/*      $NetBSD: arn5416.c,v 1.3 2022/09/25 18:43:32 thorpej Exp $      */
/*      $OpenBSD: ar5416.c,v 1.12 2012/06/10 21:23:36 kettenis Exp $    */

/*-
* Copyright (c) 2009 Damien Bergamini <[email protected]>
* Copyright (c) 2008-2009 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines for AR5416, AR5418 and AR9160 chipsets.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arn5416.c,v 1.3 2022/09/25 18:43:32 thorpej Exp $");

#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>

#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>

#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>

#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>

#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>

#include <dev/ic/arn5008reg.h>
#include <dev/ic/arn5008.h>
#include <dev/ic/arn5416reg.h>
#include <dev/ic/arn5416.h>
#include <dev/ic/arn9280.h>

#define Static static

Static void     ar5416_force_bias(struct athn_softc *,
                   struct ieee80211_channel *);
Static void     ar5416_get_pdadcs(struct athn_softc *,
                   struct ieee80211_channel *, int, int, uint8_t, uint8_t *,
                   uint8_t *);
Static void     ar5416_init_from_rom(struct athn_softc *,
                   struct ieee80211_channel *, struct ieee80211_channel *);
Static uint8_t  ar5416_reverse_bits(uint8_t, int);
Static void     ar5416_rw_bank6tpc(struct athn_softc *,
                   struct ieee80211_channel *, uint32_t *);
Static void     ar5416_rw_rfbits(uint32_t *, int, int, uint32_t, int);
Static void     ar5416_set_power_calib(struct athn_softc *,
                   struct ieee80211_channel *);
Static int      ar5416_set_synth(struct athn_softc *,
                   struct ieee80211_channel *, struct ieee80211_channel *);
Static void     ar5416_setup(struct athn_softc *);
Static void     ar5416_spur_mitigate(struct athn_softc *,
                   struct ieee80211_channel *, struct ieee80211_channel *);
Static void     ar9160_rw_addac(struct athn_softc *,
                   struct ieee80211_channel *, uint32_t *);

PUBLIC int
ar5416_attach(struct athn_softc *sc)
{
       sc->sc_eep_base = AR5416_EEP_START_LOC;
       sc->sc_eep_size = sizeof(struct ar5416_eeprom);
       sc->sc_def_nf = AR5416_PHY_CCA_MAX_GOOD_VALUE;
       sc->sc_ngpiopins = 14;
       sc->sc_led_pin = 1;
       sc->sc_workaround = AR5416_WA_DEFAULT;
       sc->sc_ops.setup = ar5416_setup;
       sc->sc_ops.swap_rom = ar5416_swap_rom;
       sc->sc_ops.init_from_rom = ar5416_init_from_rom;
       sc->sc_ops.set_txpower = ar5416_set_txpower;
       sc->sc_ops.set_synth = ar5416_set_synth;
       sc->sc_ops.spur_mitigate = ar5416_spur_mitigate;
       sc->sc_ops.get_spur_chans = ar5416_get_spur_chans;
       if (AR_SREV_9160_10_OR_LATER(sc))
               sc->sc_ini = &ar9160_ini;
       else
               sc->sc_ini = &ar5416_ini;
       sc->sc_serdes = &ar5416_serdes;

       return ar5008_attach(sc);
}

Static void
ar5416_setup(struct athn_softc *sc)
{
       /* Select ADDAC programming. */
       if (AR_SREV_9160_11(sc))
               sc->sc_addac = &ar9160_1_1_addac;
       else if (AR_SREV_9160_10_OR_LATER(sc))
               sc->sc_addac = &ar9160_1_0_addac;
       else if (AR_SREV_5416_22_OR_LATER(sc))
               sc->sc_addac = &ar5416_2_2_addac;
       else
               sc->sc_addac = &ar5416_2_1_addac;
}

PUBLIC void
ar5416_swap_rom(struct athn_softc *sc)
{
       struct ar5416_eeprom *eep = sc->sc_eep;
       struct ar5416_modal_eep_header *modal;
       int i, j;

       for (i = 0; i < 2; i++) {       /* Dual-band. */
               modal = &eep->modalHeader[i];

               modal->antCtrlCommon = bswap32(modal->antCtrlCommon);
               for (j = 0; j < AR5416_MAX_CHAINS; j++) {
                       modal->antCtrlChain[j] =
                           bswap32(modal->antCtrlChain[j]);
               }
               for (j = 0; j < AR_EEPROM_MODAL_SPURS; j++) {
                       modal->spurChans[j].spurChan =
                           bswap16(modal->spurChans[j].spurChan);
               }
       }
}

PUBLIC const struct ar_spur_chan *
ar5416_get_spur_chans(struct athn_softc *sc, int is2ghz)
{
       const struct ar5416_eeprom *eep = sc->sc_eep;

       return eep->modalHeader[is2ghz].spurChans;
}

Static int
ar5416_set_synth(struct athn_softc *sc, struct ieee80211_channel *c,
   struct ieee80211_channel *extc)
{
       uint32_t phy, reg;
       uint32_t freq = c->ic_freq;
       uint8_t chansel;

       phy = 0;
       if (IEEE80211_IS_CHAN_2GHZ(c)) {
               if (((freq - 2192) % 5) == 0) {
                       chansel = ((freq - 672) * 2 - 3040) / 10;
               }
               else if (((freq - 2224) % 5) == 0) {
                       chansel = ((freq - 704) * 2 - 3040) / 10;
                       phy |= AR5416_BMODE_SYNTH;
               }
               else
                       return EINVAL;
               chansel <<= 2;

               reg = AR_READ(sc, AR_PHY_CCK_TX_CTRL);
               if (freq == 2484)       /* Channel 14. */
                       reg |= AR_PHY_CCK_TX_CTRL_JAPAN;
               else
                       reg &= ~AR_PHY_CCK_TX_CTRL_JAPAN;
               AR_WRITE(sc, AR_PHY_CCK_TX_CTRL, reg);

               /* Fix for orientation sensitivity issue. */
               if (AR_SREV_5416(sc))
                       ar5416_force_bias(sc, c);
       }
       else {
               if (freq >= 5120 && (freq % 20) == 0) {
                       chansel = (freq - 4800) / 20;
                       chansel <<= 2;
                       phy |= SM(AR5416_AMODE_REFSEL, 2);
               }
               else if ((freq % 10) == 0) {
                       chansel = (freq - 4800) / 10;
                       chansel <<= 1;
                       if (AR_SREV_9160_10_OR_LATER(sc))
                               phy |= SM(AR5416_AMODE_REFSEL, 1);
                       else
                               phy |= SM(AR5416_AMODE_REFSEL, 2);
               }
               else if ((freq % 5) == 0) {
                       chansel = (freq - 4800) / 5;
                       phy |= SM(AR5416_AMODE_REFSEL, 2);
               }
               else
                       return EINVAL;
       }
       chansel = ar5416_reverse_bits(chansel, 8);
       phy |= chansel << 8 | 1 << 5 | 1;
       DPRINTFN(DBG_RF, sc, "AR_PHY(0x37)=0x%08x\n", phy);
       AR_WRITE(sc, AR_PHY(0x37), phy);
       return 0;
}

Static void
ar5416_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c,
   struct ieee80211_channel *extc)
{
       static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
       const struct ar5416_eeprom *eep = sc->sc_eep;
       const struct ar5416_modal_eep_header *modal;
       uint32_t reg, offset;
       uint8_t txRxAtten;
       int i;

       modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];

       AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon);

       for (i = 0; i < AR5416_MAX_CHAINS; i++) {
               if (AR_SREV_5416_20_OR_LATER(sc) &&
                   (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5))
                       offset = chainoffset[i];
               else
                       offset = i * 0x1000;

               AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0 + offset,
                   modal->antCtrlChain[i]);

               reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0 + offset);
               reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF,
                   modal->iqCalICh[i]);
               reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF,
                   modal->iqCalQCh[i]);
               AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0 + offset, reg);

               if (i > 0 && !AR_SREV_5416_20_OR_LATER(sc))
                       continue;

               if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) {
                       reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
                       reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_MARGIN,
                           modal->bswMargin[i]);
                       reg = RW(reg, AR_PHY_GAIN_2GHZ_BSW_ATTEN,
                           modal->bswAtten[i]);
                       AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
               }
               if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3)
                       txRxAtten = modal->txRxAttenCh[i];
               else    /* Workaround for ROM versions < 14.3. */
                       txRxAtten = IEEE80211_IS_CHAN_2GHZ(c) ? 23 : 44;
               reg = AR_READ(sc, AR_PHY_RXGAIN + offset);
               reg = RW(reg, AR_PHY_RXGAIN_TXRX_ATTEN, txRxAtten);
               AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg);

               reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset);
               reg = RW(reg, AR_PHY_GAIN_2GHZ_RXTX_MARGIN,
                   modal->rxTxMarginCh[i]);
               AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg);
       }
       reg = AR_READ(sc, AR_PHY_SETTLING);
       reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling);
       AR_WRITE(sc, AR_PHY_SETTLING, reg);

       reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
       reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize);
       reg = RW(reg, AR_PHY_DESIRED_SZ_PGA, modal->pgaDesiredSize);
       AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);

       reg =  SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff);
       reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff);
       reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn);
       reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn);
       AR_WRITE(sc, AR_PHY_RF_CTL4, reg);

       reg = AR_READ(sc, AR_PHY_RF_CTL3);
       reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn);
       AR_WRITE(sc, AR_PHY_RF_CTL3, reg);

       reg = AR_READ(sc, AR_PHY_CCA(0));
       reg = RW(reg, AR_PHY_CCA_THRESH62, modal->thresh62);
       AR_WRITE(sc, AR_PHY_CCA(0), reg);

       reg = AR_READ(sc, AR_PHY_EXT_CCA(0));
       reg = RW(reg, AR_PHY_EXT_CCA_THRESH62, modal->thresh62);
       AR_WRITE(sc, AR_PHY_EXT_CCA(0), reg);

       if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
               reg = AR_READ(sc, AR_PHY_RF_CTL2);
               reg = RW(reg, AR_PHY_TX_END_DATA_START,
                   modal->txFrameToDataStart);
               reg = RW(reg, AR_PHY_TX_END_PA_ON, modal->txFrameToPaOn);
               AR_WRITE(sc, AR_PHY_RF_CTL2, reg);
       }
#ifndef IEEE80211_NO_HT
       if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) {
               /* Overwrite switch settling with HT-40 value. */
               reg = AR_READ(sc, AR_PHY_SETTLING);
               reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40);
               AR_WRITE(sc, AR_PHY_SETTLING, reg);
       }
#endif
}

PUBLIC int
ar5416_init_calib(struct athn_softc *sc, struct ieee80211_channel *c,
   struct ieee80211_channel *extc)
{
       int ntries;

       if (AR_SREV_9280_10_OR_LATER(sc)) {
               /* XXX Linux tests AR9287?! */
               AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
               AR_SETBITS(sc, AR_PHY_AGC_CONTROL,
                   AR_PHY_AGC_CONTROL_FLTR_CAL);
       }
       /* Calibrate the AGC. */
       AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
       /* Poll for offset calibration completion. */
       for (ntries = 0; ntries < 10000; ntries++) {
               if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) &
                   AR_PHY_AGC_CONTROL_CAL))
                       break;
               DELAY(10);
       }
       if (ntries == 10000)
               return ETIMEDOUT;
       if (AR_SREV_9280_10_OR_LATER(sc)) {
               AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC);
               AR_CLRBITS(sc, AR_PHY_AGC_CONTROL,
                   AR_PHY_AGC_CONTROL_FLTR_CAL);
       }
       return 0;
}

Static void
ar5416_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c,
   int chain, int nxpdgains, uint8_t overlap, uint8_t *boundaries,
   uint8_t *pdadcs)
{
       const struct ar5416_eeprom *eep = sc->sc_eep;
       const struct ar5416_cal_data_per_freq *pierdata;
       const uint8_t *pierfreq;
       struct athn_pier lopier, hipier;
       int16_t delta;
       uint8_t fbin, pwroff;
       int i, lo, hi, npiers;

       if (IEEE80211_IS_CHAN_2GHZ(c)) {
               pierfreq = eep->calFreqPier2G;
               pierdata = eep->calPierData2G[chain];
               npiers = AR5416_NUM_2G_CAL_PIERS;
       }
       else {
               pierfreq = eep->calFreqPier5G;
               pierdata = eep->calPierData5G[chain];
               npiers = AR5416_NUM_5G_CAL_PIERS;
       }
       /* Find channel in ROM pier table. */
       fbin = athn_chan2fbin(c);
       athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi);

       lopier.fbin = pierfreq[lo];
       hipier.fbin = pierfreq[hi];
       for (i = 0; i < nxpdgains; i++) {
               lopier.pwr[i] = pierdata[lo].pwrPdg[i];
               lopier.vpd[i] = pierdata[lo].vpdPdg[i];
               hipier.pwr[i] = pierdata[lo].pwrPdg[i];
               hipier.vpd[i] = pierdata[lo].vpdPdg[i];
       }
       ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains,
           AR5416_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs);

       if (!AR_SREV_9280_20_OR_LATER(sc))
               return;

       if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_21)
               pwroff = eep->baseEepHeader.pwrTableOffset;
       else
               pwroff = AR_PWR_TABLE_OFFSET_DB;
       delta = (pwroff - AR_PWR_TABLE_OFFSET_DB) * 2;  /* In half dB. */

       /* Change the original gain boundaries setting. */
       for (i = 0; i < nxpdgains; i++) {
               /* XXX Possible overflows? */
               boundaries[i] -= delta;
               if (boundaries[i] > AR_MAX_RATE_POWER - overlap)
                       boundaries[i] = AR_MAX_RATE_POWER - overlap;
       }
       if (delta != 0) {
               /* Shift the PDADC table to start at the new offset. */
               for (i = 0; i < AR_NUM_PDADC_VALUES; i++)
                       pdadcs[i] = pdadcs[MIN(i + delta,
                           AR_NUM_PDADC_VALUES - 1)];
       }
}

Static void
ar5416_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
       static const uint32_t chainoffset[] = { 0x0000, 0x2000, 0x1000 };
       const struct ar5416_eeprom *eep = sc->sc_eep;
       const struct ar5416_modal_eep_header *modal;
       uint8_t boundaries[AR_PD_GAINS_IN_MASK];
       uint8_t pdadcs[AR_NUM_PDADC_VALUES];
       uint8_t xpdgains[AR5416_NUM_PD_GAINS];
       uint8_t overlap, txgain;
       uint32_t reg, offset;
       int i, j, nxpdgains;

       modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];

       if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) {
               overlap = MS(AR_READ(sc, AR_PHY_TPCRG5),
                   AR_PHY_TPCRG5_PD_GAIN_OVERLAP);
       }
       else
               overlap = modal->pdGainOverlap;

       if ((sc->sc_flags & ATHN_FLAG_OLPC) && IEEE80211_IS_CHAN_2GHZ(c)) {
               /* XXX not here. */
               sc->sc_pdadc =
                   ((const struct ar_cal_data_per_freq_olpc *)
                    eep->calPierData2G[0])->vpdPdg[0][0];
       }

       nxpdgains = 0;
       memset(xpdgains, 0, sizeof(xpdgains));
       for (i = AR5416_PD_GAINS_IN_MASK - 1; i >= 0; i--) {
               if (nxpdgains >= AR5416_NUM_PD_GAINS)
                       break;  /* Can't happen. */
               if (modal->xpdGain & (1 << i))
                       xpdgains[nxpdgains++] = i;
       }
       reg = AR_READ(sc, AR_PHY_TPCRG1);
       reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1);
       reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]);
       reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]);
       reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_3, xpdgains[2]);
       AR_WRITE(sc, AR_PHY_TPCRG1, reg);

       for (i = 0; i < AR5416_MAX_CHAINS; i++) {
               if (!(sc->sc_txchainmask & (1 << i)))
                       continue;

               if (AR_SREV_5416_20_OR_LATER(sc) &&
                   (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5))
                       offset = chainoffset[i];
               else
                       offset = i * 0x1000;

               if (sc->sc_flags & ATHN_FLAG_OLPC) {
                       ar9280_olpc_get_pdadcs(sc, c, i, boundaries,
                           pdadcs, &txgain);

                       reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_0);
                       reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
                       AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_0, reg);

                       reg = AR_READ(sc, AR_PHY_TX_PWRCTRL6_1);
                       reg = RW(reg, AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
                       AR_WRITE(sc, AR_PHY_TX_PWRCTRL6_1, reg);

                       reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7);
                       reg = RW(reg, AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, txgain);
                       AR_WRITE(sc, AR_PHY_TX_PWRCTRL7, reg);

                       overlap = 6;
               }
               else {
                       ar5416_get_pdadcs(sc, c, i, nxpdgains, overlap,
                           boundaries, pdadcs);
               }
               /* Write boundaries. */
               if (i == 0 || AR_SREV_5416_20_OR_LATER(sc)) {
                       reg  = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP,
                           overlap);
                       reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1,
                           boundaries[0]);
                       reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2,
                           boundaries[1]);
                       reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3,
                           boundaries[2]);
                       reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4,
                           boundaries[3]);
                       AR_WRITE(sc, AR_PHY_TPCRG5 + offset, reg);
               }
               /* Write PDADC values. */
               for (j = 0; j < AR_NUM_PDADC_VALUES; j += 4) {
                       AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + offset + j,
                           pdadcs[j + 0] <<  0 |
                           pdadcs[j + 1] <<  8 |
                           pdadcs[j + 2] << 16 |
                           pdadcs[j + 3] << 24);
               }
       }
}

PUBLIC void
ar5416_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c,
   struct ieee80211_channel *extc)
{
       const struct ar5416_eeprom *eep = sc->sc_eep;
       const struct ar5416_modal_eep_header *modal;
       uint8_t tpow_cck[4], tpow_ofdm[4];
#ifndef IEEE80211_NO_HT
       uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4];
       uint8_t tpow_ht20[8], tpow_ht40[8];
       uint8_t ht40inc;
#endif
       int16_t pwr = 0, pwroff, max_ant_gain, power[ATHN_POWER_COUNT];
       uint8_t cckinc;
       int i;

       ar5416_set_power_calib(sc, c);

       modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];

       /* Compute transmit power reduction due to antenna gain. */
       max_ant_gain = MAX(modal->antennaGainCh[0], modal->antennaGainCh[1]);
       max_ant_gain = MAX(modal->antennaGainCh[2], max_ant_gain);
       /* XXX */

       /*
        * Reduce scaled power by number of active chains to get per-chain
        * transmit power level.
        */
       if (sc->sc_ntxchains == 2)
               pwr -= AR_PWR_DECREASE_FOR_2_CHAIN;
       else if (sc->sc_ntxchains == 3)
               pwr -= AR_PWR_DECREASE_FOR_3_CHAIN;
       if (pwr < 0)
               pwr = 0;

       if (IEEE80211_IS_CHAN_2GHZ(c)) {
               /* Get CCK target powers. */
               ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck,
                   AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck);

               /* Get OFDM target powers. */
               ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G,
                   AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm);

#ifndef IEEE80211_NO_HT
               /* Get HT-20 target powers. */
               ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20,
                   eep->calTargetPower2GHT20, AR5416_NUM_2G_20_TARGET_POWERS,
                   tpow_ht20);

               if (extc != NULL) {
                       /* Get HT-40 target powers. */
                       ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40,
                           eep->calTargetPower2GHT40,
                           AR5416_NUM_2G_40_TARGET_POWERS, tpow_ht40);

                       /* Get secondary channel CCK target powers. */
                       ar5008_get_lg_tpow(sc, extc, AR_CTL_11B,
                           eep->calTargetPowerCck,
                           AR5416_NUM_2G_CCK_TARGET_POWERS, tpow_cck_ext);

                       /* Get secondary channel OFDM target powers. */
                       ar5008_get_lg_tpow(sc, extc, AR_CTL_11G,
                           eep->calTargetPower2G,
                           AR5416_NUM_2G_20_TARGET_POWERS, tpow_ofdm_ext);
               }
#endif
       }
       else {
               /* Get OFDM target powers. */
               ar5008_get_lg_tpow(sc, c, AR_CTL_11A, eep->calTargetPower5G,
                   AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm);

#ifndef IEEE80211_NO_HT
               /* Get HT-20 target powers. */
               ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT20,
                   eep->calTargetPower5GHT20, AR5416_NUM_5G_20_TARGET_POWERS,
                   tpow_ht20);

               if (extc != NULL) {
                       /* Get HT-40 target powers. */
                       ar5008_get_ht_tpow(sc, c, AR_CTL_5GHT40,
                           eep->calTargetPower5GHT40,
                           AR5416_NUM_5G_40_TARGET_POWERS, tpow_ht40);

                       /* Get secondary channel OFDM target powers. */
                       ar5008_get_lg_tpow(sc, extc, AR_CTL_11A,
                           eep->calTargetPower5G,
                           AR5416_NUM_5G_20_TARGET_POWERS, tpow_ofdm_ext);
               }
#endif
       }

       /* Compute CCK/OFDM delta. */
       cckinc = (sc->sc_flags & ATHN_FLAG_OLPC) ? -2 : 0;

       memset(power, 0, sizeof(power));
       /* Shuffle target powers accross transmit rates. */
       power[ATHN_POWER_OFDM6 ] =
       power[ATHN_POWER_OFDM9 ] =
       power[ATHN_POWER_OFDM12] =
       power[ATHN_POWER_OFDM18] =
       power[ATHN_POWER_OFDM24] = tpow_ofdm[0];
       power[ATHN_POWER_OFDM36] = tpow_ofdm[1];
       power[ATHN_POWER_OFDM48] = tpow_ofdm[2];
       power[ATHN_POWER_OFDM54] = tpow_ofdm[3];
       power[ATHN_POWER_XR    ] = tpow_ofdm[0];
       if (IEEE80211_IS_CHAN_2GHZ(c)) {
               power[ATHN_POWER_CCK1_LP ] = tpow_cck[0] + cckinc;
               power[ATHN_POWER_CCK2_LP ] =
               power[ATHN_POWER_CCK2_SP ] = tpow_cck[1] + cckinc;
               power[ATHN_POWER_CCK55_LP] =
               power[ATHN_POWER_CCK55_SP] = tpow_cck[2] + cckinc;
               power[ATHN_POWER_CCK11_LP] =
               power[ATHN_POWER_CCK11_SP] = tpow_cck[3] + cckinc;
       }
#ifndef IEEE80211_NO_HT
       for (i = 0; i < nitems(tpow_ht20); i++)
               power[ATHN_POWER_HT20(i)] = tpow_ht20[i];
       if (extc != NULL) {
               /* Correct PAR difference between HT40 and HT20/Legacy. */
               if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2)
                       ht40inc = modal->ht40PowerIncForPdadc;
               else
                       ht40inc = AR_HT40_POWER_INC_FOR_PDADC;
               for (i = 0; i < nitems(tpow_ht40); i++)
                       power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc;
               power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0];
               power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0] + cckinc;
               power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0];
               if (IEEE80211_IS_CHAN_2GHZ(c))
                       power[ATHN_POWER_CCK_EXT] = tpow_cck_ext[0] + cckinc;
       }
#endif

       if (AR_SREV_9280_10_OR_LATER(sc)) {
               if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_21)
                       pwroff = eep->baseEepHeader.pwrTableOffset;
               else
                       pwroff = AR_PWR_TABLE_OFFSET_DB;
               for (i = 0; i < ATHN_POWER_COUNT; i++)
                       power[i] -= pwroff * 2; /* In half dB. */
       }
       for (i = 0; i < ATHN_POWER_COUNT; i++) {
               if (power[i] > AR_MAX_RATE_POWER)
                       power[i] = AR_MAX_RATE_POWER;
       }

       /* Write transmit power values to hardware. */
       ar5008_write_txpower(sc, power);

       /*
        * Write transmit power substraction for dynamic chain changing
        * and per-packet transmit power.
        */
       AR_WRITE(sc, AR_PHY_POWER_TX_SUB,
           (modal->pwrDecreaseFor3Chain & 0x3f) << 6 |
           (modal->pwrDecreaseFor2Chain & 0x3f));
}

Static void
ar5416_spur_mitigate(struct athn_softc *sc, struct ieee80211_channel *c,
   struct ieee80211_channel *extc)
{
       const struct ar_spur_chan *spurchans;
       int i, spur, bin, spur_delta_phase, spur_freq_sd;

       spurchans = sc->sc_ops.get_spur_chans(sc, IEEE80211_IS_CHAN_2GHZ(c));
       for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
               spur = spurchans[i].spurChan;
               if (spur == AR_NO_SPUR)
                       return; /* XXX disable if it was enabled! */
               spur -= c->ic_freq * 10;
               /* Verify range +/-9.5MHz */
               if (abs(spur) < 95)
                       break;
       }
       if (i == AR_EEPROM_MODAL_SPURS)
               return; /* XXX disable if it was enabled! */
       DPRINTFN(DBG_RF, sc, "enabling spur mitigation\n");

       AR_SETBITS(sc, AR_PHY_TIMING_CTRL4_0,
           AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
           AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
           AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
           AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);

       AR_WRITE(sc, AR_PHY_SPUR_REG,
           AR_PHY_SPUR_REG_MASK_RATE_CNTL |
           AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
           AR_PHY_SPUR_REG_MASK_RATE_SELECT |
           AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
           SM(AR_PHY_SPUR_REG_SPUR_RSSI_THRESH, AR_SPUR_RSSI_THRESH));

       spur_delta_phase = (spur * 524288) / 100;
       if (IEEE80211_IS_CHAN_2GHZ(c))
               spur_freq_sd = (spur * 2048) / 440;
       else
               spur_freq_sd = (spur * 2048) / 400;

       AR_WRITE(sc, AR_PHY_TIMING11,
           AR_PHY_TIMING11_USE_SPUR_IN_AGC |
           SM(AR_PHY_TIMING11_SPUR_FREQ_SD, spur_freq_sd) |
           SM(AR_PHY_TIMING11_SPUR_DELTA_PHASE, spur_delta_phase));

       bin = spur * 32;
       ar5008_set_viterbi_mask(sc, bin);
}

Static uint8_t
ar5416_reverse_bits(uint8_t v, int nbits)
{
       KASSERT(nbits <= 8);
       v = ((v >> 1) & 0x55) | ((v & 0x55) << 1);
       v = ((v >> 2) & 0x33) | ((v & 0x33) << 2);
       v = ((v >> 4) & 0x0f) | ((v & 0x0f) << 4);
       return v >> (8 - nbits);
}

PUBLIC uint8_t
ar5416_get_rf_rev(struct athn_softc *sc)
{
       uint8_t rev, reg;
       int i;

       /* Allow access to analog chips. */
       AR_WRITE(sc, AR_PHY(0), 0x00000007);

       AR_WRITE(sc, AR_PHY(0x36), 0x00007058);
       for (i = 0; i < 8; i++)
               AR_WRITE(sc, AR_PHY(0x20), 0x00010000);
       reg = (AR_READ(sc, AR_PHY(256)) >> 24) & 0xff;
       reg = (reg & 0xf0) >> 4 | (reg & 0x0f) << 4;

       rev = ar5416_reverse_bits(reg, 8);
       if ((rev & AR_RADIO_SREV_MAJOR) == 0)
               rev = AR_RAD5133_SREV_MAJOR;
       return rev;
}

/*
* Replace bits "off" to "off+nbits-1" in column "col" with the specified
* value.
*/
Static void
ar5416_rw_rfbits(uint32_t *buf, int col, int off, uint32_t val, int nbits)
{
       int idx, bit;

       KASSERT(off >= 1 && col < 4 && nbits <= 32);

       off--;  /* Starts at 1. */
       while (nbits-- > 0) {
               idx = off / 8;
               bit = off % 8;
               buf[idx] &= ~(1 << (bit + col * 8));
               buf[idx] |= ((val >> nbits) & 1) << (bit + col * 8);
               off++;
       }
}

/*
* Overwrite db and ob based on ROM settings.
*/
Static void
ar5416_rw_bank6tpc(struct athn_softc *sc, struct ieee80211_channel *c,
   uint32_t *rwbank6tpc)
{
       const struct ar5416_eeprom *eep = sc->sc_eep;
       const struct ar5416_modal_eep_header *modal;

       if (IEEE80211_IS_CHAN_5GHZ(c)) {
               modal = &eep->modalHeader[0];
               /* 5GHz db in column 0, bits [200-202]. */
               ar5416_rw_rfbits(rwbank6tpc, 0, 200, modal->db, 3);
               /* 5GHz ob in column 0, bits [203-205]. */
               ar5416_rw_rfbits(rwbank6tpc, 0, 203, modal->ob, 3);
       }
       else {
               modal = &eep->modalHeader[1];
               /* 2GHz db in column 0, bits [194-196]. */
               ar5416_rw_rfbits(rwbank6tpc, 0, 194, modal->db, 3);
               /* 2GHz ob in column 0, bits [197-199]. */
               ar5416_rw_rfbits(rwbank6tpc, 0, 197, modal->ob, 3);
       }
}

/*
* Program analog RF.
*/
PUBLIC void
ar5416_rf_reset(struct athn_softc *sc, struct ieee80211_channel *c)
{
       const uint32_t *bank6tpc;
       int i;

       /* Bank 0. */
       AR_WRITE(sc, 0x98b0, 0x1e5795e5);
       AR_WRITE(sc, 0x98e0, 0x02008020);

       /* Bank 1. */
       AR_WRITE(sc, 0x98b0, 0x02108421);
       AR_WRITE(sc, 0x98ec, 0x00000008);

       /* Bank 2. */
       AR_WRITE(sc, 0x98b0, 0x0e73ff17);
       AR_WRITE(sc, 0x98e0, 0x00000420);

       /* Bank 3. */
       if (IEEE80211_IS_CHAN_5GHZ(c))
               AR_WRITE(sc, 0x98f0, 0x01400018);
       else
               AR_WRITE(sc, 0x98f0, 0x01c00018);

       /* Select the Bank 6 TPC values to use. */
       if (AR_SREV_9160_10_OR_LATER(sc))
               bank6tpc = ar9160_bank6tpc_vals;
       else
               bank6tpc = ar5416_bank6tpc_vals;
       if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) {
               uint32_t *rwbank6tpc = sc->sc_rwbuf;

               /* Copy values from .rodata to writable buffer. */
               memcpy(rwbank6tpc, bank6tpc, 32 * sizeof(uint32_t));
               ar5416_rw_bank6tpc(sc, c, rwbank6tpc);
               bank6tpc = rwbank6tpc;
       }
       /* Bank 6 TPC. */
       for (i = 0; i < 32; i++)
               AR_WRITE(sc, 0x989c, bank6tpc[i]);
       if (IEEE80211_IS_CHAN_5GHZ(c))
               AR_WRITE(sc, 0x98d0, 0x0000000f);
       else
               AR_WRITE(sc, 0x98d0, 0x0010000f);

       /* Bank 7. */
       AR_WRITE(sc, 0x989c, 0x00000500);
       AR_WRITE(sc, 0x989c, 0x00000800);
       AR_WRITE(sc, 0x98cc, 0x0000000e);
}

PUBLIC void
ar5416_reset_bb_gain(struct athn_softc *sc, struct ieee80211_channel *c)
{
       const uint32_t *pvals;
       int i;

       if (IEEE80211_IS_CHAN_2GHZ(c))
               pvals = ar5416_bb_rfgain_vals_2g;
       else
               pvals = ar5416_bb_rfgain_vals_5g;
       for (i = 0; i < 64; i++)
               AR_WRITE(sc, AR_PHY_BB_RFGAIN(i), pvals[i]);
}

/*
* Fix orientation sensitivity issue on AR5416/2GHz by increasing
* rf_pwd_icsyndiv.
*/
Static void
ar5416_force_bias(struct athn_softc *sc, struct ieee80211_channel *c)
{
       uint32_t *rwbank6 = sc->sc_rwbuf;
       uint8_t bias;
       int i;

       KASSERT(IEEE80211_IS_CHAN_2GHZ(c));

       /* Copy values from .rodata to writable buffer. */
       memcpy(rwbank6, ar5416_bank6_vals, sizeof(ar5416_bank6_vals));

       if (c->ic_freq < 2412)
               bias = 0;
       else if (c->ic_freq < 2422)
               bias = 1;
       else
               bias = 2;
       ar5416_reverse_bits(bias, 3);

       /* Overwrite "rf_pwd_icsyndiv" (column 3, bits [181-183].) */
       ar5416_rw_rfbits(rwbank6, 3, 181, bias, 3);

       /* Write Bank 6. */
       for (i = 0; i < 32; i++)
               AR_WRITE(sc, 0x989c, rwbank6[i]);
       AR_WRITE(sc, 0x98d0, 0x0010000f);
}

/*
* Overwrite XPA bias level based on ROM setting.
*/
Static void
ar9160_rw_addac(struct athn_softc *sc, struct ieee80211_channel *c,
   uint32_t *addac)
{
       struct ar5416_eeprom *eep = sc->sc_eep;
       struct ar5416_modal_eep_header *modal;
       uint8_t fbin, bias;
       int i;

       /* XXX xpaBiasLvlFreq values have not been endian-swapped? */

       /* Get the XPA bias level to use for the specified channel. */
       modal = &eep->modalHeader[IEEE80211_IS_CHAN_2GHZ(c)];
       if (modal->xpaBiasLvl == 0xff) {
               bias = modal->xpaBiasLvlFreq[0] >> 14;
               fbin = athn_chan2fbin(c);
               for (i = 1; i < 3; i++) {
                       if (modal->xpaBiasLvlFreq[i] == 0)
                               break;
                       if ((modal->xpaBiasLvlFreq[i] & 0xff) < fbin)
                               break;
                       bias = modal->xpaBiasLvlFreq[i] >> 14;
               }
       }
       else
               bias = modal->xpaBiasLvl & 0x3;

       bias = ar5416_reverse_bits(bias, 2);    /* Put in host bit-order. */
       DPRINTFN(DBG_RF, sc, "bias level=%d\n", bias);
       if (IEEE80211_IS_CHAN_2GHZ(c))
               ar5416_rw_rfbits(addac, 0, 60, bias, 2);
       else
               ar5416_rw_rfbits(addac, 0, 55, bias, 2);
}

PUBLIC void
ar5416_reset_addac(struct athn_softc *sc, struct ieee80211_channel *c)
{
       const struct athn_addac *addac = sc->sc_addac;
       const uint32_t *pvals;
       int i;

       if (AR_SREV_9160(sc) && sc->sc_eep_rev >= AR_EEP_MINOR_VER_7) {
               uint32_t *rwaddac = sc->sc_rwbuf;

               /* Copy values from .rodata to writable buffer. */
               memcpy(rwaddac, addac->vals, addac->nvals * sizeof(uint32_t));
               ar9160_rw_addac(sc, c, rwaddac);
               pvals = rwaddac;
       }
       else
               pvals = addac->vals;
       for (i = 0; i < addac->nvals; i++)
               AR_WRITE(sc, 0x989c, pvals[i]);
       AR_WRITE(sc, 0x98cc, 0);        /* Finalize. */
}