/*      $NetBSD: am7930.c,v 1.60 2020/09/12 05:19:16 isaki Exp $        */

/*
* Copyright (c) 1995 Rolf Grossmann
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by Rolf Grossmann.
* 4. The name of the author may not be used to endorse or promote products
*    derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Front-end attachment independent layer for AMD 79c30
* audio driver.  No ISDN support.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: am7930.c,v 1.60 2020/09/12 05:19:16 isaki Exp $");

#include "audio.h"
#if NAUDIO > 0

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/atomic.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/proc.h>

#include <sys/bus.h>
#include <sys/cpu.h>

#include <sys/audioio.h>
#include <dev/audio/audio_if.h>
#include <dev/audio/mulaw.h>

#include <dev/ic/am7930reg.h>
#include <dev/ic/am7930var.h>

#ifdef AUDIO_DEBUG
int     am7930debug = 0;
#define DPRINTF(x)      if (am7930debug) printf x
#else
#define DPRINTF(x)
#endif


/* The following tables stolen from former (4.4Lite's) sys/sparc/bsd_audio.c */

/*
* gx, gr & stg gains.  this table must contain 256 elements with
* the 0th being "infinity" (the magic value 9008).  The remaining
* elements match sun's gain curve (but with higher resolution):
* -18 to 0dB in .16dB steps then 0 to 12dB in .08dB steps.
*/
static const uint16_t gx_coeff[256] = {
       0x9008, 0x8e7c, 0x8e51, 0x8e45, 0x8d42, 0x8d3b, 0x8c36, 0x8c33,
       0x8b32, 0x8b2a, 0x8b2b, 0x8b2c, 0x8b25, 0x8b23, 0x8b22, 0x8b22,
       0x9122, 0x8b1a, 0x8aa3, 0x8aa3, 0x8b1c, 0x8aa6, 0x912d, 0x912b,
       0x8aab, 0x8b12, 0x8aaa, 0x8ab2, 0x9132, 0x8ab4, 0x913c, 0x8abb,
       0x9142, 0x9144, 0x9151, 0x8ad5, 0x8aeb, 0x8a79, 0x8a5a, 0x8a4a,
       0x8b03, 0x91c2, 0x91bb, 0x8a3f, 0x8a33, 0x91b2, 0x9212, 0x9213,
       0x8a2c, 0x921d, 0x8a23, 0x921a, 0x9222, 0x9223, 0x922d, 0x9231,
       0x9234, 0x9242, 0x925b, 0x92dd, 0x92c1, 0x92b3, 0x92ab, 0x92a4,
       0x92a2, 0x932b, 0x9341, 0x93d3, 0x93b2, 0x93a2, 0x943c, 0x94b2,
       0x953a, 0x9653, 0x9782, 0x9e21, 0x9d23, 0x9cd2, 0x9c23, 0x9baa,
       0x9bde, 0x9b33, 0x9b22, 0x9b1d, 0x9ab2, 0xa142, 0xa1e5, 0x9a3b,
       0xa213, 0xa1a2, 0xa231, 0xa2eb, 0xa313, 0xa334, 0xa421, 0xa54b,
       0xada4, 0xac23, 0xab3b, 0xaaab, 0xaa5c, 0xb1a3, 0xb2ca, 0xb3bd,
       0xbe24, 0xbb2b, 0xba33, 0xc32b, 0xcb5a, 0xd2a2, 0xe31d, 0x0808,
       0x72ba, 0x62c2, 0x5c32, 0x52db, 0x513e, 0x4cce, 0x43b2, 0x4243,
       0x41b4, 0x3b12, 0x3bc3, 0x3df2, 0x34bd, 0x3334, 0x32c2, 0x3224,
       0x31aa, 0x2a7b, 0x2aaa, 0x2b23, 0x2bba, 0x2c42, 0x2e23, 0x25bb,
       0x242b, 0x240f, 0x231a, 0x22bb, 0x2241, 0x2223, 0x221f, 0x1a33,
       0x1a4a, 0x1acd, 0x2132, 0x1b1b, 0x1b2c, 0x1b62, 0x1c12, 0x1c32,
       0x1d1b, 0x1e71, 0x16b1, 0x1522, 0x1434, 0x1412, 0x1352, 0x1323,
       0x1315, 0x12bc, 0x127a, 0x1235, 0x1226, 0x11a2, 0x1216, 0x0a2a,
       0x11bc, 0x11d1, 0x1163, 0x0ac2, 0x0ab2, 0x0aab, 0x0b1b, 0x0b23,
       0x0b33, 0x0c0f, 0x0bb3, 0x0c1b, 0x0c3e, 0x0cb1, 0x0d4c, 0x0ec1,
       0x079a, 0x0614, 0x0521, 0x047c, 0x0422, 0x03b1, 0x03e3, 0x0333,
       0x0322, 0x031c, 0x02aa, 0x02ba, 0x02f2, 0x0242, 0x0232, 0x0227,
       0x0222, 0x021b, 0x01ad, 0x0212, 0x01b2, 0x01bb, 0x01cb, 0x01f6,
       0x0152, 0x013a, 0x0133, 0x0131, 0x012c, 0x0123, 0x0122, 0x00a2,
       0x011b, 0x011e, 0x0114, 0x00b1, 0x00aa, 0x00b3, 0x00bd, 0x00ba,
       0x00c5, 0x00d3, 0x00f3, 0x0062, 0x0051, 0x0042, 0x003b, 0x0033,
       0x0032, 0x002a, 0x002c, 0x0025, 0x0023, 0x0022, 0x001a, 0x0021,
       0x001b, 0x001b, 0x001d, 0x0015, 0x0013, 0x0013, 0x0012, 0x0012,
       0x000a, 0x000a, 0x0011, 0x0011, 0x000b, 0x000b, 0x000c, 0x000e,
};

/*
* second stage play gain.
*/
static const uint16_t ger_coeff[] = {
       0x431f, /* 5. dB */
       0x331f, /* 5.5 dB */
       0x40dd, /* 6. dB */
       0x11dd, /* 6.5 dB */
       0x440f, /* 7. dB */
       0x411f, /* 7.5 dB */
       0x311f, /* 8. dB */
       0x5520, /* 8.5 dB */
       0x10dd, /* 9. dB */
       0x4211, /* 9.5 dB */
       0x410f, /* 10. dB */
       0x111f, /* 10.5 dB */
       0x600b, /* 11. dB */
       0x00dd, /* 11.5 dB */
       0x4210, /* 12. dB */
       0x110f, /* 13. dB */
       0x7200, /* 14. dB */
       0x2110, /* 15. dB */
       0x2200, /* 15.9 dB */
       0x000b, /* 16.9 dB */
       0x000f  /* 18. dB */
#define NGER (sizeof(ger_coeff) / sizeof(ger_coeff[0]))
};

static const struct audio_format am7930_format = {
       .mode           = AUMODE_PLAY | AUMODE_RECORD,
       .encoding       = AUDIO_ENCODING_ULAW,
       .validbits      = 8,
       .precision      = 8,
       .channels       = 1,
       .channel_mask   = AUFMT_MONAURAL,
       .frequency_type = 1,
       .frequency      = { 8000 },
};

/*
* Indirect access functions.
*/

static void
am7930_iwrite(struct am7930_softc *sc, int reg, uint8_t val)
{

       AM7930_DWRITE(sc, AM7930_DREG_CR, reg);
       AM7930_DWRITE(sc, AM7930_DREG_DR, val);
}

static uint8_t
am7930_iread(struct am7930_softc *sc, int reg)
{

       AM7930_DWRITE(sc, AM7930_DREG_CR, reg);
       return AM7930_DREAD(sc, AM7930_DREG_DR);
}

static void
am7930_iwrite16(struct am7930_softc *sc, int reg, uint16_t val)
{

       AM7930_DWRITE(sc, AM7930_DREG_CR, reg);
       AM7930_DWRITE(sc, AM7930_DREG_DR, val);
       AM7930_DWRITE(sc, AM7930_DREG_DR, val >> 8);
}

static uint16_t __unused
am7930_iread16(struct am7930_softc *sc, int reg)
{
       uint lo, hi;

       AM7930_DWRITE(sc, AM7930_DREG_CR, reg);
       lo = AM7930_DREAD(sc, AM7930_DREG_DR);
       hi = AM7930_DREAD(sc, AM7930_DREG_DR);
       return (hi << 8) | lo;
}

#define AM7930_IWRITE(sc,r,v)   am7930_iwrite(sc,r,v)
#define AM7930_IREAD(sc,r)      am7930_iread(sc,r)
#define AM7930_IWRITE16(sc,r,v) am7930_iwrite16(sc,r,v)
#define AM7930_IREAD16(sc,r)    am7930_iread16(sc,r)

/*
* Reset chip and set boot-time softc defaults.
*/
void
am7930_init(struct am7930_softc *sc, int flag)
{

       DPRINTF(("%s\n", __func__));

       /* set boot defaults */
       sc->sc_rlevel = 128;
       sc->sc_plevel = 128;
       sc->sc_mlevel = 0;
       sc->sc_out_port = AUDIOAMD_SPEAKER_VOL;
       sc->sc_mic_mute = 0;

       memset(&sc->sc_p, 0, sizeof(sc->sc_p));
       memset(&sc->sc_r, 0, sizeof(sc->sc_r));

       /* disable sample interrupts */
       AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR4, 0);

       /* initialise voice and data, and disable interrupts */
       AM7930_IWRITE(sc, AM7930_IREG_INIT,
               AM7930_INIT_PMS_ACTIVE | AM7930_INIT_INT_DISABLE);

       if (flag == AUDIOAMD_DMA_MODE) {

               /* configure PP for serial (SBP) mode */
               AM7930_IWRITE(sc, AM7930_IREG_PP_PPCR1, AM7930_PPCR1_SBP);

               /*
                * Initialise the MUX unit - route the MAP to the PP
                */
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR1,
                       (AM7930_MCRCHAN_BA << 4) | AM7930_MCRCHAN_BD);
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR2, AM7930_MCRCHAN_NC);
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR3, AM7930_MCRCHAN_NC);

               mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
       } else {

               /*
                * Initialize the MUX unit.  We use MCR3 to route the MAP
                * through channel Bb.  MCR1 and MCR2 are unused.
                * Setting the INT enable bit in MCR4 will generate an
                * interrupt on each converted audio sample.
                */
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR1, 0);
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR2, 0);
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR3,
                       (AM7930_MCRCHAN_BB << 4) | AM7930_MCRCHAN_BA);
               AM7930_IWRITE(sc, AM7930_IREG_MUX_MCR4,
                       AM7930_MCR4_INT_ENABLE);

               mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SOFTSERIAL);
       }

       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);

       sc->sc_sicookie = softint_establish(SOFTINT_SERIAL, &am7930_swintr, sc);
       if (sc->sc_sicookie == NULL) {
               aprint_error_dev(sc->sc_dev,
                   "cannot establish software interrupt\n");
               return;
       }
}

int
am7930_query_format(void *addr, audio_format_query_t *afp)
{

       return audio_query_format(&am7930_format, 1, afp);
}

int
am7930_set_format(void *addr, int setmode,
       const audio_params_t *play, const audio_params_t *rec,
       audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{

       if ((setmode & AUMODE_PLAY) != 0) {
               pfil->codec = audio_internal_to_mulaw;
       }
       if ((setmode & AUMODE_RECORD) != 0) {
               rfil->codec = audio_mulaw_to_internal;
       }

       return 0;
}

int
am7930_commit_settings(void *addr)
{
       struct am7930_softc *sc;
       uint16_t ger, gr, gx, stgr;
       uint8_t mmr2, mmr3;
       int level;

       DPRINTF(("%s\n", __func__));
       sc = addr;
       gx = gx_coeff[sc->sc_rlevel];
       stgr = gx_coeff[sc->sc_mlevel];

       level = (sc->sc_plevel * (256 + NGER)) >> 8;
       if (level >= 256) {
               ger = ger_coeff[level - 256];
               gr = gx_coeff[255];
       } else {
               ger = ger_coeff[0];
               gr = gx_coeff[level];
       }

       mutex_enter(&sc->sc_intr_lock);

       mmr2 = AM7930_IREAD(sc, AM7930_IREG_MAP_MMR2);
       if (sc->sc_out_port == AUDIOAMD_SPEAKER_VOL)
               mmr2 |= AM7930_MMR2_LS;
       else
               mmr2 &= ~AM7930_MMR2_LS;
       AM7930_IWRITE(sc, AM7930_IREG_MAP_MMR2, mmr2);

       mmr3 = AM7930_IREAD(sc, AM7930_IREG_MAP_MMR3);
       if (sc->sc_mic_mute)
               mmr3 |= AM7930_MMR3_MUTE;
       else
               mmr3 &= ~AM7930_MMR3_MUTE;
       AM7930_IWRITE(sc, AM7930_IREG_MAP_MMR3, mmr3);

       AM7930_IWRITE(sc, AM7930_IREG_MAP_MMR1,
               AM7930_MMR1_GX | AM7930_MMR1_GER |
               AM7930_MMR1_GR | AM7930_MMR1_STG);

       AM7930_IWRITE16(sc, AM7930_IREG_MAP_GX, gx);
       AM7930_IWRITE16(sc, AM7930_IREG_MAP_STG, stgr);
       AM7930_IWRITE16(sc, AM7930_IREG_MAP_GR, gr);
       AM7930_IWRITE16(sc, AM7930_IREG_MAP_GER, ger);

       mutex_exit(&sc->sc_intr_lock);

       return 0;
}

int
am7930_trigger_output(void *addr, void *start, void *end, int blksize,
   void (*intr)(void *), void *arg, const audio_params_t *params)
{
       struct am7930_softc *sc;

       DPRINTF(("%s: blksize=%d %p(%p)\n", __func__, blksize, intr, arg));
       sc = addr;
       sc->sc_p.intr = intr;
       sc->sc_p.arg = arg;
       sc->sc_p.start = start;
       sc->sc_p.end = end;
       sc->sc_p.blksize = blksize;
       sc->sc_p.data = sc->sc_p.start;
       sc->sc_p.blkend = sc->sc_p.start + sc->sc_p.blksize;

       /* Start if either play or rec start. */
       if (sc->sc_r.intr == NULL) {
               AM7930_IWRITE(sc, AM7930_IREG_INIT, AM7930_INIT_PMS_ACTIVE);
               DPRINTF(("%s: started intrs.\n", __func__));
       }
       return 0;
}

int
am7930_trigger_input(void *addr, void *start, void *end, int blksize,
   void (*intr)(void *), void *arg, const audio_params_t *params)
{
       struct am7930_softc *sc;

       DPRINTF(("%s: blksize=%d %p(%p)\n", __func__, blksize, intr, arg));
       sc = addr;
       sc->sc_r.intr = intr;
       sc->sc_r.arg = arg;
       sc->sc_r.start = start;
       sc->sc_r.end = end;
       sc->sc_r.blksize = blksize;
       sc->sc_r.data = sc->sc_r.start;
       sc->sc_r.blkend = sc->sc_r.start + sc->sc_r.blksize;

       /* Start if either play or rec start. */
       if (sc->sc_p.intr == NULL) {
               AM7930_IWRITE(sc, AM7930_IREG_INIT, AM7930_INIT_PMS_ACTIVE);
               DPRINTF(("%s: started intrs.\n", __func__));
       }
       return 0;
}

int
am7930_halt_output(void *addr)
{
       struct am7930_softc *sc;

       sc = addr;
       sc->sc_p.intr = NULL;
       /* Halt if both of play and rec halt. */
       if (sc->sc_r.intr == NULL) {
               AM7930_IWRITE(sc, AM7930_IREG_INIT,
                   AM7930_INIT_PMS_ACTIVE | AM7930_INIT_INT_DISABLE);
       }
       return 0;
}

int
am7930_halt_input(void *addr)
{
       struct am7930_softc *sc;

       sc = addr;
       sc->sc_r.intr = NULL;
       /* Halt if both of play and rec halt. */
       if (sc->sc_p.intr == NULL) {
               AM7930_IWRITE(sc, AM7930_IREG_INIT,
                   AM7930_INIT_PMS_ACTIVE | AM7930_INIT_INT_DISABLE);
       }
       return 0;
}

int
am7930_hwintr(void *arg)
{
       struct am7930_softc *sc;
       int k __unused;

       sc = arg;

       /*
        * This hwintr is called as pseudo-DMA.  So don't acquire intr_lock.
        */

       /* clear interrupt */
       k = AM7930_DREAD(sc, AM7930_DREG_IR);
#if !defined(__vax__)
       /* On vax, interrupt is not shared, this shouldn't happen */
       if ((k & (AM7930_IR_DTTHRSH | AM7930_IR_DRTHRSH | AM7930_IR_DSRI |
           AM7930_IR_DERI | AM7930_IR_BBUFF)) == 0) {
               return 0;
       }
#endif

       /* receive incoming data */
       if (sc->sc_r.intr) {
               *sc->sc_r.data++ = AM7930_DREAD(sc, AM7930_DREG_BBRB);
               if (sc->sc_r.data == sc->sc_r.blkend) {
                       if (sc->sc_r.blkend == sc->sc_r.end) {
                               sc->sc_r.data = sc->sc_r.start;
                               sc->sc_r.blkend = sc->sc_r.start;
                       }
                       sc->sc_r.blkend += sc->sc_r.blksize;
                       atomic_store_relaxed(&sc->sc_r.intr_pending, 1);
                       softint_schedule(sc->sc_sicookie);
               }
       }

       /* send outgoing data */
       if (sc->sc_p.intr) {
               AM7930_DWRITE(sc, AM7930_DREG_BBTB, *sc->sc_p.data++);
               if (sc->sc_p.data == sc->sc_p.blkend) {
                       if (sc->sc_p.blkend == sc->sc_p.end) {
                               sc->sc_p.data = sc->sc_p.start;
                               sc->sc_p.blkend = sc->sc_p.start;
                       }
                       sc->sc_p.blkend += sc->sc_p.blksize;
                       atomic_store_relaxed(&sc->sc_p.intr_pending, 1);
                       softint_schedule(sc->sc_sicookie);
               }
       }

       sc->sc_intrcnt.ev_count++;
       return 1;
}

void
am7930_swintr(void *cookie)
{
       struct am7930_softc *sc = cookie;

       mutex_enter(&sc->sc_intr_lock);
       if (atomic_cas_uint(&sc->sc_r.intr_pending, 1, 0) == 1) {
               (*sc->sc_r.intr)(sc->sc_r.arg);
       }
       if (atomic_cas_uint(&sc->sc_p.intr_pending, 1, 0) == 1) {
               (*sc->sc_p.intr)(sc->sc_p.arg);
       }
       mutex_exit(&sc->sc_intr_lock);
}


/*
* XXX chip is full-duplex, but really attach-dependent.
* For now we know of no half-duplex attachments.
*/
int
am7930_get_props(void *addr)
{

       return AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE |
           AUDIO_PROP_FULLDUPLEX;
}

/*
* Attach-dependent channel set/query
*/
int
am7930_set_port(void *addr, mixer_ctrl_t *cp)
{
       struct am7930_softc *sc;

       DPRINTF(("%s: port=%d\n", __func__, cp->dev));
       sc = addr;
       if (cp->dev == AUDIOAMD_RECORD_SOURCE ||
               cp->dev == AUDIOAMD_MONITOR_OUTPUT ||
               cp->dev == AUDIOAMD_MIC_MUTE) {
               if (cp->type != AUDIO_MIXER_ENUM)
                       return EINVAL;
       } else if (cp->type != AUDIO_MIXER_VALUE ||
           cp->un.value.num_channels != 1) {
               return EINVAL;
       }

       switch(cp->dev) {
           case AUDIOAMD_MIC_VOL:
                   sc->sc_rlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
                   break;
           case AUDIOAMD_SPEAKER_VOL:
           case AUDIOAMD_HEADPHONES_VOL:
                   sc->sc_plevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
                   break;
           case AUDIOAMD_MONITOR_VOL:
                   sc->sc_mlevel = cp->un.value.level[AUDIO_MIXER_LEVEL_MONO];
                   break;
           case AUDIOAMD_RECORD_SOURCE:
                   if (cp->un.ord != AUDIOAMD_MIC_VOL)
                           return EINVAL;
                   break;
           case AUDIOAMD_MIC_MUTE:
                   sc->sc_mic_mute = cp->un.ord;
                   break;
           case AUDIOAMD_MONITOR_OUTPUT:
                   if (cp->un.ord != AUDIOAMD_SPEAKER_VOL &&
                       cp->un.ord != AUDIOAMD_HEADPHONES_VOL)
                           return EINVAL;
                       sc->sc_out_port = cp->un.ord;
                   break;
           default:
                   return EINVAL;
                   /* NOTREACHED */
       }
       return 0;
}

int
am7930_get_port(void *addr, mixer_ctrl_t *cp)
{
       struct am7930_softc *sc;

       DPRINTF(("%s: port=%d\n", __func__, cp->dev));
       sc = addr;
       if (cp->dev == AUDIOAMD_RECORD_SOURCE ||
               cp->dev == AUDIOAMD_MONITOR_OUTPUT ||
               cp->dev == AUDIOAMD_MIC_MUTE) {
               if (cp->type != AUDIO_MIXER_ENUM)
                       return EINVAL;
       } else if (cp->type != AUDIO_MIXER_VALUE ||
               cp->un.value.num_channels != 1) {
               return EINVAL;
       }

       switch(cp->dev) {
           case AUDIOAMD_MIC_VOL:
                   cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_rlevel;
                   break;
           case AUDIOAMD_SPEAKER_VOL:
           case AUDIOAMD_HEADPHONES_VOL:
                   cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_plevel;
                   break;
           case AUDIOAMD_MONITOR_VOL:
                   cp->un.value.level[AUDIO_MIXER_LEVEL_MONO] = sc->sc_mlevel;
                   break;
           case AUDIOAMD_RECORD_SOURCE:
                   cp->un.ord = AUDIOAMD_MIC_VOL;
                   break;
           case AUDIOAMD_MIC_MUTE:
                   cp->un.ord = sc->sc_mic_mute;
                   break;
           case AUDIOAMD_MONITOR_OUTPUT:
                   cp->un.ord = sc->sc_out_port;
                   break;
           default:
                   return EINVAL;
                   /* NOTREACHED */
       }
       return 0;
}


/*
* Define mixer control facilities.
*/
int
am7930_query_devinfo(void *addr, mixer_devinfo_t *dip)
{

       DPRINTF(("%s\n", __func__));

       switch(dip->index) {
       case AUDIOAMD_MIC_VOL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = AUDIOAMD_INPUT_CLASS;
               dip->prev =  AUDIO_MIXER_LAST;
               dip->next = AUDIOAMD_MIC_MUTE;
               strcpy(dip->label.name, AudioNmicrophone);
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case AUDIOAMD_SPEAKER_VOL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = AUDIOAMD_OUTPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNspeaker);
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case AUDIOAMD_HEADPHONES_VOL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = AUDIOAMD_OUTPUT_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNheadphone);
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case AUDIOAMD_MONITOR_VOL:
               dip->type = AUDIO_MIXER_VALUE;
               dip->mixer_class = AUDIOAMD_MONITOR_CLASS;
               dip->prev = dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmonitor);
               dip->un.v.num_channels = 1;
               strcpy(dip->un.v.units.name, AudioNvolume);
               break;
       case AUDIOAMD_RECORD_SOURCE:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = AUDIOAMD_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNsource);
               dip->un.e.num_mem = 1;
               strcpy(dip->un.e.member[0].label.name, AudioNmicrophone);
               dip->un.e.member[0].ord = AUDIOAMD_MIC_VOL;
               break;
       case AUDIOAMD_MONITOR_OUTPUT:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = AUDIOAMD_MONITOR_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNoutput);
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNspeaker);
               dip->un.e.member[0].ord = AUDIOAMD_SPEAKER_VOL;
               strcpy(dip->un.e.member[1].label.name, AudioNheadphone);
               dip->un.e.member[1].ord = AUDIOAMD_HEADPHONES_VOL;
               break;
       case AUDIOAMD_MIC_MUTE:
               dip->type = AUDIO_MIXER_ENUM;
               dip->mixer_class = AUDIOAMD_INPUT_CLASS;
               dip->prev =  AUDIOAMD_MIC_VOL;
               dip->next = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioNmute);
               dip->un.e.num_mem = 2;
               strcpy(dip->un.e.member[0].label.name, AudioNoff);
               dip->un.e.member[0].ord = 0;
               strcpy(dip->un.e.member[1].label.name, AudioNon);
               dip->un.e.member[1].ord = 1;
               break;
       case AUDIOAMD_INPUT_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = AUDIOAMD_INPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCinputs);
               break;
       case AUDIOAMD_OUTPUT_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = AUDIOAMD_OUTPUT_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCoutputs);
               break;
       case AUDIOAMD_RECORD_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = AUDIOAMD_RECORD_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCrecord);
               break;
       case AUDIOAMD_MONITOR_CLASS:
               dip->type = AUDIO_MIXER_CLASS;
               dip->mixer_class = AUDIOAMD_MONITOR_CLASS;
               dip->next = dip->prev = AUDIO_MIXER_LAST;
               strcpy(dip->label.name, AudioCmonitor);
               break;
       default:
               return ENXIO;
               /*NOTREACHED*/
       }

       DPRINTF(("AUDIO_MIXER_DEVINFO: name=%s\n", dip->label.name));

       return 0;
}

void
am7930_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
       struct am7930_softc *sc;

       sc = addr;
       *intr = &sc->sc_intr_lock;
       *thread = &sc->sc_lock;
}

#endif  /* NAUDIO */