/*      $NetBSD: athrate-sample.c,v 1.21 2021/08/09 21:20:50 andvar Exp $ */

/*-
* Copyright (c) 2005 John Bicket
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer,
*    without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
*    similar to the "NO WARRANTY" disclaimer below ("Disclaimer") and any
*    redistribution must be conditioned upon including a substantially
*    similar Disclaimer requirement for further binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
*    of any contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTIBILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
* IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.
*/

#include <sys/cdefs.h>
#ifdef __FreeBSD__
__FBSDID("$FreeBSD: src/sys/dev/ath/ath_rate/sample/sample.c,v 1.9 2005/07/22 16:50:17 sam Exp $");
#endif
#ifdef __NetBSD__
__KERNEL_RCSID(0, "$NetBSD: athrate-sample.c,v 1.21 2021/08/09 21:20:50 andvar Exp $");
#endif


/*
* John Bicket's SampleRate control algorithm.
*/
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#endif

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysctl.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/device.h>

#include <sys/bus.h>

#include <sys/socket.h>

#include <net/if.h>
#include <net/if_media.h>
#include <net/if_arp.h>
#include <net/if_ether.h>               /* XXX for ether_sprintf */

#include <net80211/ieee80211_var.h>

#include <net/bpf.h>

#ifdef INET
#include <netinet/in.h>
#endif

#include "ah_desc.h"
#include <dev/ic/athvar.h>
#include <dev/ic/athrate-sample.h>

#define SAMPLE_DEBUG
#ifdef SAMPLE_DEBUG
enum {
       ATH_DEBUG_RATE          = 0x00000010    /* rate control */
};
#define DPRINTF(sc, _fmt, ...) do {                             \
       if (sc->sc_debug & ATH_DEBUG_RATE)                      \
               printf(_fmt, __VA_ARGS__);                      \
} while (0)
#else
#define DPRINTF(sc, _fmt, ...)
#endif

/*
* This file is an implementation of the SampleRate algorithm
* in "Bit-rate Selection in Wireless Networks"
* (http://www.pdos.lcs.mit.edu/papers/jbicket-ms.ps)
*
* SampleRate chooses the bit-rate it predicts will provide the most
* throughput based on estimates of the expected per-packet
* transmission time for each bit-rate.  SampleRate periodically sends
* packets at bit-rates other than the current one to estimate when
* another bit-rate will provide better performance. SampleRate
* switches to another bit-rate when its estimated per-packet
* transmission time becomes smaller than the current bit-rate's.
* SampleRate reduces the number of bit-rates it must sample by
* eliminating those that could not perform better than the one
* currently being used.  SampleRate also stops probing at a bit-rate
* if it experiences several successive losses.
*
* The difference between the algorithm in the thesis and the one in this
* file is that the one in this file uses a ewma instead of a window.
*
* Also, this implementation tracks the average transmission time for
* a few different packet sizes independently for each link.
*/

#define STALE_FAILURE_TIMEOUT_MS 10000
#define MIN_SWITCH_MS 1000

static void     ath_rate_ctl_reset(struct ath_softc *, struct ieee80211_node *);

static inline int
size_to_bin(int size)
{
       int x = 0;
       for (x = 0; x < NUM_PACKET_SIZE_BINS; x++) {
               if (size <= packet_size_bins[x]) {
                       return x;
               }
       }
       return NUM_PACKET_SIZE_BINS-1;
}
static inline int bin_to_size(int index) {
       return packet_size_bins[index];
}

static inline int
rate_to_ndx(struct sample_node *sn, int rate) {
       int x = 0;
       for (x = 0; x < sn->num_rates; x++) {
               if (sn->rates[x].rate == rate) {
                       return x;
               }
       }
       return -1;
}

void
ath_rate_node_init(struct ath_softc *sc, struct ath_node *an)
{
       DPRINTF(sc, "%s:\n", __func__);
       /* NB: assumed to be zero'd by caller */
}

void
ath_rate_node_cleanup(struct ath_softc *sc, struct ath_node *an)
{
       DPRINTF(sc, "%s:\n", __func__);
}


/*
* returns the ndx with the lowest average_tx_time,
* or -1 if all the average_tx_times are 0.
*/
static inline int best_rate_ndx(struct sample_node *sn, int size_bin,
                                 int require_acked_before)
{
       int x = 0;
       int best_ndx = 0;
       int best_rate_tt = 0;
       for (x = 0; x < sn->num_rates; x++) {
               int tt = sn->stats[size_bin][x].average_tx_time;
               if (tt <= 0 || (require_acked_before &&
                               !sn->stats[size_bin][x].packets_acked)) {
                       continue;
               }

               /* 9 megabits never works better than 12 */
               if (sn->rates[x].rate == 18)
                       continue;

               /* don't use a bit-rate that has been failing */
               if (sn->stats[size_bin][x].successive_failures > 3)
                       continue;

               if (!best_rate_tt || best_rate_tt > tt) {
                       best_rate_tt = tt;
                       best_ndx = x;
               }
       }
       return (best_rate_tt) ? best_ndx : -1;
}

/*
* pick a good "random" bit-rate to sample other than the current one
*/
static inline int
pick_sample_ndx(struct sample_node *sn, int size_bin)
{
       int x = 0;
       int current_ndx = 0;
       unsigned current_tt = 0;

       current_ndx = sn->current_rate[size_bin];
       if (current_ndx < 0) {
               /* no successes yet, send at the lowest bit-rate */
               return 0;
       }

       current_tt = sn->stats[size_bin][current_ndx].average_tx_time;

       for (x = 0; x < sn->num_rates; x++) {
               int ndx = (sn->last_sample_ndx[size_bin]+1+x) % sn->num_rates;

               /* don't sample the current bit-rate */
               if (ndx == current_ndx)
                       continue;

               /* this bit-rate is always worse than the current one */
               if (sn->stats[size_bin][ndx].perfect_tx_time > current_tt)
                       continue;

               /* rarely sample bit-rates that fail a lot */
               if (ticks - sn->stats[size_bin][ndx].last_tx < ((hz * STALE_FAILURE_TIMEOUT_MS)/1000) &&
                   sn->stats[size_bin][ndx].successive_failures > 3)
                       continue;

               /* don't sample more than 2 indexes higher
                * for rates higher than 11 megabits
                */
               if (sn->rates[ndx].rate > 22 && ndx > current_ndx + 2)
                       continue;

               /* 9 megabits never works better than 12 */
               if (sn->rates[ndx].rate == 18)
                       continue;

               /* if we're using 11 megabits, only sample up to 12 megabits
                */
               if (sn->rates[current_ndx].rate == 22 && ndx > current_ndx + 1)
                       continue;

               sn->last_sample_ndx[size_bin] = ndx;
               return ndx;
       }
       return current_ndx;
}

void
ath_rate_findrate(struct ath_softc *sc, struct ath_node *an,
                 int shortPreamble, size_t frameLen,
                 u_int8_t *rix, int *try0, u_int8_t *txrate)
{
       struct sample_node *sn = ATH_NODE_SAMPLE(an);
       struct sample_softc *ssc = ATH_SOFTC_SAMPLE(sc);
       struct ieee80211com *ic = &sc->sc_ic;
       int ndx, size_bin, mrr, best_ndx, change_rates;
       unsigned average_tx_time;

       mrr = sc->sc_mrretry && !(ic->ic_flags & IEEE80211_F_USEPROT);
       size_bin = size_to_bin(frameLen);
       best_ndx = best_rate_ndx(sn, size_bin, !mrr);

       if (best_ndx >= 0) {
               average_tx_time = sn->stats[size_bin][best_ndx].average_tx_time;
       } else {
               average_tx_time = 0;
       }

       if (sn->static_rate_ndx != -1) {
               ndx = sn->static_rate_ndx;
               *try0 = ATH_TXMAXTRY;
       } else {
               *try0 = mrr ? 2 : ATH_TXMAXTRY;

               if (sn->sample_tt[size_bin] < average_tx_time * (sn->packets_since_sample[size_bin]*ssc->ath_sample_rate/100)) {
                       /*
                        * we want to limit the time measuring the performance
                        * of other bit-rates to ath_sample_rate% of the
                        * total transmission time.
                        */
                       ndx = pick_sample_ndx(sn, size_bin);
                       if (ndx != sn->current_rate[size_bin]) {
                               sn->current_sample_ndx[size_bin] = ndx;
                       } else {
                               sn->current_sample_ndx[size_bin] = -1;
                       }
                       sn->packets_since_sample[size_bin] = 0;

               } else {
                       change_rates = 0;
                       if (!sn->packets_sent[size_bin] || best_ndx == -1) {
                               /* no packet has been sent successfully yet */
                               for (ndx = sn->num_rates-1; ndx > 0; ndx--) {
                                       /*
                                        * pick the highest rate <= 36 Mbps
                                        * that hasn't failed.
                                        */
                                       if (sn->rates[ndx].rate <= 72 &&
                                           sn->stats[size_bin][ndx].successive_failures == 0) {
                                               break;
                                       }
                               }
                               change_rates = 1;
                               best_ndx = ndx;
                       } else if (sn->packets_sent[size_bin] < 20) {
                               /* let the bit-rate switch quickly during the first few packets */
                               change_rates = 1;
                       } else if (ticks - ((hz*MIN_SWITCH_MS)/1000) > sn->ticks_since_switch[size_bin]) {
                               /* 2 seconds have gone by */
                               change_rates = 1;
                       } else if (average_tx_time * 2 < sn->stats[size_bin][sn->current_rate[size_bin]].average_tx_time) {
                               /* the current bit-rate is twice as slow as the best one */
                               change_rates = 1;
                       }

                       sn->packets_since_sample[size_bin]++;

                       if (change_rates) {
                               if (best_ndx != sn->current_rate[size_bin]) {
                                       DPRINTF(sc, "%s: %s size %d switch rate %d (%d/%d) -> %d (%d/%d) after %d packets mrr %d\n",
                                               __func__,
                                               ether_sprintf(an->an_node.ni_macaddr),
                                               packet_size_bins[size_bin],
                                               sn->rates[sn->current_rate[size_bin]].rate,
                                               sn->stats[size_bin][sn->current_rate[size_bin]].average_tx_time,
                                               sn->stats[size_bin][sn->current_rate[size_bin]].perfect_tx_time,
                                               sn->rates[best_ndx].rate,
                                               sn->stats[size_bin][best_ndx].average_tx_time,
                                               sn->stats[size_bin][best_ndx].perfect_tx_time,
                                               sn->packets_since_switch[size_bin],
                                               mrr);
                               }
                               sn->packets_since_switch[size_bin] = 0;
                               sn->current_rate[size_bin] = best_ndx;
                               sn->ticks_since_switch[size_bin] = ticks;
                       }
                       ndx = sn->current_rate[size_bin];
                       sn->packets_since_switch[size_bin]++;
                       if (size_bin == 0) {
                               /*
                                * set the visible txrate for this node
                                * to the rate of small packets
                                */
                               an->an_node.ni_txrate = ndx;
                       }
               }
       }

       KASSERTMSG(ndx >= 0 && ndx < sn->num_rates, "ndx is %d", ndx);

       *rix = sn->rates[ndx].rix;
       if (shortPreamble) {
               *txrate = sn->rates[ndx].shortPreambleRateCode;
       } else {
               *txrate = sn->rates[ndx].rateCode;
       }
       sn->packets_sent[size_bin]++;
}

void
ath_rate_setupxtxdesc(struct ath_softc *sc, struct ath_node *an,
   struct ath_desc *ds, int shortPreamble, u_int8_t rix)
{
       struct sample_node *sn = ATH_NODE_SAMPLE(an);
       int rateCode = -1;
       int frame_size = 0;
       int size_bin = 0;
       int ndx = 0;

       size_bin = size_to_bin(frame_size);     // TODO: it's correct that frame_size always 0 ?
       ndx = sn->current_rate[size_bin]; /* retry at the current bit-rate */

       if (!sn->stats[size_bin][ndx].packets_acked) {
               ndx = 0;  /* use the lowest bit-rate */
       }

       if (shortPreamble) {
               rateCode = sn->rates[ndx].shortPreambleRateCode;
       } else {
               rateCode = sn->rates[ndx].rateCode;
       }
       ath_hal_setupxtxdesc(sc->sc_ah, ds
                            , rateCode, 3              /* series 1 */
                            , sn->rates[0].rateCode, 3 /* series 2 */
                            , 0, 0                     /* series 3 */
                            );
}

static void
update_stats(struct ath_softc *sc, struct ath_node *an,
                 int frame_size,
                 int ndx0, int tries0,
                 int ndx1, int tries1,
                 int ndx2, int tries2,
                 int ndx3, int tries3,
                 int short_tries, int tries, int status)
{
       struct sample_node *sn = ATH_NODE_SAMPLE(an);
       struct sample_softc *ssc = ATH_SOFTC_SAMPLE(sc);
       int tt = 0;
       int tries_so_far = 0;
       int size_bin;
       int size;
       int rate;

       if (ndx0 == -1)
               return;

       size_bin = size_to_bin(frame_size);
       size = bin_to_size(size_bin);
       rate = sn->rates[ndx0].rate;

       tt += calc_usecs_unicast_packet(sc, size, sn->rates[ndx0].rix,
           short_tries - 1, MIN(tries0, tries) - 1);
       tries_so_far += tries0;
       if (tries1 && tries0 < tries) {
               tt += calc_usecs_unicast_packet(sc, size,
                   ndx1 == -1 ? 0 : sn->rates[ndx1].rix, short_tries - 1,
                   MIN(tries1 + tries_so_far, tries) - tries_so_far - 1);
       }
       tries_so_far += tries1;

       if (tries2 && tries0 + tries1 < tries) {
               tt += calc_usecs_unicast_packet(sc, size,
                   ndx2 == -1 ? 0 : sn->rates[ndx2].rix, short_tries - 1,
                   MIN(tries2 + tries_so_far, tries) - tries_so_far - 1);
       }

       tries_so_far += tries2;

       if (tries3 && tries0 + tries1 + tries2 < tries) {
               tt += calc_usecs_unicast_packet(sc, size,
                   ndx3 == -1 ? 0 : sn->rates[ndx3].rix, short_tries - 1,
                   MIN(tries3 + tries_so_far, tries) - tries_so_far - 1);
       }

       if (sn->stats[size_bin][ndx0].total_packets < (100 / (100 - ssc->ath_smoothing_rate))) {
               /* just average the first few packets */
               int avg_tx = sn->stats[size_bin][ndx0].average_tx_time;
               int packets = sn->stats[size_bin][ndx0].total_packets;
               sn->stats[size_bin][ndx0].average_tx_time = (tt+(avg_tx*packets))/(packets+1);
       } else {
               /* use a ewma */
               sn->stats[size_bin][ndx0].average_tx_time =
                       ((sn->stats[size_bin][ndx0].average_tx_time * ssc->ath_smoothing_rate) +
                        (tt * (100 - ssc->ath_smoothing_rate))) / 100;
       }

       if (status) {
               int y;
               sn->stats[size_bin][ndx0].successive_failures++;
               for (y = size_bin+1; y < NUM_PACKET_SIZE_BINS; y++) {
                       /* also say larger packets failed since we
                        * assume if a small packet fails at a lower
                        * bit-rate then a larger one will also.
                        */
                       sn->stats[y][ndx0].successive_failures++;
                       sn->stats[y][ndx0].last_tx = ticks;
                       sn->stats[y][ndx0].tries += tries;
                       sn->stats[y][ndx0].total_packets++;
               }
       } else {
               sn->stats[size_bin][ndx0].packets_acked++;
               sn->stats[size_bin][ndx0].successive_failures = 0;
       }
       sn->stats[size_bin][ndx0].tries += tries;
       sn->stats[size_bin][ndx0].last_tx = ticks;
       sn->stats[size_bin][ndx0].total_packets++;


       if (ndx0 == sn->current_sample_ndx[size_bin]) {
               DPRINTF(sc, "%s: %s size %d sample rate %d tries (%d/%d) tt %d avg_tt (%d/%d) status %d\n",
                       __func__, ether_sprintf(an->an_node.ni_macaddr),
                       size, rate, short_tries, tries, tt,
                       sn->stats[size_bin][ndx0].average_tx_time,
                       sn->stats[size_bin][ndx0].perfect_tx_time,
                       status);
               sn->sample_tt[size_bin] = tt;
               sn->current_sample_ndx[size_bin] = -1;
       }
}

void
ath_rate_tx_complete(struct ath_softc *sc, struct ath_node *an,
       const struct ath_desc *ds, const struct ath_desc *ds0)
{
       struct ieee80211com *ic = &sc->sc_ic;
       struct sample_node *sn = ATH_NODE_SAMPLE(an);
       const struct ar5212_desc *ads = (const struct ar5212_desc *)&ds->ds_ctl0;
       int final_rate, short_tries, long_tries, frame_size;
       int ndx = -1;
       int mrr;

       final_rate = sc->sc_hwmap[ds->ds_txstat.ts_rate &~ HAL_TXSTAT_ALTRATE].ieeerate;
       short_tries = ds->ds_txstat.ts_shortretry + 1;
       long_tries = ds->ds_txstat.ts_longretry + 1;
       frame_size = ds0->ds_ctl0 & 0x0fff; /* low-order 12 bits of ds_ctl0 */
       if (frame_size == 0)                /* NB: should not happen */
               frame_size = 1500;

       if (sn->num_rates <= 0) {
               DPRINTF(sc, "%s: %s size %d status %d rate/try %d/%d "
                       "no rates yet\n",
                       __func__, ether_sprintf(an->an_node.ni_macaddr),
                       bin_to_size(size_to_bin(frame_size)),
                       ds->ds_txstat.ts_status,
                       short_tries, long_tries);
               return;
       }

       mrr = sc->sc_mrretry && !(ic->ic_flags & IEEE80211_F_USEPROT);

       if (sc->sc_mrretry && ds->ds_txstat.ts_status) {
               /* this packet failed */
               DPRINTF(sc, "%s: %s size %d rate/try %d/%d %d/%d %d/%d %d/%d status %s retries (%d/%d)\n",
                       __func__,
                       ether_sprintf(an->an_node.ni_macaddr),
                       bin_to_size(size_to_bin(frame_size)),
                       sc->sc_hwmap[ads->xmit_rate0].ieeerate,
                               ads->xmit_tries0,
                       sc->sc_hwmap[ads->xmit_rate1].ieeerate,
                               ads->xmit_tries1,
                       sc->sc_hwmap[ads->xmit_rate2].ieeerate,
                               ads->xmit_tries2,
                       sc->sc_hwmap[ads->xmit_rate3].ieeerate,
                               ads->xmit_tries3,
                       ds->ds_txstat.ts_status ? "FAIL" : "OK",
                       short_tries,
                       long_tries);
       }

       if (!mrr || !(ds->ds_txstat.ts_rate & HAL_TXSTAT_ALTRATE)) {
               /* only one rate was used */
               ndx = rate_to_ndx(sn, final_rate);
               DPRINTF(sc, "%s: %s size %d status %d rate/try %d/%d/%d\n",
                       __func__, ether_sprintf(an->an_node.ni_macaddr),
                       bin_to_size(size_to_bin(frame_size)),
                       ds->ds_txstat.ts_status,
                       ndx, short_tries, long_tries);
               if (ndx >= 0 && ndx < sn->num_rates) {
                       update_stats(sc, an, frame_size,
                                    ndx, long_tries,
                                    0, 0,
                                    0, 0,
                                    0, 0,
                                    short_tries, long_tries, ds->ds_txstat.ts_status);
               }
       } else {
               int rate0, tries0, ndx0;
               int rate1, tries1, ndx1;
               int rate2, tries2, ndx2;
               int rate3, tries3, ndx3;
               int finalTSIdx = ads->final_ts_index;

               /*
                * Process intermediate rates that failed.
                */

               rate0 = sc->sc_hwmap[ads->xmit_rate0].ieeerate;
               tries0 = ads->xmit_tries0;
               ndx0 = rate_to_ndx(sn, rate0);

               rate1 = sc->sc_hwmap[ads->xmit_rate1].ieeerate;
               tries1 = ads->xmit_tries1;
               ndx1 = rate_to_ndx(sn, rate1);

               rate2 = sc->sc_hwmap[ads->xmit_rate2].ieeerate;
               tries2 = ads->xmit_tries2;
               ndx2 = rate_to_ndx(sn, rate2);

               rate3 = sc->sc_hwmap[ads->xmit_rate3].ieeerate;
               tries3 = ads->xmit_tries3;
               ndx3 = rate_to_ndx(sn, rate3);

#if 1
               DPRINTF(sc, "%s: %s size %d finaltsidx %d tries %d status %d rate/try %d/%d %d/%d %d/%d %d/%d\n",
                       __func__, ether_sprintf(an->an_node.ni_macaddr),
                       bin_to_size(size_to_bin(frame_size)),
                       finalTSIdx,
                       long_tries,
                       ds->ds_txstat.ts_status,
                       rate0, tries0,
                       rate1, tries1,
                       rate2, tries2,
                       rate3, tries3);
#endif

               if (tries0) {
                       update_stats(sc, an, frame_size,
                                    ndx0, tries0,
                                    ndx1, tries1,
                                    ndx2, tries2,
                                    ndx3, tries3,
                                    short_tries, ds->ds_txstat.ts_longretry + 1,
                                    long_tries > tries0);
               }

               if (tries1 && finalTSIdx > 0) {
                       update_stats(sc, an, frame_size,
                                    ndx1, tries1,
                                    ndx2, tries2,
                                    ndx3, tries3,
                                    0, 0,
                                    short_tries, ds->ds_txstat.ts_longretry + 1 - tries0,
                                    ds->ds_txstat.ts_status);
               }

               if (tries2 && finalTSIdx > 1) {
                       update_stats(sc, an, frame_size,
                                    ndx2, tries2,
                                    ndx3, tries3,
                                    0, 0,
                                    0, 0,
                                    short_tries, ds->ds_txstat.ts_longretry + 1 - tries0 - tries1,
                                    ds->ds_txstat.ts_status);
               }

               if (tries3 && finalTSIdx > 2) {
                       update_stats(sc, an, frame_size,
                                    ndx3, tries3,
                                    0, 0,
                                    0, 0,
                                    0, 0,
                                    short_tries, ds->ds_txstat.ts_longretry + 1 - tries0 - tries1 - tries2,
                                    ds->ds_txstat.ts_status);
               }
       }
}

void
ath_rate_newassoc(struct ath_softc *sc, struct ath_node *an, int isnew)
{
       DPRINTF(sc, "%s: %s isnew %d\n", __func__,
               ether_sprintf(an->an_node.ni_macaddr), isnew);
       if (isnew)
               ath_rate_ctl_reset(sc, &an->an_node);
}

/*
* Initialize the tables for a node.
*/
static void
ath_rate_ctl_reset(struct ath_softc *sc, struct ieee80211_node *ni)
{
#define RATE(_ix)       (ni->ni_rates.rs_rates[(_ix)] & IEEE80211_RATE_VAL)
       struct ieee80211com *ic = &sc->sc_ic;
       struct ath_node *an = ATH_NODE(ni);
       struct sample_node *sn = ATH_NODE_SAMPLE(an);
       const HAL_RATE_TABLE *rt = sc->sc_currates;
       int x, y, srate;

       KASSERTMSG(rt != NULL, "no rate table, mode %u", sc->sc_curmode);
       sn->static_rate_ndx = -1;
       if (ic->ic_fixed_rate != IEEE80211_FIXED_RATE_NONE) {
               /*
                * A fixed rate is to be used; ic_fixed_rate is an
                * index into the supported rate set.  Convert this
                * to the index into the negotiated rate set for
                * the node.  We know the rate is there because the
                * rate set is checked when the station associates.
                */
               const struct ieee80211_rateset *rs =
                       &ic->ic_sup_rates[ic->ic_curmode];
               int r = rs->rs_rates[ic->ic_fixed_rate] & IEEE80211_RATE_VAL;
               /* NB: the rate set is assumed sorted */
               srate = ni->ni_rates.rs_nrates - 1;
               for (; srate >= 0 && RATE(srate) != r; srate--)
                       ;
               KASSERTMSG(srate >= 0,
                       "fixed rate %d not in rate set", ic->ic_fixed_rate);
               sn->static_rate_ndx = srate;
       }

       DPRINTF(sc, "%s: %s size 1600 rate/tt", __func__, ether_sprintf(ni->ni_macaddr));

       sn->num_rates = ni->ni_rates.rs_nrates;
       for (x = 0; x < ni->ni_rates.rs_nrates; x++) {
               sn->rates[x].rate = ni->ni_rates.rs_rates[x] & IEEE80211_RATE_VAL;
               sn->rates[x].rix = sc->sc_rixmap[sn->rates[x].rate];
               sn->rates[x].rateCode = rt->info[sn->rates[x].rix].rateCode;
               sn->rates[x].shortPreambleRateCode =
                       rt->info[sn->rates[x].rix].rateCode |
                       rt->info[sn->rates[x].rix].shortPreamble;

               DPRINTF(sc, " %d/%d", sn->rates[x].rate,
                       calc_usecs_unicast_packet(sc, 1600, sn->rates[x].rix,
                                                 0,0));
       }
       DPRINTF(sc, "%s\n", "");

       /* set the visible bit-rate to the lowest one available */
       ni->ni_txrate = 0;
       sn->num_rates = ni->ni_rates.rs_nrates;

       for (y = 0; y < NUM_PACKET_SIZE_BINS; y++) {
               int size = bin_to_size(y);
               int ndx = 0;
               sn->packets_sent[y] = 0;
               sn->current_sample_ndx[y] = -1;
               sn->last_sample_ndx[y] = 0;

               for (x = 0; x < ni->ni_rates.rs_nrates; x++) {
                       sn->stats[y][x].successive_failures = 0;
                       sn->stats[y][x].tries = 0;
                       sn->stats[y][x].total_packets = 0;
                       sn->stats[y][x].packets_acked = 0;
                       sn->stats[y][x].last_tx = 0;

                       sn->stats[y][x].perfect_tx_time =
                               calc_usecs_unicast_packet(sc, size,
                                                         sn->rates[x].rix,
                                                         0, 0);
                       sn->stats[y][x].average_tx_time = sn->stats[y][x].perfect_tx_time;
               }

               /* set the initial rate */
               for (ndx = sn->num_rates-1; ndx > 0; ndx--) {
                       if (sn->rates[ndx].rate <= 72) {
                               break;
                       }
               }
               sn->current_rate[y] = ndx;
       }

       DPRINTF(sc, "%s: %s %d rates %d%sMbps (%dus)- %d%sMbps (%dus)\n",
               __func__, ether_sprintf(ni->ni_macaddr),
               sn->num_rates,
               sn->rates[0].rate/2, sn->rates[0].rate % 0x1 ? ".5" : "",
               sn->stats[1][0].perfect_tx_time,
               sn->rates[sn->num_rates-1].rate/2,
                       sn->rates[sn->num_rates-1].rate % 0x1 ? ".5" : "",
               sn->stats[1][sn->num_rates-1].perfect_tx_time
       );

       ni->ni_txrate = sn->current_rate[0];
#undef RATE
}

static void
rate_cb(void *arg, struct ieee80211_node *ni)
{
       struct ath_softc *sc = arg;

       ath_rate_newassoc(sc, ATH_NODE(ni), 1);
}

/*
* Reset the rate control state for each 802.11 state transition.
*/
void
ath_rate_newstate(struct ath_softc *sc, enum ieee80211_state state)
{
       struct ieee80211com *ic = &sc->sc_ic;

       if (state == IEEE80211_S_RUN) {
               if (ic->ic_opmode != IEEE80211_M_STA) {
                       /*
                        * Sync rates for associated stations and neighbors.
                        */
                       ieee80211_iterate_nodes(&ic->ic_sta, rate_cb, sc);
               }
               ath_rate_newassoc(sc, ATH_NODE(ic->ic_bss), 1);
       }
}

static void
ath_rate_sysctlattach(struct ath_softc *sc, struct sample_softc *osc)
{
       int rc;
       struct sysctllog **log = &sc->sc_sysctllog;
       const struct sysctlnode *cnode, *rnode;

       if ((rnode = ath_sysctl_instance(device_xname(sc->sc_dev), log)) == NULL)
               return;

       /* XXX bounds check [0..100] */
       if ((rc = SYSCTL_PFX_INT(osc->ath_, CTLFLAG_READWRITE, smoothing_rate,
           "rate control: retry threshold to credit rate raise (%%)")) != 0)
               goto err;

       /* XXX bounds check [2..100] */
       if ((rc = SYSCTL_PFX_INT(osc->ath_, CTLFLAG_READWRITE, sample_rate,
           "rate control: # good periods before raising rate")) != 0)
               goto err;

       return;
err:
       printf("%s: sysctl_createv failed, rc = %d\n", __func__, rc);
}

struct ath_ratectrl *
ath_rate_attach(struct ath_softc *sc)
{
       struct sample_softc *osc;

       DPRINTF(sc, "%s:\n", __func__);
       osc = malloc(sizeof(struct sample_softc), M_DEVBUF, M_WAITOK|M_ZERO);
       osc->arc.arc_space = sizeof(struct sample_node);
       osc->ath_smoothing_rate = 95;   /* ewma percentage (out of 100) */
       osc->ath_sample_rate = 10;      /* send a different bit-rate 1/X packets */
       ath_rate_sysctlattach(sc, osc);
       return &osc->arc;
}

void
ath_rate_detach(struct ath_ratectrl *arc)
{
       struct sample_softc *osc = (struct sample_softc *) arc;

       free(osc, M_DEVBUF);
}