/*      $NetBSD: aic7xxx_inline.h,v 1.15 2018/04/19 21:50:08 christos Exp $     */

/*
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2001 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions, and the following disclaimer,
*    without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
*    substantially similar to the "NO WARRANTY" disclaimer below
*    ("Disclaimer") and any redistribution must be conditioned upon
*    including a substantially similar Disclaimer requirement for further
*    binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
*    of any contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* //depot/aic7xxx/aic7xxx/aic7xxx_inline.h#39 $
*
* $FreeBSD: /repoman/r/ncvs/src/sys/dev/aic7xxx/aic7xxx_inline.h,v 1.20 2003/01/20 20:44:55 gibbs Exp $
*/
/*
* Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
*/

#ifndef _AIC7XXX_INLINE_H_
#define _AIC7XXX_INLINE_H_

/************************* Sequencer Execution Control ************************/
static __inline void ahc_pause_bug_fix(struct ahc_softc *ahc);
static __inline int  ahc_is_paused(struct ahc_softc *ahc);
static __inline void ahc_pause(struct ahc_softc *ahc);
static __inline void ahc_unpause(struct ahc_softc *ahc);

/*
* Work around any chip bugs related to halting sequencer execution.
* On Ultra2 controllers, we must clear the CIOBUS stretch signal by
* reading a register that will set this signal and deassert it.
* Without this workaround, if the chip is paused, by an interrupt or
* manual pause while accessing scb ram, accesses to certain registers
* will hang the system (infinite pci retries).
*/
static __inline void
ahc_pause_bug_fix(struct ahc_softc *ahc)
{
       if ((ahc->features & AHC_ULTRA2) != 0)
               (void)ahc_inb(ahc, CCSCBCTL);
}

/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahc_is_paused(struct ahc_softc *ahc)
{
       return ((ahc_inb(ahc, HCNTRL) & PAUSE) != 0);
}

/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop.  The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahc_pause(struct ahc_softc *ahc)
{
       ahc_outb(ahc, HCNTRL, ahc->pause);

       /*
        * Since the sequencer can disable pausing in a critical section, we
        * must loop until it actually stops.
        */
       while (ahc_is_paused(ahc) == 0)
               ;

       ahc_pause_bug_fix(ahc);
}

/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted.  If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahc_unpause(struct ahc_softc *ahc)
{
       if ((ahc_inb(ahc, INTSTAT) & (SCSIINT | SEQINT | BRKADRINT)) == 0)
               ahc_outb(ahc, HCNTRL, ahc->unpause);
}

/*********************** Untagged Transaction Routines ************************/
static __inline void    ahc_freeze_untagged_queues(struct ahc_softc *ahc);
static __inline void    ahc_release_untagged_queues(struct ahc_softc *ahc);

/*
* Block our completion routine from starting the next untagged
* transaction for this target or target lun.
*/
static __inline void
ahc_freeze_untagged_queues(struct ahc_softc *ahc)
{
       if ((ahc->flags & AHC_SCB_BTT) == 0)
               ahc->untagged_queue_lock++;
}

/*
* Allow the next untagged transaction for this target or target lun
* to be executed.  We use a counting semaphore to allow the lock
* to be acquired recursively.  Once the count drops to zero, the
* transaction queues will be run.
*/
static __inline void
ahc_release_untagged_queues(struct ahc_softc *ahc)
{
       if ((ahc->flags & AHC_SCB_BTT) == 0) {
               ahc->untagged_queue_lock--;
               if (ahc->untagged_queue_lock == 0)
                       ahc_run_untagged_queues(ahc);
       }
}

/************************** Memory mapping routines ***************************/
static __inline struct ahc_dma_seg *
                       ahc_sg_bus_to_virt(struct scb *scb,
                                          uint32_t sg_busaddr);
static __inline uint32_t
                       ahc_sg_virt_to_bus(struct scb *scb,
                                          struct ahc_dma_seg *sg);
static __inline uint32_t
                       ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index);
static __inline void    ahc_sync_scb(struct ahc_softc *ahc,
                                    struct scb *scb, int op);
static __inline void    ahc_sync_sglist(struct ahc_softc *ahc,
                                       struct scb *scb, int op);
static __inline uint32_t
                       ahc_targetcmd_offset(struct ahc_softc *ahc,
                                            u_int index);

static __inline struct ahc_dma_seg *
ahc_sg_bus_to_virt(struct scb *scb, uint32_t sg_busaddr)
{
       int sg_index;

       sg_index = (sg_busaddr - scb->sg_list_phys)/sizeof(struct ahc_dma_seg);
       /* sg_list_phys points to entry 1, not 0 */
       sg_index++;

       return (&scb->sg_list[sg_index]);
}

static __inline uint32_t
ahc_sg_virt_to_bus(struct scb *scb, struct ahc_dma_seg *sg)
{
       int sg_index;

       /* sg_list_phys points to entry 1, not 0 */
       sg_index = sg - &scb->sg_list[1];

       return (scb->sg_list_phys + (sg_index * sizeof(*scb->sg_list)));
}

static __inline uint32_t
ahc_hscb_busaddr(struct ahc_softc *ahc, u_int index)
{
       return (ahc->scb_data->hscb_busaddr
               + (sizeof(struct hardware_scb) * index));
}

static __inline void
ahc_sync_scb(struct ahc_softc *ahc, struct scb *scb, int op)
{
       ahc_dmamap_sync(ahc, ahc->parent_dmat,
                       ahc->scb_data->hscb_dmamap,
                       /*offset*/(scb->hscb - ahc->scb_data->hscbs) * sizeof(*scb->hscb),
                       /*len*/sizeof(*scb->hscb), op);
}

static __inline void
ahc_sync_sglist(struct ahc_softc *ahc, struct scb *scb, int op)
{
       if (scb->sg_count == 0)
               return;

       ahc_dmamap_sync(ahc, ahc->parent_dmat, scb->sg_map->sg_dmamap,
                       /*offset*/(scb->sg_list - scb->sg_map->sg_vaddr)
                               * sizeof(struct ahc_dma_seg),
                       /*len*/sizeof(struct ahc_dma_seg) * scb->sg_count, op);
}

static __inline uint32_t
ahc_targetcmd_offset(struct ahc_softc *ahc, u_int index)
{
       return (((uint8_t *)&ahc->targetcmds[index]) - ahc->qoutfifo);
}

/******************************** Debugging ***********************************/
static __inline const char *ahc_name(struct ahc_softc *ahc);

static __inline const char *
ahc_name(struct ahc_softc *ahc)
{
       return (ahc->name);
}

/*********************** Miscellaneous Support Functions ***********************/

static __inline void    ahc_update_residual(struct ahc_softc *ahc,
                                           struct scb *scb);
static __inline struct ahc_initiator_tinfo *
                       ahc_fetch_transinfo(struct ahc_softc *ahc,
                                           char channel, u_int our_id,
                                           u_int remote_id,
                                           struct ahc_tmode_tstate **tstate);
static __inline uint16_t
                       ahc_inw(struct ahc_softc *ahc, u_int port);
static __inline void    ahc_outw(struct ahc_softc *ahc, u_int port,
                                u_int value);
static __inline uint32_t
                       ahc_inl(struct ahc_softc *ahc, u_int port);
static __inline void    ahc_outl(struct ahc_softc *ahc, u_int port,
                                uint32_t value);
static __inline uint64_t
                       ahc_inq(struct ahc_softc *ahc, u_int port);
static __inline void    ahc_outq(struct ahc_softc *ahc, u_int port,
                                uint64_t value);
static __inline struct scb*
                       ahc_get_scb(struct ahc_softc *ahc);
static __inline void    ahc_free_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline void    ahc_swap_with_next_hscb(struct ahc_softc *ahc,
                                               struct scb *scb);
static __inline void    ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb);
static __inline struct scsi_sense_data *
                       ahc_get_sense_buf(struct ahc_softc *ahc,
                                         struct scb *scb);
static __inline uint32_t
                       ahc_get_sense_bufaddr(struct ahc_softc *ahc,
                                             struct scb *scb);

/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline void
ahc_update_residual(struct ahc_softc *ahc, struct scb *scb)
{
       uint32_t sgptr;

       sgptr = ahc_le32toh(scb->hscb->sgptr);
       if ((sgptr & SG_RESID_VALID) != 0)
               ahc_calc_residual(ahc, scb);
}

/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahc_initiator_tinfo *
ahc_fetch_transinfo(struct ahc_softc *ahc, char channel, u_int our_id,
                   u_int remote_id, struct ahc_tmode_tstate **tstate)
{
       /*
        * Transfer data structures are stored from the perspective
        * of the target role.  Since the parameters for a connection
        * in the initiator role to a given target are the same as
        * when the roles are reversed, we pretend we are the target.
        */
#ifdef notdef
       if (channel == 'B')
               our_id += 8;
#endif
       *tstate = ahc->enabled_targets[our_id];
       return (&(*tstate)->transinfo[remote_id]);
}

static __inline uint16_t
ahc_inw(struct ahc_softc *ahc, u_int port)
{
       return ((ahc_inb(ahc, port+1) << 8) | ahc_inb(ahc, port));
}

static __inline void
ahc_outw(struct ahc_softc *ahc, u_int port, u_int value)
{
       ahc_outb(ahc, port, value & 0xFF);
       ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
}

static __inline uint32_t
ahc_inl(struct ahc_softc *ahc, u_int port)
{
       return ((ahc_inb(ahc, port))
             | (ahc_inb(ahc, port+1) << 8)
             | (ahc_inb(ahc, port+2) << 16)
             | (ahc_inb(ahc, port+3) << 24));
}

static __inline void
ahc_outl(struct ahc_softc *ahc, u_int port, uint32_t value)
{
       ahc_outb(ahc, port, (value) & 0xFF);
       ahc_outb(ahc, port+1, ((value) >> 8) & 0xFF);
       ahc_outb(ahc, port+2, ((value) >> 16) & 0xFF);
       ahc_outb(ahc, port+3, ((value) >> 24) & 0xFF);
}

static __inline uint64_t
ahc_inq(struct ahc_softc *ahc, u_int port)
{
       return ((ahc_inb(ahc, port))
             | (ahc_inb(ahc, port+1) << 8)
             | (ahc_inb(ahc, port+2) << 16)
             | (ahc_inb(ahc, port+3) << 24)
             | (((uint64_t)ahc_inb(ahc, port+4)) << 32)
             | (((uint64_t)ahc_inb(ahc, port+5)) << 40)
             | (((uint64_t)ahc_inb(ahc, port+6)) << 48)
             | (((uint64_t)ahc_inb(ahc, port+7)) << 56));
}

static __inline void
ahc_outq(struct ahc_softc *ahc, u_int port, uint64_t value)
{
       ahc_outb(ahc, port, value & 0xFF);
       ahc_outb(ahc, port+1, (value >> 8) & 0xFF);
       ahc_outb(ahc, port+2, (value >> 16) & 0xFF);
       ahc_outb(ahc, port+3, (value >> 24) & 0xFF);
       ahc_outb(ahc, port+4, (value >> 32) & 0xFF);
       ahc_outb(ahc, port+5, (value >> 40) & 0xFF);
       ahc_outb(ahc, port+6, (value >> 48) & 0xFF);
       ahc_outb(ahc, port+7, (value >> 56) & 0xFF);
}

/*
* Get a free scb. If there are none, see if we can allocate a new SCB.
*/
static __inline struct scb *
ahc_get_scb(struct ahc_softc *ahc)
{
       struct scb *scb;

       if ((scb = SLIST_FIRST(&ahc->scb_data->free_scbs)) == NULL)
               return (NULL);
       SLIST_REMOVE_HEAD(&ahc->scb_data->free_scbs, links.sle);
       return (scb);
}

/*
* Return an SCB resource to the free list.
*/
static __inline void
ahc_free_scb(struct ahc_softc *ahc, struct scb *scb)
{
       struct hardware_scb *hscb;

       hscb = scb->hscb;
       /* Clean up for the next user */
       ahc->scb_data->scbindex[hscb->tag] = NULL;
       scb->flags = SCB_FREE;
       hscb->control = 0;

       SLIST_INSERT_HEAD(&ahc->scb_data->free_scbs, scb, links.sle);

       /* Notify the OSM that a resource is now available. */
       ahc_platform_scb_free(ahc, scb);
}

static __inline struct scb *
ahc_lookup_scb(struct ahc_softc *ahc, u_int tag)
{
       struct scb* scb;

       scb = ahc->scb_data->scbindex[tag];
       if (scb != NULL)
               ahc_sync_scb(ahc, scb,
                            BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
       return (scb);
}

static __inline void
ahc_swap_with_next_hscb(struct ahc_softc *ahc, struct scb *scb)
{
       struct hardware_scb *q_hscb;
       u_int  saved_tag;

       /*
        * Our queuing method is a bit tricky.  The card
        * knows in advance which HSCB to download, and we
        * can't disappoint it.  To achieve this, the next
        * SCB to download is saved off in ahc->next_queued_scb.
        * When we are called to queue "an arbitrary scb",
        * we copy the contents of the incoming HSCB to the one
        * the sequencer knows about, swap HSCB pointers and
        * finally assign the SCB to the tag indexed location
        * in the scb_array.  This makes sure that we can still
        * locate the correct SCB by SCB_TAG.
        */
       q_hscb = ahc->next_queued_scb->hscb;
       saved_tag = q_hscb->tag;
       memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
       if ((scb->flags & SCB_CDB32_PTR) != 0) {
               q_hscb->shared_data.cdb_ptr =
                   ahc_htole32(ahc_hscb_busaddr(ahc, q_hscb->tag)
                             + offsetof(struct hardware_scb, cdb32));
       }
       q_hscb->tag = saved_tag;
       q_hscb->next = scb->hscb->tag;

       /* Now swap HSCB pointers. */
       ahc->next_queued_scb->hscb = scb->hscb;
       scb->hscb = q_hscb;

       /* Now define the mapping from tag to SCB in the scbindex */
       ahc->scb_data->scbindex[scb->hscb->tag] = scb;
}

/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahc_queue_scb(struct ahc_softc *ahc, struct scb *scb)
{
       ahc_swap_with_next_hscb(ahc, scb);

       if (scb->hscb->tag == SCB_LIST_NULL
        || scb->hscb->next == SCB_LIST_NULL)
               panic("Attempt to queue invalid SCB tag %x:%x\n",
                     scb->hscb->tag, scb->hscb->next);
       /*
        * Keep a history of SCBs we've downloaded in the qinfifo.
        */
       ahc->qinfifo[ahc->qinfifonext++] = scb->hscb->tag;

       /*
        * Make sure our data is consistent from the
        * perspective of the adapter.
        */
       ahc_sync_scb(ahc, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);

       /* Tell the adapter about the newly queued SCB */
       if ((ahc->features & AHC_QUEUE_REGS) != 0) {
               ahc_outb(ahc, HNSCB_QOFF, ahc->qinfifonext);
       } else {
               if ((ahc->features & AHC_AUTOPAUSE) == 0)
                       ahc_pause(ahc);
               ahc_outb(ahc, KERNEL_QINPOS, ahc->qinfifonext);
               if ((ahc->features & AHC_AUTOPAUSE) == 0)
                       ahc_unpause(ahc);
       }
}

static __inline struct scsi_sense_data *
ahc_get_sense_buf(struct ahc_softc *ahc, struct scb *scb)
{
       int offset;

       offset = scb - ahc->scb_data->scbarray;
       return (&ahc->scb_data->sense[offset]);
}

static __inline uint32_t
ahc_get_sense_bufaddr(struct ahc_softc *ahc, struct scb *scb)
{
       int offset;

       offset = scb - ahc->scb_data->scbarray;
       return (ahc->scb_data->sense_busaddr
             + (offset * sizeof(struct scsi_sense_data)));
}

/************************** Interrupt Processing ******************************/
static __inline void    ahc_sync_qoutfifo(struct ahc_softc *ahc, int op);
static __inline void    ahc_sync_tqinfifo(struct ahc_softc *ahc, int op);
static __inline u_int   ahc_check_cmdcmpltqueues(struct ahc_softc *ahc);
static __inline int     ahc_intr(void *arg);
static __inline void    ahc_minphys(struct buf *bp);

static __inline void
ahc_minphys(struct buf *bp)
{
/*
* Even though the card can transfer up to 16megs per command
* we are limited by the number of segments in the DMA segment
* list that we can hold.  The worst case is that all pages are
* discontinuous physically, hence the "page per segment" limit
* enforced here.
*/
       if (bp->b_bcount > AHC_MAXTRANSFER_SIZE) {
               bp->b_bcount = AHC_MAXTRANSFER_SIZE;
       }
       minphys(bp);
}

static __inline void
ahc_sync_qoutfifo(struct ahc_softc *ahc, int op)
{
       ahc_dmamap_sync(ahc, ahc->parent_dmat, ahc->shared_data_dmamap,
                       /*offset*/0, /*len*/256, op);
}

static __inline void
ahc_sync_tqinfifo(struct ahc_softc *ahc, int op)
{
#ifdef AHC_TARGET_MODE
       if ((ahc->flags & AHC_TARGETROLE) != 0) {
         ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/,
                               ahc->shared_data_dmamap,
                               ahc_targetcmd_offset(ahc, 0),
                               sizeof(struct target_cmd) * AHC_TMODE_CMDS,
                               op);
       }
#endif
}

/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHC_RUN_QOUTFIFO 0x1
#define AHC_RUN_TQINFIFO 0x2
static __inline u_int
ahc_check_cmdcmpltqueues(struct ahc_softc *ahc)
{
       u_int retval;

       retval = 0;
       ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/, ahc->shared_data_dmamap,
                       /*offset*/ahc->qoutfifonext, /*len*/1,
                       BUS_DMASYNC_POSTREAD);
       if (ahc->qoutfifo[ahc->qoutfifonext] != SCB_LIST_NULL)
               retval |= AHC_RUN_QOUTFIFO;
#ifdef AHC_TARGET_MODE
       if ((ahc->flags & AHC_TARGETROLE) != 0
           && (ahc->flags & AHC_TQINFIFO_BLOCKED) == 0) {
         ahc_dmamap_sync(ahc, ahc->parent_dmat /*shared_data_dmat*/,
                         ahc->shared_data_dmamap,
                         ahc_targetcmd_offset(ahc, ahc->tqinfifonext),
                         /*len*/sizeof(struct target_cmd),
                         BUS_DMASYNC_POSTREAD);
               if (ahc->targetcmds[ahc->tqinfifonext].cmd_valid != 0)
                       retval |= AHC_RUN_TQINFIFO;
       }
#endif
       return (retval);
}

/*
* Catch an interrupt from the adapter
*/
static __inline int
ahc_intr(void *arg)
{
       struct ahc_softc *ahc = (struct ahc_softc*)arg;
       u_int   intstat;

       if ((ahc->pause & INTEN) == 0) {
               /*
                * Our interrupt is not enabled on the chip
                * and may be disabled for re-entrancy reasons,
                * so just return.  This is likely just a shared
                * interrupt.
                */
               return 1;
       }
       /*
        * Instead of directly reading the interrupt status register,
        * infer the cause of the interrupt by checking our in-core
        * completion queues.  This avoids a costly PCI bus read in
        * most cases.
        */
       if ((ahc->flags & (AHC_ALL_INTERRUPTS|AHC_EDGE_INTERRUPT)) == 0
           && (ahc_check_cmdcmpltqueues(ahc) != 0))
               intstat = CMDCMPLT;
       else {
               intstat = ahc_inb(ahc, INTSTAT);
       }

       if (intstat & CMDCMPLT) {
               ahc_outb(ahc, CLRINT, CLRCMDINT);
               /*
                * Ensure that the chip sees that we've cleared
                * this interrupt before we walk the output fifo.
                * Otherwise, we may, due to posted bus writes,
                * clear the interrupt after we finish the scan,
                * and after the sequencer has added new entries
                * and asserted the interrupt again.
                */
               ahc_flush_device_writes(ahc);
               scsipi_channel_freeze(ahc->channel == 'A' ? &ahc->sc_channel : &ahc->sc_channel_b, 1);
               ahc_run_qoutfifo(ahc);
               scsipi_channel_thaw(ahc->channel == 'A' ? &ahc->sc_channel : &ahc->sc_channel_b, 1);
#ifdef AHC_TARGET_MODE
               if ((ahc->flags & AHC_TARGETROLE) != 0)
                       ahc_run_tqinfifo(ahc, /*paused*/FALSE);
#endif
       }

       if (intstat == 0xFF && (ahc->features & AHC_REMOVABLE) != 0)
               /* Hot eject */
               return 1;

       if ((intstat & INT_PEND) == 0) {
#if AHC_PCI_CONFIG > 0
               if (ahc->unsolicited_ints > 500) {
                       ahc->unsolicited_ints = 0;
                       if ((ahc->chip & AHC_PCI) != 0
                        && (ahc_inb(ahc, ERROR) & PCIERRSTAT) != 0)
                               ahc->bus_intr(ahc);
               }
#endif
               ahc->unsolicited_ints++;
               return 1;
       }
       ahc->unsolicited_ints = 0;

       if (intstat & BRKADRINT) {
               ahc_handle_brkadrint(ahc);
               /* Fatal error, no more interrupts to handle. */
               return 1;
       }

       if ((intstat & (SEQINT|SCSIINT)) != 0)
               ahc_pause_bug_fix(ahc);

       if ((intstat & SEQINT) != 0)
               ahc_handle_seqint(ahc, intstat);

       if ((intstat & SCSIINT) != 0)
               ahc_handle_scsiint(ahc, intstat);

       return 1;
}

#endif  /* _AIC7XXX_INLINE_H_ */