wk->wk_key[j]);
#endif
if ((wk->wk_flags & IEEE80211_KEY_GROUP) == 0 &&
wk->wk_cipher->ic_cipher != IEEE80211_CIPHER_WEP) {
ext_key = true;
} else {
ext_key = false;
}
#ifdef BWFM_DEBUG
printf(", ext_key = %d", ext_key);
printf(", mac = %02x:%02x:%02x:%02x:%02x:%02x",
mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
printf("\n");
#endif
memset(&wsec_key, 0, sizeof(wsec_key));
if (ext_key && !IEEE80211_IS_MULTICAST(mac))
memcpy(wsec_key.ea, mac, sizeof(wsec_key.ea));
wsec_key.index = htole32(wk->wk_keyix);
wsec_key.len = htole32(wk->wk_keylen);
memcpy(wsec_key.data, wk->wk_key, sizeof(wsec_key.data));
if (!ext_key)
wsec_key.flags = htole32(BWFM_WSEC_PRIMARY_KEY);
switch (wk->wk_cipher->ic_cipher) {
case IEEE80211_CIPHER_WEP:
if (wk->wk_keylen == 5)
wsec_key.algo = htole32(BWFM_CRYPTO_ALGO_WEP1);
else if (wk->wk_keylen == 13)
wsec_key.algo = htole32(BWFM_CRYPTO_ALGO_WEP128);
else
return;
wsec_enable = BWFM_WSEC_WEP;
break;
case IEEE80211_CIPHER_TKIP:
wsec_key.algo = htole32(BWFM_CRYPTO_ALGO_TKIP);
wsec_enable = BWFM_WSEC_TKIP;
break;
case IEEE80211_CIPHER_AES_CCM:
wsec_key.algo = htole32(BWFM_CRYPTO_ALGO_AES_CCM);
wsec_enable = BWFM_WSEC_AES;
break;
default:
printf("%s: %s: cipher %s not supported\n", DEVNAME(sc),
__func__, wk->wk_cipher->ic_name);
return;
}
if (bwfm_fwvar_var_set_data(sc, "wsec_key", &wsec_key, sizeof(wsec_key)))
return;
bwfm_fwvar_var_set_int(sc, "wpa_auth", BWFM_WPA_AUTH_WPA2_PSK);
bwfm_fwvar_var_get_int(sc, "wsec", &wsec);
wsec |= wsec_enable;
bwfm_fwvar_var_set_int(sc, "wsec", wsec);
}
int
bwfm_key_delete(struct ieee80211com *ic, const struct ieee80211_key *wk)
{
struct bwfm_softc *sc = ic->ic_ifp->if_softc;
struct bwfm_task *t;
t = pool_cache_get(sc->sc_freetask, PR_NOWAIT);
if (t == NULL) {
printf("%s: no free tasks\n", DEVNAME(sc));
return 0;
}
t->t_sc = sc;
t->t_cmd = BWFM_TASK_KEY_DELETE;
t->t_key.key = wk;
memset(t->t_key.mac, 0, sizeof(t->t_key.mac));
workqueue_enqueue(sc->sc_taskq, (struct work *)t, NULL);
return 1;
}
static void
bwfm_key_delete_cb(struct bwfm_softc *sc, struct bwfm_cmd_key *ck)
{
const struct ieee80211_key *wk = ck->key;
struct bwfm_wsec_key wsec_key;
memset(&wsec_key, 0, sizeof(wsec_key));
wsec_key.index = htole32(wk->wk_keyix);
wsec_key.flags = htole32(BWFM_WSEC_PRIMARY_KEY);
if (bwfm_fwvar_var_set_data(sc, "wsec_key", &wsec_key, sizeof(wsec_key)))
return;
}
int
bwfm_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct bwfm_softc *sc = ic->ic_ifp->if_softc;
struct bwfm_task *t;
t = pool_cache_get(sc->sc_freetask, PR_NOWAIT);
if (t == NULL) {
printf("%s: no free tasks\n", DEVNAME(sc));
return EIO;
}
t->t_sc = sc;
t->t_cmd = BWFM_TASK_NEWSTATE;
t->t_newstate.state = nstate;
t->t_newstate.arg = arg;
workqueue_enqueue(sc->sc_taskq, (struct work *)t, NULL);
return 0;
}
void
bwfm_newstate_cb(struct bwfm_softc *sc, struct bwfm_cmd_newstate *cmd)
{
struct ieee80211com *ic = &sc->sc_ic;
enum ieee80211_state ostate = ic->ic_state;
enum ieee80211_state nstate = cmd->state;
int s;
DPRINTF(("%s: newstate %d -> %d\n", DEVNAME(sc), ostate, nstate));
s = splnet();
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_SCAN:
if (ostate != IEEE80211_S_SCAN) {
/* Start of scanning */
bwfm_scan(sc);
}
break;
case IEEE80211_S_AUTH:
bwfm_connect(sc);
break;
case IEEE80211_S_ASSOC:
break;
case IEEE80211_S_RUN:
break;
}
sc->sc_newstate(ic, nstate, cmd->arg);
splx(s);
}
void
bwfm_newassoc(struct ieee80211_node *ni, int isnew)
{
/* Firmware handles rate adaptation for us */
ni->ni_txrate = 0;
}
void
bwfm_task(struct work *wk, void *arg)
{
struct bwfm_task *t = (struct bwfm_task *)wk;
struct bwfm_softc *sc = t->t_sc;
switch (t->t_cmd) {
case BWFM_TASK_NEWSTATE:
bwfm_newstate_cb(sc, &t->t_newstate);
break;
case BWFM_TASK_KEY_SET:
bwfm_key_set_cb(sc, &t->t_key);
break;
case BWFM_TASK_KEY_DELETE:
bwfm_key_delete_cb(sc, &t->t_key);
break;
case BWFM_TASK_RX_EVENT:
bwfm_rx_event_cb(sc, t->t_mbuf);
break;
default:
panic("bwfm: unknown task command %d", t->t_cmd);
}
pool_cache_put(sc->sc_freetask, t);
}
int
bwfm_media_change(struct ifnet *ifp)
{
return 0;
}
/* Chip initialization (SDIO, PCIe) */
int
bwfm_chip_attach(struct bwfm_softc *sc)
{
struct bwfm_core *core;
int need_socram = 0;
int has_socram = 0;
int cpu_found = 0;
uint32_t val;
LIST_INIT(&sc->sc_chip.ch_list);
if (sc->sc_buscore_ops->bc_prepare(sc) != 0) {
printf("%s: failed buscore prepare\n", DEVNAME(sc));
return 1;
}
val = sc->sc_buscore_ops->bc_read(sc,
BWFM_CHIP_BASE + BWFM_CHIP_REG_CHIPID);
sc->sc_chip.ch_chip = BWFM_CHIP_CHIPID_ID(val);
sc->sc_chip.ch_chiprev = BWFM_CHIP_CHIPID_REV(val);
if ((sc->sc_chip.ch_chip > 0xa000) || (sc->sc_chip.ch_chip < 0x4000))
snprintf(sc->sc_chip.ch_name, sizeof(sc->sc_chip.ch_name),
"%d", sc->sc_chip.ch_chip);
else
snprintf(sc->sc_chip.ch_name, sizeof(sc->sc_chip.ch_name),
"%x", sc->sc_chip.ch_chip);
switch (BWFM_CHIP_CHIPID_TYPE(val))
{
case BWFM_CHIP_CHIPID_TYPE_SOCI_SB:
printf("%s: SoC interconnect SB not implemented\n",
DEVNAME(sc));
return 1;
case BWFM_CHIP_CHIPID_TYPE_SOCI_AI:
sc->sc_chip.ch_core_isup = bwfm_chip_ai_isup;
sc->sc_chip.ch_core_disable = bwfm_chip_ai_disable;
sc->sc_chip.ch_core_reset = bwfm_chip_ai_reset;
bwfm_chip_dmp_erom_scan(sc);
break;
default:
printf("%s: SoC interconnect %d unknown\n",
DEVNAME(sc), BWFM_CHIP_CHIPID_TYPE(val));
return 1;
}
LIST_FOREACH(core, &sc->sc_chip.ch_list, co_link) {
DPRINTF(("%s: 0x%x:%-2d base 0x%08x wrap 0x%08x\n",
DEVNAME(sc), core->co_id, core->co_rev,
core->co_base, core->co_wrapbase));
switch (core->co_id) {
case BWFM_AGENT_CORE_ARM_CM3:
need_socram = true;
/* FALLTHROUGH */
case BWFM_AGENT_CORE_ARM_CR4:
case BWFM_AGENT_CORE_ARM_CA7:
cpu_found = true;
break;
case BWFM_AGENT_INTERNAL_MEM:
has_socram = true;
break;
default:
break;
}
}
if (!cpu_found) {
printf("%s: CPU core not detected\n", DEVNAME(sc));
return 1;
}
if (need_socram && !has_socram) {
printf("%s: RAM core not provided\n", DEVNAME(sc));
return 1;
}
bwfm_chip_set_passive(sc);
if (sc->sc_buscore_ops->bc_reset) {
sc->sc_buscore_ops->bc_reset(sc);
bwfm_chip_set_passive(sc);
}
if ((core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CR4)) != NULL) {
bwfm_chip_tcm_ramsize(sc, core);
bwfm_chip_tcm_rambase(sc);
} else if ((core = bwfm_chip_get_core(sc, BWFM_AGENT_SYS_MEM)) != NULL) {
bwfm_chip_sysmem_ramsize(sc, core);
bwfm_chip_tcm_rambase(sc);
} else if ((core = bwfm_chip_get_core(sc, BWFM_AGENT_INTERNAL_MEM)) != NULL) {
bwfm_chip_socram_ramsize(sc, core);
}
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_CHIPCOMMON);
sc->sc_chip.ch_cc_caps = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_CHIP_REG_CAPABILITIES);
sc->sc_chip.ch_cc_caps_ext = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_CHIP_REG_CAPABILITIES_EXT);
core = bwfm_chip_get_pmu(sc);
if (sc->sc_chip.ch_cc_caps & BWFM_CHIP_REG_CAPABILITIES_PMU) {
sc->sc_chip.ch_pmucaps = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_CHIP_REG_PMUCAPABILITIES);
sc->sc_chip.ch_pmurev = sc->sc_chip.ch_pmucaps &
BWFM_CHIP_REG_PMUCAPABILITIES_REV_MASK;
}
if (sc->sc_buscore_ops->bc_setup)
sc->sc_buscore_ops->bc_setup(sc);
return 0;
}
struct bwfm_core *
bwfm_chip_get_core(struct bwfm_softc *sc, int id)
{
struct bwfm_core *core;
LIST_FOREACH(core, &sc->sc_chip.ch_list, co_link) {
if (core->co_id == id)
return core;
}
return NULL;
}
struct bwfm_core *
bwfm_chip_get_pmu(struct bwfm_softc *sc)
{
struct bwfm_core *cc, *pmu;
cc = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_CHIPCOMMON);
if (cc->co_rev >= 35 && sc->sc_chip.ch_cc_caps_ext &
BWFM_CHIP_REG_CAPABILITIES_EXT_AOB_PRESENT) {
pmu = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_PMU);
if (pmu)
return pmu;
}
return cc;
}
/* Functions for the AI interconnect */
int
bwfm_chip_ai_isup(struct bwfm_softc *sc, struct bwfm_core *core)
{
uint32_t ioctl, reset;
ioctl = sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL);
reset = sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_RESET_CTL);
if (((ioctl & (BWFM_AGENT_IOCTL_FGC | BWFM_AGENT_IOCTL_CLK)) ==
BWFM_AGENT_IOCTL_CLK) &&
((reset & BWFM_AGENT_RESET_CTL_RESET) == 0))
return 1;
return 0;
}
void
bwfm_chip_ai_disable(struct bwfm_softc *sc, struct bwfm_core *core,
uint32_t prereset, uint32_t reset)
{
uint32_t val;
int i;
val = sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_RESET_CTL);
if ((val & BWFM_AGENT_RESET_CTL_RESET) == 0) {
sc->sc_buscore_ops->bc_write(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL,
prereset | BWFM_AGENT_IOCTL_FGC | BWFM_AGENT_IOCTL_CLK);
sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL);
sc->sc_buscore_ops->bc_write(sc,
core->co_wrapbase + BWFM_AGENT_RESET_CTL,
BWFM_AGENT_RESET_CTL_RESET);
delay(20);
for (i = 300; i > 0; i--) {
if (sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_RESET_CTL) ==
BWFM_AGENT_RESET_CTL_RESET)
break;
}
if (i == 0)
printf("%s: timeout on core reset\n", DEVNAME(sc));
}
sc->sc_buscore_ops->bc_write(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL,
reset | BWFM_AGENT_IOCTL_FGC | BWFM_AGENT_IOCTL_CLK);
sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL);
}
void
bwfm_chip_ai_reset(struct bwfm_softc *sc, struct bwfm_core *core,
uint32_t prereset, uint32_t reset, uint32_t postreset)
{
int i;
bwfm_chip_ai_disable(sc, core, prereset, reset);
for (i = 50; i > 0; i--) {
if ((sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_RESET_CTL) &
BWFM_AGENT_RESET_CTL_RESET) == 0)
break;
sc->sc_buscore_ops->bc_write(sc,
core->co_wrapbase + BWFM_AGENT_RESET_CTL, 0);
delay(60);
}
if (i == 0)
printf("%s: timeout on core reset\n", DEVNAME(sc));
sc->sc_buscore_ops->bc_write(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL,
postreset | BWFM_AGENT_IOCTL_CLK);
sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL);
}
void
bwfm_chip_dmp_erom_scan(struct bwfm_softc *sc)
{
uint32_t erom, val, base, wrap;
uint8_t type = 0;
uint16_t id;
uint8_t nmw, nsw, rev;
struct bwfm_core *core;
erom = sc->sc_buscore_ops->bc_read(sc,
BWFM_CHIP_BASE + BWFM_CHIP_REG_EROMPTR);
while (type != BWFM_DMP_DESC_EOT) {
val = sc->sc_buscore_ops->bc_read(sc, erom);
type = val & BWFM_DMP_DESC_MASK;
erom += 4;
if (type != BWFM_DMP_DESC_COMPONENT)
continue;
id = (val & BWFM_DMP_COMP_PARTNUM)
>> BWFM_DMP_COMP_PARTNUM_S;
val = sc->sc_buscore_ops->bc_read(sc, erom);
type = val & BWFM_DMP_DESC_MASK;
erom += 4;
if (type != BWFM_DMP_DESC_COMPONENT) {
printf("%s: not component descriptor\n", DEVNAME(sc));
return;
}
nmw = (val & BWFM_DMP_COMP_NUM_MWRAP)
>> BWFM_DMP_COMP_NUM_MWRAP_S;
nsw = (val & BWFM_DMP_COMP_NUM_SWRAP)
>> BWFM_DMP_COMP_NUM_SWRAP_S;
rev = (val & BWFM_DMP_COMP_REVISION)
>> BWFM_DMP_COMP_REVISION_S;
if (nmw + nsw == 0 && id != BWFM_AGENT_CORE_PMU)
continue;
if (bwfm_chip_dmp_get_regaddr(sc, &erom, &base, &wrap))
continue;
core = kmem_alloc(sizeof(*core), KM_SLEEP);
core->co_id = id;
core->co_base = base;
core->co_wrapbase = wrap;
core->co_rev = rev;
LIST_INSERT_HEAD(&sc->sc_chip.ch_list, core, co_link);
}
}
int
bwfm_chip_dmp_get_regaddr(struct bwfm_softc *sc, uint32_t *erom,
uint32_t *base, uint32_t *wrap)
{
uint8_t type = 0, mpnum __unused = 0;
uint8_t stype, sztype, wraptype;
uint32_t val;
*base = 0;
*wrap = 0;
val = sc->sc_buscore_ops->bc_read(sc, *erom);
type = val & BWFM_DMP_DESC_MASK;
if (type == BWFM_DMP_DESC_MASTER_PORT) {
mpnum = (val & BWFM_DMP_MASTER_PORT_NUM)
>> BWFM_DMP_MASTER_PORT_NUM_S;
wraptype = BWFM_DMP_SLAVE_TYPE_MWRAP;
*erom += 4;
} else if ((type & ~BWFM_DMP_DESC_ADDRSIZE_GT32) ==
BWFM_DMP_DESC_ADDRESS)
wraptype = BWFM_DMP_SLAVE_TYPE_SWRAP;
else
return 1;
do {
do {
val = sc->sc_buscore_ops->bc_read(sc, *erom);
type = val & BWFM_DMP_DESC_MASK;
if (type == BWFM_DMP_DESC_COMPONENT)
return 0;
if (type == BWFM_DMP_DESC_EOT)
return 1;
*erom += 4;
} while ((type & ~BWFM_DMP_DESC_ADDRSIZE_GT32) !=
BWFM_DMP_DESC_ADDRESS);
if (type & BWFM_DMP_DESC_ADDRSIZE_GT32)
*erom += 4;
sztype = (val & BWFM_DMP_SLAVE_SIZE_TYPE)
>> BWFM_DMP_SLAVE_SIZE_TYPE_S;
if (sztype == BWFM_DMP_SLAVE_SIZE_DESC) {
val = sc->sc_buscore_ops->bc_read(sc, *erom);
type = val & BWFM_DMP_DESC_MASK;
if (type & BWFM_DMP_DESC_ADDRSIZE_GT32)
*erom += 8;
else
*erom += 4;
}
if (sztype != BWFM_DMP_SLAVE_SIZE_4K)
continue;
stype = (val & BWFM_DMP_SLAVE_TYPE) >> BWFM_DMP_SLAVE_TYPE_S;
if (*base == 0 && stype == BWFM_DMP_SLAVE_TYPE_SLAVE)
*base = val & BWFM_DMP_SLAVE_ADDR_BASE;
if (*wrap == 0 && stype == wraptype)
*wrap = val & BWFM_DMP_SLAVE_ADDR_BASE;
} while (*base == 0 || *wrap == 0);
return 0;
}
/* Core configuration */
int
bwfm_chip_set_active(struct bwfm_softc *sc, const uint32_t rstvec)
{
if (bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CR4) != NULL)
return bwfm_chip_cr4_set_active(sc, rstvec);
if (bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CA7) != NULL)
return bwfm_chip_ca7_set_active(sc, rstvec);
if (bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CM3) != NULL)
return bwfm_chip_cm3_set_active(sc);
return 1;
}
void
bwfm_chip_set_passive(struct bwfm_softc *sc)
{
if (bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CR4) != NULL) {
bwfm_chip_cr4_set_passive(sc);
return;
}
if (bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CA7) != NULL) {
bwfm_chip_ca7_set_passive(sc);
return;
}
if (bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CM3) != NULL) {
bwfm_chip_cm3_set_passive(sc);
return;
}
}
int
bwfm_chip_cr4_set_active(struct bwfm_softc *sc, const uint32_t rstvec)
{
struct bwfm_core *core;
sc->sc_buscore_ops->bc_activate(sc, rstvec);
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CR4);
sc->sc_chip.ch_core_reset(sc, core,
BWFM_AGENT_IOCTL_ARMCR4_CPUHALT, 0, 0);
return 0;
}
void
bwfm_chip_cr4_set_passive(struct bwfm_softc *sc)
{
struct bwfm_core *core;
uint32_t val;
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CR4);
val = sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL);
sc->sc_chip.ch_core_reset(sc, core,
val & BWFM_AGENT_IOCTL_ARMCR4_CPUHALT,
BWFM_AGENT_IOCTL_ARMCR4_CPUHALT,
BWFM_AGENT_IOCTL_ARMCR4_CPUHALT);
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_80211);
sc->sc_chip.ch_core_reset(sc, core, BWFM_AGENT_D11_IOCTL_PHYRESET |
BWFM_AGENT_D11_IOCTL_PHYCLOCKEN, BWFM_AGENT_D11_IOCTL_PHYCLOCKEN,
BWFM_AGENT_D11_IOCTL_PHYCLOCKEN);
}
int
bwfm_chip_ca7_set_active(struct bwfm_softc *sc, const uint32_t rstvec)
{
struct bwfm_core *core;
sc->sc_buscore_ops->bc_activate(sc, rstvec);
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CA7);
sc->sc_chip.ch_core_reset(sc, core,
BWFM_AGENT_IOCTL_ARMCR4_CPUHALT, 0, 0);
return 0;
}
void
bwfm_chip_ca7_set_passive(struct bwfm_softc *sc)
{
struct bwfm_core *core;
uint32_t val;
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CA7);
val = sc->sc_buscore_ops->bc_read(sc,
core->co_wrapbase + BWFM_AGENT_IOCTL);
sc->sc_chip.ch_core_reset(sc, core,
val & BWFM_AGENT_IOCTL_ARMCR4_CPUHALT,
BWFM_AGENT_IOCTL_ARMCR4_CPUHALT,
BWFM_AGENT_IOCTL_ARMCR4_CPUHALT);
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_80211);
sc->sc_chip.ch_core_reset(sc, core, BWFM_AGENT_D11_IOCTL_PHYRESET |
BWFM_AGENT_D11_IOCTL_PHYCLOCKEN, BWFM_AGENT_D11_IOCTL_PHYCLOCKEN,
BWFM_AGENT_D11_IOCTL_PHYCLOCKEN);
}
int
bwfm_chip_cm3_set_active(struct bwfm_softc *sc)
{
struct bwfm_core *core;
core = bwfm_chip_get_core(sc, BWFM_AGENT_INTERNAL_MEM);
if (!sc->sc_chip.ch_core_isup(sc, core))
return 1;
sc->sc_buscore_ops->bc_activate(sc, 0);
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CM3);
sc->sc_chip.ch_core_reset(sc, core, 0, 0, 0);
return 0;
}
void
bwfm_chip_cm3_set_passive(struct bwfm_softc *sc)
{
struct bwfm_core *core;
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_ARM_CM3);
sc->sc_chip.ch_core_disable(sc, core, 0, 0);
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_80211);
sc->sc_chip.ch_core_reset(sc, core, BWFM_AGENT_D11_IOCTL_PHYRESET |
BWFM_AGENT_D11_IOCTL_PHYCLOCKEN, BWFM_AGENT_D11_IOCTL_PHYCLOCKEN,
BWFM_AGENT_D11_IOCTL_PHYCLOCKEN);
core = bwfm_chip_get_core(sc, BWFM_AGENT_INTERNAL_MEM);
sc->sc_chip.ch_core_reset(sc, core, 0, 0, 0);
if (sc->sc_chip.ch_chip == BRCM_CC_43430_CHIP_ID) {
sc->sc_buscore_ops->bc_write(sc,
core->co_base + BWFM_SOCRAM_BANKIDX, 3);
sc->sc_buscore_ops->bc_write(sc,
core->co_base + BWFM_SOCRAM_BANKPDA, 0);
}
}
int
bwfm_chip_sr_capable(struct bwfm_softc *sc)
{
struct bwfm_core *core;
uint32_t reg;
if (sc->sc_chip.ch_pmurev < 17)
return 0;
switch (sc->sc_chip.ch_chip) {
case BRCM_CC_4345_CHIP_ID:
case BRCM_CC_4354_CHIP_ID:
case BRCM_CC_4356_CHIP_ID:
core = bwfm_chip_get_pmu(sc);
sc->sc_buscore_ops->bc_write(sc, core->co_base +
BWFM_CHIP_REG_CHIPCONTROL_ADDR, 3);
reg = sc->sc_buscore_ops->bc_read(sc, core->co_base +
BWFM_CHIP_REG_CHIPCONTROL_DATA);
return (reg & (1 << 2)) != 0;
case BRCM_CC_43241_CHIP_ID:
case BRCM_CC_4335_CHIP_ID:
case BRCM_CC_4339_CHIP_ID:
core = bwfm_chip_get_pmu(sc);
sc->sc_buscore_ops->bc_write(sc, core->co_base +
BWFM_CHIP_REG_CHIPCONTROL_ADDR, 3);
reg = sc->sc_buscore_ops->bc_read(sc, core->co_base +
BWFM_CHIP_REG_CHIPCONTROL_DATA);
return reg != 0;
case BRCM_CC_43430_CHIP_ID:
core = bwfm_chip_get_core(sc, BWFM_AGENT_CORE_CHIPCOMMON);
reg = sc->sc_buscore_ops->bc_read(sc, core->co_base +
BWFM_CHIP_REG_SR_CONTROL1);
return reg != 0;
default:
core = bwfm_chip_get_pmu(sc);
reg = sc->sc_buscore_ops->bc_read(sc, core->co_base +
BWFM_CHIP_REG_PMUCAPABILITIES_EXT);
if ((reg & BWFM_CHIP_REG_PMUCAPABILITIES_SR_SUPP) == 0)
return 0;
reg = sc->sc_buscore_ops->bc_read(sc, core->co_base +
BWFM_CHIP_REG_RETENTION_CTL);
return (reg & (BWFM_CHIP_REG_RETENTION_CTL_MACPHY_DIS |
BWFM_CHIP_REG_RETENTION_CTL_LOGIC_DIS)) == 0;
}
}
/* RAM size helpers */
void
bwfm_chip_socram_ramsize(struct bwfm_softc *sc, struct bwfm_core *core)
{
uint32_t coreinfo, nb, lss, banksize, bankinfo;
uint32_t ramsize = 0, srsize = 0;
int i;
if (!sc->sc_chip.ch_core_isup(sc, core))
sc->sc_chip.ch_core_reset(sc, core, 0, 0, 0);
coreinfo = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_SOCRAM_COREINFO);
nb = (coreinfo & BWFM_SOCRAM_COREINFO_SRNB_MASK)
>> BWFM_SOCRAM_COREINFO_SRNB_SHIFT;
if (core->co_rev <= 7 || core->co_rev == 12) {
banksize = coreinfo & BWFM_SOCRAM_COREINFO_SRBSZ_MASK;
lss = (coreinfo & BWFM_SOCRAM_COREINFO_LSS_MASK)
>> BWFM_SOCRAM_COREINFO_LSS_SHIFT;
if (lss != 0)
nb--;
ramsize = nb * (1 << (banksize + BWFM_SOCRAM_COREINFO_SRBSZ_BASE));
if (lss != 0)
ramsize += (1 << ((lss - 1) + BWFM_SOCRAM_COREINFO_SRBSZ_BASE));
} else {
for (i = 0; i < nb; i++) {
sc->sc_buscore_ops->bc_write(sc,
core->co_base + BWFM_SOCRAM_BANKIDX,
(BWFM_SOCRAM_BANKIDX_MEMTYPE_RAM <<
BWFM_SOCRAM_BANKIDX_MEMTYPE_SHIFT) | i);
bankinfo = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_SOCRAM_BANKINFO);
banksize = ((bankinfo & BWFM_SOCRAM_BANKINFO_SZMASK) + 1)
* BWFM_SOCRAM_BANKINFO_SZBASE;
ramsize += banksize;
if (bankinfo & BWFM_SOCRAM_BANKINFO_RETNTRAM_MASK)
srsize += banksize;
}
}
switch (sc->sc_chip.ch_chip) {
case BRCM_CC_4334_CHIP_ID:
if (sc->sc_chip.ch_chiprev < 2)
srsize = 32 * 1024;
break;
case BRCM_CC_43430_CHIP_ID:
srsize = 64 * 1024;
break;
default:
break;
}
sc->sc_chip.ch_ramsize = ramsize;
sc->sc_chip.ch_srsize = srsize;
}
void
bwfm_chip_sysmem_ramsize(struct bwfm_softc *sc, struct bwfm_core *core)
{
uint32_t coreinfo, nb, banksize, bankinfo;
uint32_t ramsize = 0;
int i;
if (!sc->sc_chip.ch_core_isup(sc, core))
sc->sc_chip.ch_core_reset(sc, core, 0, 0, 0);
coreinfo = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_SOCRAM_COREINFO);
nb = (coreinfo & BWFM_SOCRAM_COREINFO_SRNB_MASK)
>> BWFM_SOCRAM_COREINFO_SRNB_SHIFT;
for (i = 0; i < nb; i++) {
sc->sc_buscore_ops->bc_write(sc,
core->co_base + BWFM_SOCRAM_BANKIDX,
(BWFM_SOCRAM_BANKIDX_MEMTYPE_RAM <<
BWFM_SOCRAM_BANKIDX_MEMTYPE_SHIFT) | i);
bankinfo = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_SOCRAM_BANKINFO);
banksize = ((bankinfo & BWFM_SOCRAM_BANKINFO_SZMASK) + 1)
* BWFM_SOCRAM_BANKINFO_SZBASE;
ramsize += banksize;
}
sc->sc_chip.ch_ramsize = ramsize;
}
void
bwfm_chip_tcm_ramsize(struct bwfm_softc *sc, struct bwfm_core *core)
{
uint32_t cap, nab, nbb, totb, bxinfo, ramsize = 0;
int i;
cap = sc->sc_buscore_ops->bc_read(sc, core->co_base + BWFM_ARMCR4_CAP);
nab = (cap & BWFM_ARMCR4_CAP_TCBANB_MASK) >> BWFM_ARMCR4_CAP_TCBANB_SHIFT;
nbb = (cap & BWFM_ARMCR4_CAP_TCBBNB_MASK) >> BWFM_ARMCR4_CAP_TCBBNB_SHIFT;
totb = nab + nbb;
for (i = 0; i < totb; i++) {
sc->sc_buscore_ops->bc_write(sc,
core->co_base + BWFM_ARMCR4_BANKIDX, i);
bxinfo = sc->sc_buscore_ops->bc_read(sc,
core->co_base + BWFM_ARMCR4_BANKINFO);
ramsize += ((bxinfo & BWFM_ARMCR4_BANKINFO_BSZ_MASK) + 1) *
BWFM_ARMCR4_BANKINFO_BSZ_MULT;
}
sc->sc_chip.ch_ramsize = ramsize;
}
void
bwfm_chip_tcm_rambase(struct bwfm_softc *sc)
{
switch (sc->sc_chip.ch_chip) {
case BRCM_CC_4345_CHIP_ID:
sc->sc_chip.ch_rambase = 0x198000;
break;
case BRCM_CC_4335_CHIP_ID:
case BRCM_CC_4339_CHIP_ID:
case BRCM_CC_4350_CHIP_ID:
case BRCM_CC_4354_CHIP_ID:
case BRCM_CC_4356_CHIP_ID:
case BRCM_CC_43567_CHIP_ID:
case BRCM_CC_43569_CHIP_ID:
case BRCM_CC_43570_CHIP_ID:
case BRCM_CC_4358_CHIP_ID:
case BRCM_CC_4359_CHIP_ID:
case BRCM_CC_43602_CHIP_ID:
case BRCM_CC_4371_CHIP_ID:
sc->sc_chip.ch_rambase = 0x180000;
break;
case BRCM_CC_43465_CHIP_ID:
case BRCM_CC_43525_CHIP_ID:
case BRCM_CC_4365_CHIP_ID:
case BRCM_CC_4366_CHIP_ID:
sc->sc_chip.ch_rambase = 0x200000;
break;
case CY_CC_4373_CHIP_ID:
sc->sc_chip.ch_rambase = 0x160000;
break;
default:
printf("%s: unknown chip: %d\n", DEVNAME(sc),
sc->sc_chip.ch_chip);
break;
}
}
/* BCDC protocol implementation */
int
bwfm_proto_bcdc_query_dcmd(struct bwfm_softc *sc, int ifidx,
int cmd, char *buf, size_t *len)
{
struct bwfm_proto_bcdc_dcmd *dcmd;
size_t size = sizeof(dcmd->hdr) + *len;
int reqid;
int ret = 1;
reqid = sc->sc_bcdc_reqid++;
dcmd = kmem_zalloc(sizeof(*dcmd), KM_SLEEP);
if (*len > sizeof(dcmd->buf))
goto err;
dcmd->hdr.cmd = htole32(cmd);
dcmd->hdr.len = htole32(*len);
dcmd->hdr.flags |= BWFM_BCDC_DCMD_GET;
dcmd->hdr.flags |= BWFM_BCDC_DCMD_ID_SET(reqid);
dcmd->hdr.flags |= BWFM_BCDC_DCMD_IF_SET(ifidx);
dcmd->hdr.flags = htole32(dcmd->hdr.flags);
memcpy(&dcmd->buf, buf, *len);
if (sc->sc_bus_ops->bs_txctl(sc, (void *)dcmd,
sizeof(dcmd->hdr) + *len)) {
DPRINTF(("%s: tx failed\n", DEVNAME(sc)));
goto err;
}
do {
if (sc->sc_bus_ops->bs_rxctl(sc, (void *)dcmd, &size)) {
DPRINTF(("%s: rx failed\n", DEVNAME(sc)));
goto err;
}
dcmd->hdr.cmd = le32toh(dcmd->hdr.cmd);
dcmd->hdr.len = le32toh(dcmd->hdr.len);
dcmd->hdr.flags = le32toh(dcmd->hdr.flags);
dcmd->hdr.status = le32toh(dcmd->hdr.status);
} while (BWFM_BCDC_DCMD_ID_GET(dcmd->hdr.flags) != reqid);
if (BWFM_BCDC_DCMD_ID_GET(dcmd->hdr.flags) != reqid) {
printf("%s: unexpected request id\n", DEVNAME(sc));
goto err;
}
if (buf) {
if (size < *len)
*len = size;
memcpy(buf, dcmd->buf, *len);
}
if (dcmd->hdr.flags & BWFM_BCDC_DCMD_ERROR)
ret = dcmd->hdr.status;
else
ret = 0;
err:
kmem_free(dcmd, sizeof(*dcmd));
return ret;
}
int
bwfm_proto_bcdc_set_dcmd(struct bwfm_softc *sc, int ifidx,
int cmd, char *buf, size_t len)
{
struct bwfm_proto_bcdc_dcmd *dcmd;
size_t size = sizeof(dcmd->hdr) + len;
int ret = 1, reqid;
reqid = sc->sc_bcdc_reqid++;
dcmd = kmem_zalloc(sizeof(*dcmd), KM_SLEEP);
if (len > sizeof(dcmd->buf))
goto err;
dcmd->hdr.cmd = htole32(cmd);
dcmd->hdr.len = htole32(len);
dcmd->hdr.flags |= BWFM_BCDC_DCMD_SET;
dcmd->hdr.flags |= BWFM_BCDC_DCMD_ID_SET(reqid);
dcmd->hdr.flags |= BWFM_BCDC_DCMD_IF_SET(ifidx);
dcmd->hdr.flags = htole32(dcmd->hdr.flags);
memcpy(&dcmd->buf, buf, len);
if (sc->sc_bus_ops->bs_txctl(sc, (void *)dcmd, size)) {
DPRINTF(("%s: tx failed\n", DEVNAME(sc)));
goto err;
}
do {
if (sc->sc_bus_ops->bs_rxctl(sc, (void *)dcmd, &size)) {
DPRINTF(("%s: rx failed\n", DEVNAME(sc)));
goto err;
}
dcmd->hdr.cmd = le32toh(dcmd->hdr.cmd);
dcmd->hdr.len = le32toh(dcmd->hdr.len);
dcmd->hdr.flags = le32toh(dcmd->hdr.flags);
dcmd->hdr.status = le32toh(dcmd->hdr.status);
} while (BWFM_BCDC_DCMD_ID_GET(dcmd->hdr.flags) != reqid);
if (BWFM_BCDC_DCMD_ID_GET(dcmd->hdr.flags) != reqid) {
printf("%s: unexpected request id\n", DEVNAME(sc));
goto err;
}
if (dcmd->hdr.flags & BWFM_BCDC_DCMD_ERROR)
return dcmd->hdr.status;
ret = 0;
err:
kmem_free(dcmd, sizeof(*dcmd));
return ret;
}
void
bwfm_process_blob(struct bwfm_softc *sc, const char *var, uint8_t **blob,
size_t *blobsize)
{
struct bwfm_dload_data *data;
size_t off, remain, len;
if (*blob == NULL || *blobsize == 0)
return;
off = 0;
remain = *blobsize;
data = kmem_alloc(sizeof(*data) + BWFM_DLOAD_MAX_LEN, KM_SLEEP);
while (remain) {
len = uimin(remain, BWFM_DLOAD_MAX_LEN);
data->flag = htole16(BWFM_DLOAD_FLAG_HANDLER_VER_1);
if (off == 0)
data->flag |= htole16(BWFM_DLOAD_FLAG_BEGIN);
if (remain <= BWFM_DLOAD_MAX_LEN)
data->flag |= htole16(BWFM_DLOAD_FLAG_END);
data->type = htole16(BWFM_DLOAD_TYPE_CLM);
data->len = htole32(len);
data->crc = 0;
memcpy(data->data, *blob + off, len);
if (bwfm_fwvar_var_set_data(sc, var, data,
sizeof(*data) + len)) {
printf("%s: could not load blob (%s)\n", DEVNAME(sc),
var);
break;
}
off += len;
remain -= len;
}
kmem_free(data, sizeof(*data) + BWFM_DLOAD_MAX_LEN);
// kmem_free(*blob, *blobsize);
*blob = NULL;
*blobsize = 0;
}
/* FW Variable code */
int
bwfm_fwvar_cmd_get_data(struct bwfm_softc *sc, int cmd, void *data, size_t len)
{
return sc->sc_proto_ops->proto_query_dcmd(sc, 0, cmd, data, &len);
}
int
bwfm_fwvar_cmd_set_data(struct bwfm_softc *sc, int cmd, void *data, size_t len)
{
return sc->sc_proto_ops->proto_set_dcmd(sc, 0, cmd, data, len);
}
int
bwfm_fwvar_cmd_get_int(struct bwfm_softc *sc, int cmd, uint32_t *data)
{
int ret;
ret = bwfm_fwvar_cmd_get_data(sc, cmd, data, sizeof(*data));
*data = le32toh(*data);
return ret;
}
int
bwfm_fwvar_cmd_set_int(struct bwfm_softc *sc, int cmd, uint32_t data)
{
data = htole32(data);
return bwfm_fwvar_cmd_set_data(sc, cmd, &data, sizeof(data));
}
int
bwfm_fwvar_var_get_data(struct bwfm_softc *sc, const char *name, void *data, size_t len)
{
char *buf;
int ret;
buf = kmem_alloc(strlen(name) + 1 + len, KM_SLEEP);
memcpy(buf, name, strlen(name) + 1);
memcpy(buf + strlen(name) + 1, data, len);
ret = bwfm_fwvar_cmd_get_data(sc, BWFM_C_GET_VAR,
buf, strlen(name) + 1 + len);
memcpy(data, buf, len);
kmem_free(buf, strlen(name) + 1 + len);
return ret;
}
int
bwfm_fwvar_var_set_data(struct bwfm_softc *sc, const char *name, void *data, size_t len)
{
char *buf;
int ret;
buf = kmem_alloc(strlen(name) + 1 + len, KM_SLEEP);
memcpy(buf, name, strlen(name) + 1);
memcpy(buf + strlen(name) + 1, data, len);
ret = bwfm_fwvar_cmd_set_data(sc, BWFM_C_SET_VAR,
buf, strlen(name) + 1 + len);
kmem_free(buf, strlen(name) + 1 + len);
return ret;
}
int
bwfm_fwvar_var_get_int(struct bwfm_softc *sc, const char *name, uint32_t *data)
{
int ret;
ret = bwfm_fwvar_var_get_data(sc, name, data, sizeof(*data));
*data = le32toh(*data);
return ret;
}
int
bwfm_fwvar_var_set_int(struct bwfm_softc *sc, const char *name, uint32_t data)
{
data = htole32(data);
return bwfm_fwvar_var_set_data(sc, name, &data, sizeof(data));
}
/* 802.11 code */
void
bwfm_scan(struct bwfm_softc *sc)
{
struct bwfm_escan_params *params;
uint32_t nssid = 0, nchannel = 0;
size_t params_size;
#if 0
/* Active scan is used for scanning for an SSID */
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_PASSIVE_SCAN, 0);
#endif
bwfm_fwvar_cmd_set_int(sc, BWFM_C_SET_PASSIVE_SCAN, 1);
params_size = sizeof(*params);
params_size += sizeof(uint32_t) * ((nchannel + 1) / 2);
params_size += sizeof(struct bwfm_ssid) * nssid;
params = kmem_zalloc(params_size, KM_SLEEP);
memset(params->scan_params.bssid, 0xff,
sizeof(params->scan_params.bssid));
params->scan_params.bss_type = 2;
params->scan_params.nprobes = htole32(-1);
params->scan_params.active_time = htole32(-1);
params->scan_params.passive_time = htole32(-1);
params->scan_params.home_time = htole32(-1);
params->version = htole32(BWFM_ESCAN_REQ_VERSION);
params->action = htole16(WL_ESCAN_ACTION_START);
params->sync_id = htole16(0x1234);
#if 0
/* Scan a specific channel */
params->scan_params.channel_list[0] = htole16(
(1 & 0xff) << 0 |
(3 & 0x3) << 8 |
(2 & 0x3) << 10 |
(2 & 0x3) << 12
);
params->scan_params.channel_num = htole32(
(1 & 0xffff) << 0
);
#endif
bwfm_fwvar_var_set_data(sc, "escan", params, params_size);
kmem_free(params, params_size);
}
static __inline int
bwfm_iswpaoui(const uint8_t *frm)
{
return frm[1] > 3 && le32dec(frm+2) == ((WPA_OUI_TYPE<<24)|WPA_OUI);
}
/*
* Derive wireless security settings from WPA/RSN IE.
*/
static uint32_t
bwfm_get_wsec(struct bwfm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
uint8_t *wpa = ic->ic_opt_ie;
KASSERT(ic->ic_opt_ie_len > 0);
if (wpa[0] != IEEE80211_ELEMID_RSN) {
if (ic->ic_opt_ie_len < 12)
return BWFM_WSEC_NONE;
/* non-RSN IE, expect that we are doing WPA1 */
if ((ic->ic_flags & IEEE80211_F_WPA1) == 0)
return BWFM_WSEC_NONE;
/* Must contain WPA OUI */
if (!bwfm_iswpaoui(wpa))
return BWFM_WSEC_NONE;
switch (le32dec(wpa + 8)) {
case ((WPA_CSE_TKIP<<24)|WPA_OUI):
return BWFM_WSEC_TKIP;
case ((WPA_CSE_CCMP<<24)|WPA_OUI):
return BWFM_WSEC_AES;
default:
return BWFM_WSEC_NONE;
}
} else {
if (ic->ic_opt_ie_len < 14)
return BWFM_WSEC_NONE;
/* RSN IE, expect that we are doing WPA2 */
if ((ic->ic_flags & IEEE80211_F_WPA2) == 0)
return BWFM_WSEC_NONE;
switch (le32dec(wpa + 10)) {
case ((RSN_CSE_TKIP<<24)|RSN_OUI):
return BWFM_WSEC_TKIP;
case ((RSN_CSE_CCMP<<24)|RSN_OUI):
return BWFM_WSEC_AES;
default:
return BWFM_WSEC_NONE;
}
}
}
void
bwfm_connect(struct bwfm_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct bwfm_ext_join_params *params;
if (ic->ic_flags & IEEE80211_F_WPA) {
uint32_t wsec = 0;
uint32_t wpa = 0;
if (ic->ic_opt_ie_len)
bwfm_fwvar_var_set_data(sc, "wpaie", ic->ic_opt_ie, ic->ic_opt_ie_len);
if (ic->ic_flags & IEEE80211_F_WPA1)
wpa |= BWFM_WPA_AUTH_WPA_PSK;
if (ic->ic_flags & IEEE80211_F_WPA2)
wpa |= BWFM_WPA_AUTH_WPA2_PSK;
wsec |= bwfm_get_wsec(sc);
DPRINTF(("%s: WPA enabled, ic_flags = 0x%x, wpa 0x%x, wsec 0x%x\n",
DEVNAME(sc), ic->ic_flags, wpa, wsec));
bwfm_fwvar_var_set_int(sc, "wpa_auth", wpa);
bwfm_fwvar_var_set_int(sc, "wsec", wsec);
} else {
bwfm_fwvar_var_set_int(sc, "wpa_auth", BWFM_WPA_AUTH_DISABLED);
bwfm_fwvar_var_set_int(sc, "wsec", BWFM_WSEC_NONE);
}
bwfm_fwvar_var_set_int(sc, "auth", BWFM_AUTH_OPEN);
bwfm_fwvar_var_set_int(sc, "mfp", BWFM_MFP_NONE);
if (ni->ni_esslen && ni->ni_esslen < BWFM_MAX_SSID_LEN) {
params = kmem_zalloc(sizeof(*params), KM_SLEEP);
memcpy(params->ssid.ssid, ni->ni_essid, ni->ni_esslen);
params->ssid.len = htole32(ni->ni_esslen);
memcpy(params->assoc.bssid, ni->ni_bssid, sizeof(params->assoc.bssid));
params->scan.scan_type = -1;
params->scan.nprobes = htole32(-1);
params->scan.active_time = htole32(-1);
params->scan.passive_time = htole32(-1);
params->scan.home_time = htole32(-1);
if (bwfm_fwvar_var_set_data(sc, "join", params, sizeof(*params))) {
struct bwfm_join_params join;
memset(&join, 0, sizeof(join));
memcpy(join.ssid.ssid, ni->ni_essid, ni->ni_esslen);
join.ssid.len = htole32(ni->ni_esslen);
memcpy(join.assoc.bssid, ni->ni_bssid, sizeof(join.assoc.bssid));
bwfm_fwvar_cmd_set_data(sc, BWFM_C_SET_SSID, &join,
sizeof(join));
}
kmem_free(params, sizeof(*params));
}
}
void
bwfm_get_sta_info(struct bwfm_softc *sc, struct ifmediareq *ifmr)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct bwfm_sta_info sta;
uint32_t flags, txrate;
memset(&sta, 0, sizeof(sta));
memcpy(&sta, ni->ni_macaddr, sizeof(ni->ni_macaddr));
if (bwfm_fwvar_var_get_data(sc, "sta_info", &sta, sizeof(sta)))
return;
if (!IEEE80211_ADDR_EQ(ni->ni_macaddr, sta.ea))
return;
if (le16toh(sta.ver) < 4)
return;
flags = le32toh(sta.flags);
if ((flags & BWFM_STA_SCBSTATS) == 0)
return;
txrate = le32toh(sta.tx_rate);
if (txrate == 0xffffffff)
return;
if ((flags & BWFM_STA_VHT_CAP) != 0) {
ifmr->ifm_active &= ~IFM_TMASK;
ifmr->ifm_active |= IFM_IEEE80211_VHT;
ifmr->ifm_active &= ~IFM_MMASK;
ifmr->ifm_active |= IFM_IEEE80211_11AC;
} else if ((flags & BWFM_STA_N_CAP) != 0) {
ifmr->ifm_active &= ~IFM_TMASK;
ifmr->ifm_active |= IFM_IEEE80211_MCS;
ifmr->ifm_active &= ~IFM_MMASK;
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_curchan))
ifmr->ifm_active |= IFM_IEEE80211_11NG;
else
ifmr->ifm_active |= IFM_IEEE80211_11NA;
}
}
void
bwfm_rx(struct bwfm_softc *sc, struct mbuf *m)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct bwfm_event *e = mtod(m, struct bwfm_event *);
if (m->m_len >= sizeof(e->ehdr) &&
ntohs(e->ehdr.ether_type) == BWFM_ETHERTYPE_LINK_CTL &&
memcmp(BWFM_BRCM_OUI, e->hdr.oui, sizeof(e->hdr.oui)) == 0 &&
ntohs(e->hdr.usr_subtype) == BWFM_BRCM_SUBTYPE_EVENT) {
bwfm_rx_event(sc, m);
// m_freem(m);
return;
}
m_set_rcvif(m, ifp);
if_percpuq_enqueue(ifp->if_percpuq, m);
}
void
bwfm_rx_event(struct bwfm_softc *sc, struct mbuf *m)
{
struct bwfm_task *t;
t = pool_cache_get(sc->sc_freetask, PR_NOWAIT);
if (t == NULL) {
m_freem(m);
printf("%s: no free tasks\n", DEVNAME(sc));
return;
}
t->t_sc = sc;
t->t_cmd = BWFM_TASK_RX_EVENT;
t->t_mbuf = m;
workqueue_enqueue(sc->sc_taskq, (struct work*)t, NULL);
}
void
bwfm_rx_event_cb(struct bwfm_softc *sc, struct mbuf *m)
{
struct ieee80211com *ic = &sc->sc_ic;
struct bwfm_event *e = mtod(m, void *);
size_t len = m->m_len;
int s;
DPRINTF(("%s: event %p len %lu datalen %u code %u status %u"
" reason %u\n", __func__, e, len, ntohl(e->msg.datalen),
ntohl(e->msg.event_type), ntohl(e->msg.status),
ntohl(e->msg.reason)));
if (ntohl(e->msg.event_type) >= BWFM_E_LAST) {
m_freem(m);
return;
}
switch (ntohl(e->msg.event_type)) {
case BWFM_E_ESCAN_RESULT: {
struct bwfm_escan_results *res = (void *)&e[1];
struct bwfm_bss_info *bss;
int i;
if (ntohl(e->msg.status) != BWFM_E_STATUS_PARTIAL) {
/* Scan complete */
s = splnet();
if (ic->ic_opmode != IEEE80211_M_MONITOR)
ieee80211_end_scan(ic);
splx(s);
break;
}
len -= sizeof(*e);
if (len < sizeof(*res) || len < le32toh(res->buflen)) {
m_freem(m);
printf("%s: results too small\n", DEVNAME(sc));
return;
}
len -= sizeof(*res);
if (len < le16toh(res->bss_count) * sizeof(struct bwfm_bss_info)) {
m_freem(m);
printf("%s: results too small\n", DEVNAME(sc));
return;
}
bss = &res->bss_info[0];
for (i = 0; i < le16toh(res->bss_count); i++) {
/* Fix alignment of bss_info */
if (len > sizeof(sc->sc_bss_buf)) {
printf("%s: bss_info buffer too big\n", DEVNAME(sc));
} else {
memcpy(&sc->sc_bss_buf, &res->bss_info[i], len);
bwfm_scan_node(sc, &sc->sc_bss_buf.bss_info,
len);
}
len -= sizeof(*bss) + le32toh(bss->length);
bss = (void *)(((uintptr_t)bss) + le32toh(bss->length));
if (len <= 0)
break;
}
break;
}
case BWFM_E_SET_SSID:
if (ntohl(e->msg.status) == BWFM_E_STATUS_SUCCESS) {
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
} else {
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
break;
case BWFM_E_ASSOC:
if (ntohl(e->msg.status) == BWFM_E_STATUS_SUCCESS) {
ieee80211_new_state(ic, IEEE80211_S_ASSOC, -1);
} else {
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
break;
case BWFM_E_LINK:
if (ntohl(e->msg.status) == BWFM_E_STATUS_SUCCESS &&
ntohl(e->msg.reason) == 0)
break;
/* Link status has changed */
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
default:
break;
}
m_freem(m);
}
void
bwfm_scan_node(struct bwfm_softc *sc, struct bwfm_bss_info *bss, size_t len)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame wh;
struct ieee80211_scanparams scan;
uint8_t rates[sizeof(bss->rates) + 2];
uint8_t ssid[sizeof(bss->ssid) + 2];
uint8_t *frm, *sfrm, *efrm;
uint64_t tsf;
tsf = 0;
sfrm = ((uint8_t *)bss) + le16toh(bss->ie_offset);
efrm = sfrm + le32toh(bss->ie_length);
/* Fake a wireless header with the scan result's BSSID */
memset(&wh, 0, sizeof(wh));
IEEE80211_ADDR_COPY(wh.i_addr2, bss->bssid);
IEEE80211_ADDR_COPY(wh.i_addr3, bss->bssid);
if (efrm - sfrm < 12) {
ic->ic_stats.is_rx_elem_toosmall++;
return;
}
rates[0] = 0;
rates[1] = le32toh(bss->nrates);
memcpy(&rates[2], bss->rates, sizeof(bss->rates));
ssid[0] = 0;
ssid[1] = bss->ssid_len;
memcpy(&ssid[2], bss->ssid, sizeof(bss->ssid));
/* Build scan result */
memset(&scan, 0, sizeof(scan));
scan.sp_tstamp = (uint8_t *)&tsf;
scan.sp_bintval = le16toh(bss->beacon_period);
scan.sp_capinfo = le16toh(bss->capability);
scan.sp_bchan = ieee80211_chan2ieee(ic, ic->ic_curchan);
scan.sp_chan = scan.sp_bchan;
scan.sp_rates = rates;
scan.sp_ssid = ssid;
for (frm = sfrm; frm < efrm; frm += frm[1] + 2) {
switch (frm[0]) {
case IEEE80211_ELEMID_COUNTRY:
scan.sp_country = frm;
break;
case IEEE80211_ELEMID_FHPARMS:
if (ic->ic_phytype == IEEE80211_T_FH) {
if (frm + 6 >= efrm)
break;
scan.sp_fhdwell = le16dec(&frm[2]);
scan.sp_chan = IEEE80211_FH_CHAN(frm[4], frm[5]);
scan.sp_fhindex = frm[6];
}
break;
case IEEE80211_ELEMID_DSPARMS:
if (ic->ic_phytype != IEEE80211_T_FH) {
if (frm + 2 >= efrm)
break;
scan.sp_chan = frm[2];
}
break;
case IEEE80211_ELEMID_TIM:
scan.sp_tim = frm;
scan.sp_timoff = frm - sfrm;
break;
case IEEE80211_ELEMID_XRATES:
scan.sp_xrates = frm;
break;
case IEEE80211_ELEMID_ERP:
if (frm + 1 >= efrm)
break;
if (frm[1] != 1) {
ic->ic_stats.is_rx_elem_toobig++;
break;
}
scan.sp_erp = frm[2];
break;
case IEEE80211_ELEMID_RSN:
scan.sp_wpa = frm;
break;
case IEEE80211_ELEMID_VENDOR:
if (frm + 1 >= efrm)
break;
if (frm + frm[1] + 2 >= efrm)
break;
if (bwfm_iswpaoui(frm))
scan.sp_wpa = frm;
break;
}
if (frm + 1 >= efrm)
break;
}
if (ic->ic_flags & IEEE80211_F_SCAN)
ieee80211_add_scan(ic, &scan, &wh, IEEE80211_FC0_SUBTYPE_BEACON,
le32toh(bss->rssi), 0);
}