/* $NetBSD: bcmgenet.c,v 1.22 2024/10/06 19:34:06 skrll Exp $ */
/*-
* Copyright (c) 2020 Jared McNeill <
[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Broadcom GENETv5
*/
#include "opt_ddb.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: bcmgenet.c,v 1.22 2024/10/06 19:34:06 skrll Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/mutex.h>
#include <sys/callout.h>
#include <sys/cprng.h>
#include <sys/rndsource.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/bpf.h>
#include <dev/mii/miivar.h>
#include <dev/ic/bcmgenetreg.h>
#include <dev/ic/bcmgenetvar.h>
CTASSERT(MCLBYTES == 2048);
#ifdef GENET_DEBUG
#define DPRINTF(...) printf(##__VA_ARGS__)
#else
#define DPRINTF(...) ((void)0)
#endif
#define TX_MAX_SEGS 128
#define TX_DESC_COUNT 256 /* GENET_DMA_DESC_COUNT */
#define RX_DESC_COUNT 256 /* GENET_DMA_DESC_COUNT */
#define MII_BUSY_RETRY 1000
#define GENET_MAX_MDF_FILTER 17
#define TX_SKIP(n, o) (((n) + (o)) % TX_DESC_COUNT)
#define TX_NEXT(n) TX_SKIP(n, 1)
#define RX_NEXT(n) (((n) + 1) % RX_DESC_COUNT)
#define GENET_LOCK(sc) mutex_enter(&(sc)->sc_lock)
#define GENET_UNLOCK(sc) mutex_exit(&(sc)->sc_lock)
#define GENET_ASSERT_LOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_lock))
#define GENET_TXLOCK(sc) mutex_enter(&(sc)->sc_txlock)
#define GENET_TXUNLOCK(sc) mutex_exit(&(sc)->sc_txlock)
#define GENET_ASSERT_TXLOCKED(sc) KASSERT(mutex_owned(&(sc)->sc_txlock))
#define RD4(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
#define WR4(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
static int
genet_mii_readreg(device_t dev, int phy, int reg, uint16_t *val)
{
struct genet_softc *sc = device_private(dev);
int retry;
WR4(sc, GENET_MDIO_CMD,
GENET_MDIO_READ | GENET_MDIO_START_BUSY |
__SHIFTIN(phy, GENET_MDIO_PMD) |
__SHIFTIN(reg, GENET_MDIO_REG));
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
if ((RD4(sc, GENET_MDIO_CMD) & GENET_MDIO_START_BUSY) == 0) {
*val = RD4(sc, GENET_MDIO_CMD) & 0xffff;
break;
}
delay(10);
}
if (retry == 0) {
device_printf(dev, "phy read timeout, phy=%d reg=%d\n",
phy, reg);
return ETIMEDOUT;
}
return 0;
}
static int
genet_mii_writereg(device_t dev, int phy, int reg, uint16_t val)
{
struct genet_softc *sc = device_private(dev);
int retry;
WR4(sc, GENET_MDIO_CMD,
val | GENET_MDIO_WRITE | GENET_MDIO_START_BUSY |
__SHIFTIN(phy, GENET_MDIO_PMD) |
__SHIFTIN(reg, GENET_MDIO_REG));
for (retry = MII_BUSY_RETRY; retry > 0; retry--) {
if ((RD4(sc, GENET_MDIO_CMD) & GENET_MDIO_START_BUSY) == 0)
break;
delay(10);
}
if (retry == 0) {
device_printf(dev, "phy write timeout, phy=%d reg=%d\n",
phy, reg);
return ETIMEDOUT;
}
return 0;
}
static void
genet_update_link(struct genet_softc *sc)
{
struct mii_data *mii = &sc->sc_mii;
uint32_t val;
u_int speed;
if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T ||
IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_SX)
speed = GENET_UMAC_CMD_SPEED_1000;
else if (IFM_SUBTYPE(mii->mii_media_active) == IFM_100_TX)
speed = GENET_UMAC_CMD_SPEED_100;
else
speed = GENET_UMAC_CMD_SPEED_10;
val = RD4(sc, GENET_EXT_RGMII_OOB_CTRL);
val &= ~GENET_EXT_RGMII_OOB_OOB_DISABLE;
val |= GENET_EXT_RGMII_OOB_RGMII_LINK;
val |= GENET_EXT_RGMII_OOB_RGMII_MODE_EN;
if (sc->sc_phy_mode == GENET_PHY_MODE_RGMII)
val |= GENET_EXT_RGMII_OOB_ID_MODE_DISABLE;
else
val &= ~GENET_EXT_RGMII_OOB_ID_MODE_DISABLE;
WR4(sc, GENET_EXT_RGMII_OOB_CTRL, val);
val = RD4(sc, GENET_UMAC_CMD);
val &= ~GENET_UMAC_CMD_SPEED;
val |= __SHIFTIN(speed, GENET_UMAC_CMD_SPEED);
WR4(sc, GENET_UMAC_CMD, val);
}
static void
genet_mii_statchg(struct ifnet *ifp)
{
struct genet_softc * const sc = ifp->if_softc;
genet_update_link(sc);
}
static void
genet_setup_txdesc(struct genet_softc *sc, int index, int flags,
bus_addr_t paddr, u_int len)
{
uint32_t status;
status = flags | __SHIFTIN(len, GENET_TX_DESC_STATUS_BUFLEN);
WR4(sc, GENET_TX_DESC_ADDRESS_LO(index), (uint32_t)paddr);
WR4(sc, GENET_TX_DESC_ADDRESS_HI(index), (uint32_t)(paddr >> 32));
WR4(sc, GENET_TX_DESC_STATUS(index), status);
}
static int
genet_setup_txbuf(struct genet_softc *sc, int index, struct mbuf *m)
{
bus_dma_segment_t *segs;
int error, nsegs, cur, i;
uint32_t flags;
bool nospace;
/* at least one descriptor free ? */
if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
return -1;
error = bus_dmamap_load_mbuf(sc->sc_tx.buf_tag,
sc->sc_tx.buf_map[index].map, m, BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error == EFBIG) {
device_printf(sc->sc_dev,
"TX packet needs too many DMA segments, dropping...\n");
return -2;
}
if (error != 0) {
device_printf(sc->sc_dev,
"TX packet cannot be mapped, retried...\n");
return 0;
}
segs = sc->sc_tx.buf_map[index].map->dm_segs;
nsegs = sc->sc_tx.buf_map[index].map->dm_nsegs;
nospace = sc->sc_tx.queued >= TX_DESC_COUNT - nsegs;
if (nospace) {
bus_dmamap_unload(sc->sc_tx.buf_tag,
sc->sc_tx.buf_map[index].map);
/* XXX coalesce and retry ? */
return -1;
}
bus_dmamap_sync(sc->sc_tx.buf_tag, sc->sc_tx.buf_map[index].map,
0, sc->sc_tx.buf_map[index].map->dm_mapsize, BUS_DMASYNC_PREWRITE);
/* stored in same index as loaded map */
sc->sc_tx.buf_map[index].mbuf = m;
flags = GENET_TX_DESC_STATUS_SOP |
GENET_TX_DESC_STATUS_CRC |
GENET_TX_DESC_STATUS_QTAG;
for (cur = index, i = 0; i < nsegs; i++) {
if (i == nsegs - 1)
flags |= GENET_TX_DESC_STATUS_EOP;
genet_setup_txdesc(sc, cur, flags, segs[i].ds_addr,
segs[i].ds_len);
if (i == 0)
flags &= ~GENET_TX_DESC_STATUS_SOP;
cur = TX_NEXT(cur);
}
return nsegs;
}
static void
genet_setup_rxdesc(struct genet_softc *sc, int index,
bus_addr_t paddr, bus_size_t len)
{
WR4(sc, GENET_RX_DESC_ADDRESS_LO(index), (uint32_t)paddr);
WR4(sc, GENET_RX_DESC_ADDRESS_HI(index), (uint32_t)(paddr >> 32));
}
static int
genet_setup_rxbuf(struct genet_softc *sc, int index, struct mbuf *m)
{
int error;
error = bus_dmamap_load_mbuf(sc->sc_rx.buf_tag,
sc->sc_rx.buf_map[index].map, m, BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error != 0)
return error;
bus_dmamap_sync(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map,
0, sc->sc_rx.buf_map[index].map->dm_mapsize,
BUS_DMASYNC_PREREAD);
sc->sc_rx.buf_map[index].mbuf = m;
genet_setup_rxdesc(sc, index,
sc->sc_rx.buf_map[index].map->dm_segs[0].ds_addr,
sc->sc_rx.buf_map[index].map->dm_segs[0].ds_len);
return 0;
}
static struct mbuf *
genet_alloc_mbufcl(struct genet_softc *sc)
{
struct mbuf *m;
m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
if (m != NULL)
m->m_pkthdr.len = m->m_len = m->m_ext.ext_size;
return m;
}
static void
genet_enable_intr(struct genet_softc *sc)
{
WR4(sc, GENET_INTRL2_CPU_CLEAR_MASK,
GENET_IRQ_TXDMA_DONE | GENET_IRQ_RXDMA_DONE);
}
static void
genet_disable_intr(struct genet_softc *sc)
{
/* Disable interrupts */
WR4(sc, GENET_INTRL2_CPU_SET_MASK, 0xffffffff);
WR4(sc, GENET_INTRL2_CPU_CLEAR, 0xffffffff);
}
static void
genet_tick(void *softc)
{
struct genet_softc *sc = softc;
struct mii_data *mii = &sc->sc_mii;
GENET_LOCK(sc);
mii_tick(mii);
if ((sc->sc_if_flags & IFF_RUNNING) != 0)
callout_schedule(&sc->sc_stat_ch, hz);
GENET_UNLOCK(sc);
}
static void
genet_setup_rxfilter_mdf(struct genet_softc *sc, u_int n, const uint8_t *ea)
{
uint32_t addr0 = (ea[0] << 8) | ea[1];
uint32_t addr1 = (ea[2] << 24) | (ea[3] << 16) | (ea[4] << 8) | ea[5];
WR4(sc, GENET_UMAC_MDF_ADDR0(n), addr0);
WR4(sc, GENET_UMAC_MDF_ADDR1(n), addr1);
}
static void
genet_setup_rxfilter(struct genet_softc *sc)
{
struct ethercom *ec = &sc->sc_ec;
struct ifnet *ifp = &ec->ec_if;
struct ether_multistep step;
struct ether_multi *enm;
uint32_t cmd, mdf_ctrl;
u_int n;
GENET_ASSERT_LOCKED(sc);
ETHER_LOCK(ec);
cmd = RD4(sc, GENET_UMAC_CMD);
/*
* Count the required number of hardware filters. We need one
* for each multicast address, plus one for our own address and
* the broadcast address.
*/
ETHER_FIRST_MULTI(step, ec, enm);
for (n = 2; enm != NULL; n++)
ETHER_NEXT_MULTI(step, enm);
if (n > GENET_MAX_MDF_FILTER)
ec->ec_flags |= ETHER_F_ALLMULTI;
else
ec->ec_flags &= ~ETHER_F_ALLMULTI;
if ((sc->sc_if_flags & IFF_PROMISC) != 0) {
ec->ec_flags |= ETHER_F_ALLMULTI;
cmd |= GENET_UMAC_CMD_PROMISC;
mdf_ctrl = 0;
} else {
cmd &= ~GENET_UMAC_CMD_PROMISC;
genet_setup_rxfilter_mdf(sc, 0, ifp->if_broadcastaddr);
genet_setup_rxfilter_mdf(sc, 1, CLLADDR(ifp->if_sadl));
ETHER_FIRST_MULTI(step, ec, enm);
for (n = 2; enm != NULL; n++) {
genet_setup_rxfilter_mdf(sc, n, enm->enm_addrlo);
ETHER_NEXT_MULTI(step, enm);
}
mdf_ctrl = __BITS(GENET_MAX_MDF_FILTER - 1,
GENET_MAX_MDF_FILTER - n);
}
WR4(sc, GENET_UMAC_CMD, cmd);
WR4(sc, GENET_UMAC_MDF_CTRL, mdf_ctrl);
ETHER_UNLOCK(ec);
}
static int
genet_reset(struct genet_softc *sc)
{
uint32_t val;
val = RD4(sc, GENET_SYS_RBUF_FLUSH_CTRL);
val |= GENET_SYS_RBUF_FLUSH_RESET;
WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, val);
delay(10);
val &= ~GENET_SYS_RBUF_FLUSH_RESET;
WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, val);
delay(10);
WR4(sc, GENET_SYS_RBUF_FLUSH_CTRL, 0);
delay(10);
WR4(sc, GENET_UMAC_CMD, 0);
WR4(sc, GENET_UMAC_CMD,
GENET_UMAC_CMD_LCL_LOOP_EN | GENET_UMAC_CMD_SW_RESET);
delay(10);
WR4(sc, GENET_UMAC_CMD, 0);
WR4(sc, GENET_UMAC_MIB_CTRL, GENET_UMAC_MIB_RESET_RUNT |
GENET_UMAC_MIB_RESET_RX | GENET_UMAC_MIB_RESET_TX);
WR4(sc, GENET_UMAC_MIB_CTRL, 0);
WR4(sc, GENET_UMAC_MAX_FRAME_LEN, 1536);
val = RD4(sc, GENET_RBUF_CTRL);
val |= GENET_RBUF_ALIGN_2B;
WR4(sc, GENET_RBUF_CTRL, val);
WR4(sc, GENET_RBUF_TBUF_SIZE_CTRL, 1);
return 0;
}
static void
genet_set_rxthresh(struct genet_softc *sc, int qid, int usecs, int count)
{
int ticks;
uint32_t val;
/* convert to 125MHz/1024 ticks */
ticks = howmany(usecs * 125, 1024);
if (count < 1)
count = 1;
if (count > GENET_INTR_THRESHOLD_MASK)
count = GENET_INTR_THRESHOLD_MASK;
if (ticks < 0)
ticks = 0;
if (ticks > GENET_DMA_RING_TIMEOUT_MASK)
ticks = GENET_DMA_RING_TIMEOUT_MASK;
WR4(sc, GENET_RX_DMA_MBUF_DONE_THRES(qid), count);
val = RD4(sc, GENET_RX_DMA_RING_TIMEOUT(qid));
val &= ~GENET_DMA_RING_TIMEOUT_MASK;
val |= ticks;
WR4(sc, GENET_RX_DMA_RING_TIMEOUT(qid), val);
}
static void
genet_set_txthresh(struct genet_softc *sc, int qid, int count)
{
if (count < 1)
count = 1;
if (count > GENET_INTR_THRESHOLD_MASK)
count = GENET_INTR_THRESHOLD_MASK;
WR4(sc, GENET_TX_DMA_MBUF_DONE_THRES(qid), count);
}
static void
genet_init_rings(struct genet_softc *sc, int qid)
{
uint32_t val;
/* TX ring */
sc->sc_tx.queued = 0;
sc->sc_tx.cidx = sc->sc_tx.pidx = 0;
WR4(sc, GENET_TX_SCB_BURST_SIZE, 0x08);
WR4(sc, GENET_TX_DMA_READ_PTR_LO(qid), 0);
WR4(sc, GENET_TX_DMA_READ_PTR_HI(qid), 0);
WR4(sc, GENET_TX_DMA_CONS_INDEX(qid), 0);
WR4(sc, GENET_TX_DMA_PROD_INDEX(qid), 0);
WR4(sc, GENET_TX_DMA_RING_BUF_SIZE(qid),
__SHIFTIN(TX_DESC_COUNT, GENET_TX_DMA_RING_BUF_SIZE_DESC_COUNT) |
__SHIFTIN(MCLBYTES, GENET_TX_DMA_RING_BUF_SIZE_BUF_LENGTH));
WR4(sc, GENET_TX_DMA_START_ADDR_LO(qid), 0);
WR4(sc, GENET_TX_DMA_START_ADDR_HI(qid), 0);
WR4(sc, GENET_TX_DMA_END_ADDR_LO(qid),
TX_DESC_COUNT * GENET_DMA_DESC_SIZE / 4 - 1);
WR4(sc, GENET_TX_DMA_END_ADDR_HI(qid), 0);
WR4(sc, GENET_TX_DMA_FLOW_PERIOD(qid), 0);
WR4(sc, GENET_TX_DMA_WRITE_PTR_LO(qid), 0);
WR4(sc, GENET_TX_DMA_WRITE_PTR_HI(qid), 0);
/* interrupt after 10 packets or when ring empty */
genet_set_txthresh(sc, qid, 10);
WR4(sc, GENET_TX_DMA_RING_CFG, __BIT(qid)); /* enable */
/* Enable transmit DMA */
val = RD4(sc, GENET_TX_DMA_CTRL);
val |= GENET_TX_DMA_CTRL_EN;
val |= GENET_TX_DMA_CTRL_RBUF_EN(GENET_DMA_DEFAULT_QUEUE);
WR4(sc, GENET_TX_DMA_CTRL, val);
/* RX ring */
sc->sc_rx.cidx = sc->sc_rx.pidx = 0;
WR4(sc, GENET_RX_SCB_BURST_SIZE, 0x08);
WR4(sc, GENET_RX_DMA_WRITE_PTR_LO(qid), 0);
WR4(sc, GENET_RX_DMA_WRITE_PTR_HI(qid), 0);
WR4(sc, GENET_RX_DMA_PROD_INDEX(qid), 0);
WR4(sc, GENET_RX_DMA_CONS_INDEX(qid), 0);
WR4(sc, GENET_RX_DMA_RING_BUF_SIZE(qid),
__SHIFTIN(RX_DESC_COUNT, GENET_RX_DMA_RING_BUF_SIZE_DESC_COUNT) |
__SHIFTIN(MCLBYTES, GENET_RX_DMA_RING_BUF_SIZE_BUF_LENGTH));
WR4(sc, GENET_RX_DMA_START_ADDR_LO(qid), 0);
WR4(sc, GENET_RX_DMA_START_ADDR_HI(qid), 0);
WR4(sc, GENET_RX_DMA_END_ADDR_LO(qid),
RX_DESC_COUNT * GENET_DMA_DESC_SIZE / 4 - 1);
WR4(sc, GENET_RX_DMA_END_ADDR_HI(qid), 0);
WR4(sc, GENET_RX_DMA_XON_XOFF_THRES(qid),
__SHIFTIN(5, GENET_RX_DMA_XON_XOFF_THRES_LO) |
__SHIFTIN(RX_DESC_COUNT >> 4, GENET_RX_DMA_XON_XOFF_THRES_HI));
WR4(sc, GENET_RX_DMA_READ_PTR_LO(qid), 0);
WR4(sc, GENET_RX_DMA_READ_PTR_HI(qid), 0);
/*
* interrupt on first packet,
* mitigation timeout timeout 57 us (~84 minimal packets at 1Gbit/s)
*/
genet_set_rxthresh(sc, qid, 57, 10);
WR4(sc, GENET_RX_DMA_RING_CFG, __BIT(qid)); /* enable */
/* Enable receive DMA */
val = RD4(sc, GENET_RX_DMA_CTRL);
val |= GENET_RX_DMA_CTRL_EN;
val |= GENET_RX_DMA_CTRL_RBUF_EN(GENET_DMA_DEFAULT_QUEUE);
WR4(sc, GENET_RX_DMA_CTRL, val);
}
static int
genet_init_locked(struct genet_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct mii_data *mii = &sc->sc_mii;
uint32_t val;
const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
GENET_ASSERT_LOCKED(sc);
GENET_ASSERT_TXLOCKED(sc);
if ((ifp->if_flags & IFF_RUNNING) != 0)
return 0;
if (sc->sc_phy_mode == GENET_PHY_MODE_RGMII ||
sc->sc_phy_mode == GENET_PHY_MODE_RGMII_ID ||
sc->sc_phy_mode == GENET_PHY_MODE_RGMII_RXID ||
sc->sc_phy_mode == GENET_PHY_MODE_RGMII_TXID)
WR4(sc, GENET_SYS_PORT_CTRL,
GENET_SYS_PORT_MODE_EXT_GPHY);
else
WR4(sc, GENET_SYS_PORT_CTRL, 0);
/* Write hardware address */
val = enaddr[3] | (enaddr[2] << 8) | (enaddr[1] << 16) |
(enaddr[0] << 24);
WR4(sc, GENET_UMAC_MAC0, val);
val = enaddr[5] | (enaddr[4] << 8);
WR4(sc, GENET_UMAC_MAC1, val);
/* Setup RX filter */
sc->sc_if_flags = ifp->if_flags;
genet_setup_rxfilter(sc);
/* Setup TX/RX rings */
genet_init_rings(sc, GENET_DMA_DEFAULT_QUEUE);
/* Enable transmitter and receiver */
val = RD4(sc, GENET_UMAC_CMD);
val |= GENET_UMAC_CMD_TXEN;
val |= GENET_UMAC_CMD_RXEN;
WR4(sc, GENET_UMAC_CMD, val);
/* Enable interrupts */
genet_enable_intr(sc);
GENET_ASSERT_TXLOCKED(sc);
sc->sc_txrunning = true;
ifp->if_flags |= IFF_RUNNING;
sc->sc_if_flags |= IFF_RUNNING;
mii_mediachg(mii);
callout_schedule(&sc->sc_stat_ch, hz);
return 0;
}
static int
genet_init(struct ifnet *ifp)
{
struct genet_softc *sc = ifp->if_softc;
int error;
GENET_LOCK(sc);
GENET_TXLOCK(sc);
error = genet_init_locked(sc);
GENET_TXUNLOCK(sc);
GENET_UNLOCK(sc);
return error;
}
static int
genet_free_txbuf(struct genet_softc *sc, int index)
{
struct genet_bufmap *bmap;
bmap = &sc->sc_tx.buf_map[index];
if (bmap->mbuf == NULL)
return 0;
if (bmap->map->dm_mapsize > 0) {
bus_dmamap_sync(sc->sc_tx.buf_tag, bmap->map,
0, bmap->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
}
bus_dmamap_unload(sc->sc_tx.buf_tag, bmap->map);
m_freem(bmap->mbuf);
bmap->mbuf = NULL;
return 1;
}
static void
genet_stop_locked(struct genet_softc *sc, int disable)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint32_t val;
int i;
GENET_ASSERT_LOCKED(sc);
GENET_TXLOCK(sc);
sc->sc_txrunning = false;
GENET_TXUNLOCK(sc);
callout_halt(&sc->sc_stat_ch, &sc->sc_lock);
mii_down(&sc->sc_mii);
/* Disable receiver */
val = RD4(sc, GENET_UMAC_CMD);
val &= ~GENET_UMAC_CMD_RXEN;
WR4(sc, GENET_UMAC_CMD, val);
/* Stop receive DMA */
val = RD4(sc, GENET_RX_DMA_CTRL);
val &= ~GENET_RX_DMA_CTRL_EN;
WR4(sc, GENET_RX_DMA_CTRL, val);
/* Stop transmit DMA */
val = RD4(sc, GENET_TX_DMA_CTRL);
val &= ~GENET_TX_DMA_CTRL_EN;
WR4(sc, GENET_TX_DMA_CTRL, val);
/* Flush data in the TX FIFO */
WR4(sc, GENET_UMAC_TX_FLUSH, 1);
delay(10);
WR4(sc, GENET_UMAC_TX_FLUSH, 0);
/* Disable transmitter */
val = RD4(sc, GENET_UMAC_CMD);
val &= ~GENET_UMAC_CMD_TXEN;
WR4(sc, GENET_UMAC_CMD, val);
/* Disable interrupts */
genet_disable_intr(sc);
/* Free TX buffers */
for (i=0; i<TX_DESC_COUNT; ++i)
genet_free_txbuf(sc, i);
sc->sc_if_flags &= ~IFF_RUNNING;
ifp->if_flags &= ~IFF_RUNNING;
}
static void
genet_stop(struct ifnet *ifp, int disable)
{
struct genet_softc * const sc = ifp->if_softc;
GENET_LOCK(sc);
genet_stop_locked(sc, disable);
GENET_UNLOCK(sc);
}
static void
genet_rxintr(struct genet_softc *sc, int qid)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
int error, index, len, n;
struct mbuf *m, *m0;
uint32_t status, pidx, total;
int pkts = 0;
pidx = RD4(sc, GENET_RX_DMA_PROD_INDEX(qid)) & 0xffff;
total = (pidx - sc->sc_rx.cidx) & 0xffff;
DPRINTF("RX pidx=%08x total=%d\n", pidx, total);
index = sc->sc_rx.cidx % RX_DESC_COUNT;
for (n = 0; n < total; n++) {
status = RD4(sc, GENET_RX_DESC_STATUS(index));
if (status & GENET_RX_DESC_STATUS_ALL_ERRS) {
if (status & GENET_RX_DESC_STATUS_OVRUN_ERR)
device_printf(sc->sc_dev, "overrun\n");
if (status & GENET_RX_DESC_STATUS_CRC_ERR)
device_printf(sc->sc_dev, "CRC error\n");
if (status & GENET_RX_DESC_STATUS_RX_ERR)
device_printf(sc->sc_dev, "receive error\n");
if (status & GENET_RX_DESC_STATUS_FRAME_ERR)
device_printf(sc->sc_dev, "frame error\n");
if (status & GENET_RX_DESC_STATUS_LEN_ERR)
device_printf(sc->sc_dev, "length error\n");
if_statinc(ifp, if_ierrors);
goto next;
}
if (status & GENET_RX_DESC_STATUS_OWN)
device_printf(sc->sc_dev, "OWN %d of %d\n",n,total);
len = __SHIFTOUT(status, GENET_RX_DESC_STATUS_BUFLEN);
if (len < ETHER_ALIGN) {
if_statinc(ifp, if_ierrors);
goto next;
}
m = sc->sc_rx.buf_map[index].mbuf;
if ((m0 = genet_alloc_mbufcl(sc)) == NULL) {
if_statinc(ifp, if_ierrors);
goto next;
}
MCLAIM(m0, &sc->sc_ec.ec_rx_mowner);
/* unload map before it gets loaded in setup_rxbuf */
if (sc->sc_rx.buf_map[index].map->dm_mapsize > 0) {
bus_dmamap_sync(sc->sc_rx.buf_tag,
sc->sc_rx.buf_map[index].map,
0, sc->sc_rx.buf_map[index].map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
}
bus_dmamap_unload(sc->sc_rx.buf_tag, sc->sc_rx.buf_map[index].map);
sc->sc_rx.buf_map[index].mbuf = NULL;
error = genet_setup_rxbuf(sc, index, m0);
if (error != 0) {
m_freem(m0);
if_statinc(ifp, if_ierrors);
/* XXX mbuf is unloaded but load failed */
m_freem(m);
device_printf(sc->sc_dev,
"cannot load RX mbuf. panic?\n");
goto next;
}
DPRINTF("RX [#%d] index=%02x status=%08x len=%d adj_len=%d\n",
n, index, status, len, len - ETHER_ALIGN);
m_set_rcvif(m, ifp);
m->m_len = m->m_pkthdr.len = len;
m_adj(m, ETHER_ALIGN);
if_percpuq_enqueue(ifp->if_percpuq, m);
++pkts;
next:
index = RX_NEXT(index);
sc->sc_rx.cidx = (sc->sc_rx.cidx + 1) & 0xffff;
WR4(sc, GENET_RX_DMA_CONS_INDEX(qid), sc->sc_rx.cidx);
}
if (pkts != 0)
rnd_add_uint32(&sc->sc_rndsource, pkts);
}
static void
genet_txintr(struct genet_softc *sc, int qid)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
int cidx, i, pkts = 0;
cidx = RD4(sc, GENET_TX_DMA_CONS_INDEX(qid)) & 0xffff;
i = sc->sc_tx.cidx % TX_DESC_COUNT;
while (sc->sc_tx.cidx != cidx) {
pkts += genet_free_txbuf(sc, i);
i = TX_NEXT(i);
sc->sc_tx.cidx = (sc->sc_tx.cidx + 1) & 0xffff;
}
if (pkts != 0) {
if_statadd(ifp, if_opackets, pkts);
rnd_add_uint32(&sc->sc_rndsource, pkts);
}
if_schedule_deferred_start(ifp);
}
static void
genet_start_locked(struct genet_softc *sc)
{
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct mbuf *m;
int nsegs, index, cnt;
GENET_ASSERT_TXLOCKED(sc);
if (!sc->sc_txrunning)
return;
const int qid = GENET_DMA_DEFAULT_QUEUE;
index = sc->sc_tx.pidx % TX_DESC_COUNT;
cnt = 0;
sc->sc_tx.queued = (RD4(sc, GENET_TX_DMA_PROD_INDEX(qid))
- sc->sc_tx.cidx) & 0xffff;
/* At least one descriptor free ? */
if (sc->sc_tx.queued >= TX_DESC_COUNT - 1)
return;
for (;;) {
IFQ_POLL(&ifp->if_snd, m);
if (m == NULL)
break;
nsegs = genet_setup_txbuf(sc, index, m);
if (nsegs <= 0) {
if (nsegs == -2) {
IFQ_DEQUEUE(&ifp->if_snd, m);
m_freem(m);
continue;
}
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
bpf_mtap(ifp, m, BPF_D_OUT);
index = TX_SKIP(index, nsegs);
sc->sc_tx.queued += nsegs;
sc->sc_tx.pidx = (sc->sc_tx.pidx + nsegs) & 0xffff;
cnt++;
}
if (cnt != 0)
WR4(sc, GENET_TX_DMA_PROD_INDEX(qid), sc->sc_tx.pidx);
}
static void
genet_start(struct ifnet *ifp)
{
struct genet_softc *sc = ifp->if_softc;
GENET_TXLOCK(sc);
genet_start_locked(sc);
GENET_TXUNLOCK(sc);
}
int
genet_intr(void *arg)
{
struct genet_softc *sc = arg;
uint32_t val;
val = RD4(sc, GENET_INTRL2_CPU_STAT);
val &= ~RD4(sc, GENET_INTRL2_CPU_STAT_MASK);
WR4(sc, GENET_INTRL2_CPU_CLEAR, val);
if (val & GENET_IRQ_RXDMA_DONE) {
GENET_LOCK(sc);
genet_rxintr(sc, GENET_DMA_DEFAULT_QUEUE);
GENET_UNLOCK(sc);
}
if (val & GENET_IRQ_TXDMA_DONE) {
genet_txintr(sc, GENET_DMA_DEFAULT_QUEUE);
}
return 1;
}
static int
genet_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct genet_softc *sc = ifp->if_softc;
int error;
switch (cmd) {
case SIOCADDMULTI:
case SIOCDELMULTI:
break;
default:
KASSERT(IFNET_LOCKED(ifp));
}
const int s = splnet();
error = ether_ioctl(ifp, cmd, data);
splx(s);
if (error != ENETRESET)
return error;
error = 0;
if (cmd == SIOCSIFCAP)
error = if_init(ifp);
else if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
GENET_LOCK(sc);
if ((sc->sc_if_flags & IFF_RUNNING) != 0)
genet_setup_rxfilter(sc);
GENET_UNLOCK(sc);
}
return error;
}
static int
genet_ifflags_cb(struct ethercom *ec)
{
struct ifnet * const ifp = &ec->ec_if;
struct genet_softc * const sc = ifp->if_softc;
int ret = 0;
KASSERT(IFNET_LOCKED(ifp));
GENET_LOCK(sc);
u_short change = ifp->if_flags ^ sc->sc_if_flags;
sc->sc_if_flags = ifp->if_flags;
if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
ret = ENETRESET;
} else if ((change & IFF_PROMISC) != 0) {
if ((sc->sc_if_flags & IFF_RUNNING) != 0)
genet_setup_rxfilter(sc);
}
GENET_UNLOCK(sc);
return ret;
}
static void
genet_get_eaddr(struct genet_softc *sc, uint8_t *eaddr)
{
prop_dictionary_t prop = device_properties(sc->sc_dev);
uint32_t maclo, machi, val;
prop_data_t eaprop;
eaprop = prop_dictionary_get(prop, "mac-address");
if (eaprop != NULL) {
KASSERT(prop_object_type(eaprop) == PROP_TYPE_DATA);
KASSERT(prop_data_size(eaprop) == ETHER_ADDR_LEN);
memcpy(eaddr, prop_data_value(eaprop),
ETHER_ADDR_LEN);
return;
}
maclo = machi = 0;
val = RD4(sc, GENET_SYS_RBUF_FLUSH_CTRL);
if ((val & GENET_SYS_RBUF_FLUSH_RESET) == 0) {
maclo = RD4(sc, GENET_UMAC_MAC0);
machi = RD4(sc, GENET_UMAC_MAC1) & 0xffff;
}
if (maclo == 0 && machi == 0) {
/* Create one */
maclo = 0x00f2 | (cprng_strong32() & 0xffff0000);
machi = cprng_strong32() & 0xffff;
}
eaddr[0] = (maclo >> 24) & 0xff;
eaddr[1] = (maclo >> 16) & 0xff;
eaddr[2] = (maclo >> 8) & 0xff;
eaddr[3] = (maclo >> 0) & 0xff;
eaddr[4] = (machi >> 8) & 0xff;
eaddr[5] = (machi >> 0) & 0xff;
}
static int
genet_setup_dma(struct genet_softc *sc, int qid)
{
struct mbuf *m;
int error, i;
/* Setup TX ring */
sc->sc_tx.buf_tag = sc->sc_dmat;
for (i = 0; i < TX_DESC_COUNT; i++) {
error = bus_dmamap_create(sc->sc_tx.buf_tag, MCLBYTES,
TX_MAX_SEGS, MCLBYTES, 0, BUS_DMA_WAITOK,
&sc->sc_tx.buf_map[i].map);
if (error != 0) {
device_printf(sc->sc_dev,
"cannot create TX buffer map\n");
return error;
}
}
/* Setup RX ring */
sc->sc_rx.buf_tag = sc->sc_dmat;
for (i = 0; i < RX_DESC_COUNT; i++) {
error = bus_dmamap_create(sc->sc_rx.buf_tag, MCLBYTES,
1, MCLBYTES, 0, BUS_DMA_WAITOK,
&sc->sc_rx.buf_map[i].map);
if (error != 0) {
device_printf(sc->sc_dev,
"cannot create RX buffer map\n");
return error;
}
if ((m = genet_alloc_mbufcl(sc)) == NULL) {
device_printf(sc->sc_dev, "cannot allocate RX mbuf\n");
return ENOMEM;
}
error = genet_setup_rxbuf(sc, i, m);
if (error != 0) {
device_printf(sc->sc_dev, "cannot create RX buffer\n");
return error;
}
}
return 0;
}
static void
genet_claim_rxring(struct genet_softc *sc, int qid)
{
struct mbuf *m;
int i;
/* Claim mbufs from RX ring */
for (i = 0; i < RX_DESC_COUNT; i++) {
m = sc->sc_rx.buf_map[i].mbuf;
if (m != NULL) {
MCLAIM(m, &sc->sc_ec.ec_rx_mowner);
}
}
}
int
genet_attach(struct genet_softc *sc)
{
struct mii_data *mii = &sc->sc_mii;
struct ifnet *ifp = &sc->sc_ec.ec_if;
uint8_t eaddr[ETHER_ADDR_LEN];
u_int maj, min;
int mii_flags = 0;
const uint32_t rev = RD4(sc, GENET_SYS_REV_CTRL);
min = __SHIFTOUT(rev, SYS_REV_MINOR);
maj = __SHIFTOUT(rev, SYS_REV_MAJOR);
if (maj == 0)
maj++;
else if (maj == 5 || maj == 6)
maj--;
if (maj != 5) {
aprint_error(": GENETv%d.%d not supported\n", maj, min);
return ENXIO;
}
switch (sc->sc_phy_mode) {
case GENET_PHY_MODE_RGMII_TXID:
mii_flags |= MIIF_TXID;
break;
case GENET_PHY_MODE_RGMII_RXID:
mii_flags |= MIIF_RXID;
break;
case GENET_PHY_MODE_RGMII_ID:
mii_flags |= MIIF_RXID | MIIF_TXID;
break;
case GENET_PHY_MODE_RGMII:
default:
break;
}
aprint_naive("\n");
aprint_normal(": GENETv%d.%d\n", maj, min);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NET);
mutex_init(&sc->sc_txlock, MUTEX_DEFAULT, IPL_NET);
callout_init(&sc->sc_stat_ch, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_stat_ch, genet_tick, sc);
genet_get_eaddr(sc, eaddr);
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n", ether_sprintf(eaddr));
/* Soft reset EMAC core */
genet_reset(sc);
/* Setup DMA descriptors */
if (genet_setup_dma(sc, GENET_DMA_DEFAULT_QUEUE) != 0) {
aprint_error_dev(sc->sc_dev, "failed to setup DMA descriptors\n");
return EINVAL;
}
/* Setup ethernet interface */
ifp->if_softc = sc;
snprintf(ifp->if_xname, IFNAMSIZ, "%s", device_xname(sc->sc_dev));
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_extflags = IFEF_MPSAFE;
ifp->if_start = genet_start;
ifp->if_ioctl = genet_ioctl;
ifp->if_init = genet_init;
ifp->if_stop = genet_stop;
ifp->if_capabilities = 0;
ifp->if_capenable = ifp->if_capabilities;
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
/* 802.1Q VLAN-sized frames are supported */
sc->sc_ec.ec_capabilities |= ETHERCAP_VLAN_MTU;
/* Attach MII driver */
sc->sc_ec.ec_mii = mii;
ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);
mii->mii_ifp = ifp;
mii->mii_readreg = genet_mii_readreg;
mii->mii_writereg = genet_mii_writereg;
mii->mii_statchg = genet_mii_statchg;
mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phy_id, MII_OFFSET_ANY,
mii_flags);
if (LIST_EMPTY(&mii->mii_phys)) {
aprint_error_dev(sc->sc_dev, "no PHY found!\n");
return ENOENT;
}
ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
/* Attach interface */
if_attach(ifp);
if_deferred_start_init(ifp, NULL);
/* Attach ethernet interface */
ether_ifattach(ifp, eaddr);
ether_set_ifflags_cb(&sc->sc_ec, genet_ifflags_cb);
/* MBUFTRACE */
genet_claim_rxring(sc, GENET_DMA_DEFAULT_QUEUE);
rnd_attach_source(&sc->sc_rndsource, ifp->if_xname, RND_TYPE_NET,
RND_FLAG_DEFAULT);
return 0;
}
#ifdef DDB
void genet_debug(void);
void
genet_debug(void)
{
device_t dev = device_find_by_xname("genet0");
if (dev == NULL)
return;
struct genet_softc * const sc = device_private(dev);
const int qid = GENET_DMA_DEFAULT_QUEUE;
printf("TX CIDX = %08x (soft)\n", sc->sc_tx.cidx);
printf("TX CIDX = %08x\n", RD4(sc, GENET_TX_DMA_CONS_INDEX(qid)));
printf("TX PIDX = %08x (soft)\n", sc->sc_tx.pidx);
printf("TX PIDX = %08x\n", RD4(sc, GENET_TX_DMA_PROD_INDEX(qid)));
printf("RX CIDX = %08x (soft)\n", sc->sc_rx.cidx);
printf("RX CIDX = %08x\n", RD4(sc, GENET_RX_DMA_CONS_INDEX(qid)));
printf("RX PIDX = %08x (soft)\n", sc->sc_rx.pidx);
printf("RX PIDX = %08x\n", RD4(sc, GENET_RX_DMA_PROD_INDEX(qid)));
}
#endif