/*      $NetBSD: aic79xx_inline.h,v 1.24 2021/08/13 20:47:55 andvar Exp $       */

/*
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2003 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions, and the following disclaimer,
*    without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
*    substantially similar to the "NO WARRANTY" disclaimer below
*    ("Disclaimer") and any redistribution must be conditioned upon
*    including a substantially similar Disclaimer requirement for further
*    binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
*    of any contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#51 $
*
* $FreeBSD: src/sys/dev/aic7xxx/aic79xx_inline.h,v 1.12 2003/06/28 04:43:19 gibbs Exp $
*/
/*
* Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
*/

#ifndef _AIC79XX_INLINE_H_
#define _AIC79XX_INLINE_H_

/******************************** Debugging ***********************************/
static __inline const char *ahd_name(struct ahd_softc *);

static __inline const char *
ahd_name(struct ahd_softc *ahd)
{
       return (ahd->name);
}

/************************ Sequencer Execution Control *************************/
static __inline void ahd_known_modes(struct ahd_softc *, ahd_mode, ahd_mode);
static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *,
   ahd_mode, ahd_mode);
static __inline void ahd_extract_mode_state(struct ahd_softc *,
   ahd_mode_state, ahd_mode *, ahd_mode *);
static __inline void ahd_set_modes(struct ahd_softc *, ahd_mode, ahd_mode);
static __inline void ahd_update_modes(struct ahd_softc *);
static __inline void ahd_assert_modes(struct ahd_softc *, ahd_mode,
   ahd_mode, const char *, int);
static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *);
static __inline void ahd_restore_modes(struct ahd_softc *, ahd_mode_state);
static __inline int  ahd_is_paused(struct ahd_softc *);
static __inline void ahd_pause(struct ahd_softc *);
static __inline void ahd_unpause(struct ahd_softc *);

static __inline void
ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
       ahd->src_mode = src;
       ahd->dst_mode = dst;
       ahd->saved_src_mode = src;
       ahd->saved_dst_mode = dst;
}

static __inline ahd_mode_state
ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
       return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
}

static __inline void
ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
                      ahd_mode *src, ahd_mode *dst)
{
       *src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
       *dst = (state & DST_MODE) >> DST_MODE_SHIFT;
}

static __inline void
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
       if (ahd->src_mode == src && ahd->dst_mode == dst)
               return;
#ifdef AHD_DEBUG
       if (ahd->src_mode == AHD_MODE_UNKNOWN
        || ahd->dst_mode == AHD_MODE_UNKNOWN)
               panic("Setting mode prior to saving it.\n");
       if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
               printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
                      ahd_build_mode_state(ahd, src, dst));
#endif
       ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
       ahd->src_mode = src;
       ahd->dst_mode = dst;
}

static __inline void
ahd_update_modes(struct ahd_softc *ahd)
{
       ahd_mode_state mode_ptr;
       ahd_mode src;
       ahd_mode dst;

       mode_ptr = ahd_inb(ahd, MODE_PTR);
#ifdef AHD_DEBUG
       if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
               printf("Reading mode 0x%x\n", mode_ptr);
#endif
       ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
       ahd_known_modes(ahd, src, dst);
}

static __inline void
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
    ahd_mode dstmode, const char *file, int line)
{
#ifdef AHD_DEBUG
       if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
        || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
               panic("%s:%s:%d: Mode assertion failed.\n",
                      ahd_name(ahd), file, line);
       }
#endif
}

static __inline ahd_mode_state
ahd_save_modes(struct ahd_softc *ahd)
{
       if (ahd->src_mode == AHD_MODE_UNKNOWN
        || ahd->dst_mode == AHD_MODE_UNKNOWN)
               ahd_update_modes(ahd);

       return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
}

static __inline void
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
{
       ahd_mode src;
       ahd_mode dst;

       ahd_extract_mode_state(ahd, state, &src, &dst);
       ahd_set_modes(ahd, src, dst);
}

#define AHD_ASSERT_MODES(ahd, source, dest) \
       ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);

/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahd_is_paused(struct ahd_softc *ahd)
{
       return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
}

/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop.  The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahd_pause(struct ahd_softc *ahd)
{
       ahd_outb(ahd, HCNTRL, ahd->pause);

       /*
        * Since the sequencer can disable pausing in a critical section, we
        * must loop until it actually stops.
        */
       while (ahd_is_paused(ahd) == 0)
               ;
}

/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted.  If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahd_unpause(struct ahd_softc *ahd)
{
       /*
        * Automatically restore our modes to those saved
        * prior to the first change of the mode.
        */
       if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
        && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
               if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
                       ahd_reset_cmds_pending(ahd);
               ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
       }

       if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
               ahd_outb(ahd, HCNTRL, ahd->unpause);

       ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
}

/*********************** Scatter Gather List Handling *************************/
static __inline void    *ahd_sg_setup(struct ahd_softc *, struct scb *,
                           void *, bus_addr_t, bus_size_t, int);
static __inline void     ahd_setup_scb_common(struct ahd_softc *, struct scb *);
static __inline void     ahd_setup_data_scb(struct ahd_softc *, struct scb *);
static __inline void     ahd_setup_noxfer_scb(struct ahd_softc *, struct scb *);

static __inline void *
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
            void *sgptr, bus_addr_t addr, bus_size_t len, int last)
{
       scb->sg_count++;
       if (sizeof(bus_addr_t) > 4
        && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
               struct ahd_dma64_seg *sg;

               sg = (struct ahd_dma64_seg *)sgptr;
               sg->addr = ahd_htole64(addr);
               sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
               return (sg + 1);
       } else {
               struct ahd_dma_seg *sg;

               sg = (struct ahd_dma_seg *)sgptr;
               sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
               sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
                                   | (last ? AHD_DMA_LAST_SEG : 0));
               return (sg + 1);
       }
}

static __inline void
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
{
       /* XXX Handle target mode SCBs. */
       scb->crc_retry_count = 0;
       if ((scb->flags & SCB_PACKETIZED) != 0) {
               /* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
               scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
       } else {
               if (ahd_get_transfer_length(scb) & 0x01)
                       scb->hscb->task_attribute = SCB_XFERLEN_ODD;
               else
                       scb->hscb->task_attribute = 0;
       }

       if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
        || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
               scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
                   ahd_htole32(scb->sense_busaddr);
}

static __inline void
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
{
       /*
        * Copy the first SG into the "current" data pointer area.
        */
       if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
               struct ahd_dma64_seg *sg;

               sg = (struct ahd_dma64_seg *)scb->sg_list;
               scb->hscb->dataptr = sg->addr;
               scb->hscb->datacnt = sg->len;
       } else {
               struct ahd_dma_seg *sg;
               uint32_t *dataptr_words;

               sg = (struct ahd_dma_seg *)scb->sg_list;
               dataptr_words = (uint32_t*)&scb->hscb->dataptr;
               dataptr_words[0] = sg->addr;
               dataptr_words[1] = 0;
               if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
                       uint64_t high_addr;

                       high_addr = ahd_le32toh(sg->len) & 0x7F000000;
                       scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
               }
               scb->hscb->datacnt = sg->len;
       }
       /*
        * Note where to find the SG entries in bus space.
        * We also set the full residual flag which the
        * sequencer will clear as soon as a data transfer
        * occurs.
        */
       scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
}

static __inline void
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
{
       scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
       scb->hscb->dataptr = 0;
       scb->hscb->datacnt = 0;
}

/************************** Memory mapping routines ***************************/
static __inline size_t  ahd_sg_size(struct ahd_softc *);
static __inline void *
                       ahd_sg_bus_to_virt(struct ahd_softc *, struct scb *,
                           uint32_t);
static __inline uint32_t
                       ahd_sg_virt_to_bus(struct ahd_softc *, struct scb *,
                           void *);
static __inline void    ahd_sync_scb(struct ahd_softc *, struct scb *, int);
static __inline void    ahd_sync_sglist(struct ahd_softc *, struct scb *, int);
static __inline void    ahd_sync_sense(struct ahd_softc *, struct scb *, int);
static __inline uint32_t
                       ahd_targetcmd_offset(struct ahd_softc *, u_int);

static __inline size_t
ahd_sg_size(struct ahd_softc *ahd)
{
       if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
               return (sizeof(struct ahd_dma64_seg));
       return (sizeof(struct ahd_dma_seg));
}

static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
{
       bus_addr_t sg_offset;

       /* sg_list_phys points to entry 1, not 0 */
       sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
       return ((uint8_t *)scb->sg_list + sg_offset);
}

static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
{
       bus_addr_t sg_offset;

       /* sg_list_phys points to entry 1, not 0 */
       sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
                 - ahd_sg_size(ahd);

       return (scb->sg_list_busaddr + sg_offset);
}

static __inline void
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
{
       ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->hscb_map->dmamap,
                       /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
                       /*len*/sizeof(*scb->hscb), op);
}

static __inline void
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
{
       if (scb->sg_count == 0)
               return;

       ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->sg_map->dmamap,
                       /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
                       /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
}

static __inline void
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
{
       ahd_dmamap_sync(ahd, ahd->parent_dmat,
                       scb->sense_map->dmamap,
                       /*offset*/scb->sense_busaddr - scb->sense_map->physaddr,
                       /*len*/AHD_SENSE_BUFSIZE, op);
}

static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
{
       return (((uint8_t *)&ahd->targetcmds[index])
              - (uint8_t *)ahd->qoutfifo);
}

/*********************** Miscellaneous Support Functions ***********************/
static __inline void    ahd_complete_scb(struct ahd_softc *, struct scb *);
static __inline void    ahd_update_residual(struct ahd_softc *, struct scb *);
static __inline struct ahd_initiator_tinfo *
                       ahd_fetch_transinfo(struct ahd_softc *, char, u_int,
                           u_int, struct ahd_tmode_tstate **);
static __inline uint16_t
                       ahd_inw(struct ahd_softc *, u_int);
static __inline void    ahd_outw(struct ahd_softc *, u_int, u_int);
static __inline uint32_t
                       ahd_inl(struct ahd_softc *, u_int);
static __inline void    ahd_outl(struct ahd_softc *, u_int, uint32_t);
static __inline uint64_t
                       ahd_inq(struct ahd_softc *, u_int);
static __inline void    ahd_outq(struct ahd_softc *, u_int, uint64_t);
static __inline u_int   ahd_get_scbptr(struct ahd_softc *);
static __inline void    ahd_set_scbptr(struct ahd_softc *, u_int);
static __inline u_int   ahd_get_hnscb_qoff(struct ahd_softc *);
static __inline void    ahd_set_hnscb_qoff(struct ahd_softc *, u_int);
static __inline u_int   ahd_get_hescb_qoff(struct ahd_softc *);
static __inline void    ahd_set_hescb_qoff(struct ahd_softc *, u_int);
static __inline u_int   ahd_get_snscb_qoff(struct ahd_softc *);
static __inline void    ahd_set_snscb_qoff(struct ahd_softc *, u_int);
static __inline u_int   ahd_get_sescb_qoff(struct ahd_softc *);
static __inline void    ahd_set_sescb_qoff(struct ahd_softc *, u_int);
static __inline u_int   ahd_get_sdscb_qoff(struct ahd_softc *);
static __inline void    ahd_set_sdscb_qoff(struct ahd_softc *, u_int);
static __inline u_int   ahd_inb_scbram(struct ahd_softc *, u_int);
static __inline u_int   ahd_inw_scbram(struct ahd_softc *, u_int);
static __inline uint32_t
                       ahd_inl_scbram(struct ahd_softc *, u_int);
static __inline uint64_t
                       ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
static __inline void    ahd_swap_with_next_hscb(struct ahd_softc *,
       struct scb *);
static __inline void    ahd_queue_scb(struct ahd_softc *, struct scb *);
static __inline uint8_t *
                       ahd_get_sense_buf(struct ahd_softc *, struct scb *);
static __inline uint32_t
                       ahd_get_sense_bufaddr(struct ahd_softc *, struct scb *);
static __inline void    ahd_post_scb(struct ahd_softc *, struct scb *);


static __inline void
ahd_post_scb(struct ahd_softc *ahd, struct scb *scb)
{
       uint32_t sgptr;

       sgptr = ahd_le32toh(scb->hscb->sgptr);
       if ((sgptr & SG_STATUS_VALID) != 0)
               ahd_handle_scb_status(ahd, scb);
       else
               ahd_done(ahd, scb);
}

static __inline void
ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
{
       uint32_t sgptr;

       sgptr = ahd_le32toh(scb->hscb->sgptr);
       if ((sgptr & SG_STATUS_VALID) != 0)
               ahd_handle_scb_status(ahd, scb);
       else
               ahd_done(ahd, scb);
}

/*
* Determine whether the sequencer reported a residual
* for this SCB/transaction.
*/
static __inline void
ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
{
       uint32_t sgptr;

       sgptr = ahd_le32toh(scb->hscb->sgptr);
       if ((sgptr & SG_STATUS_VALID) != 0)
               ahd_calc_residual(ahd, scb);
}

/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
                   u_int remote_id, struct ahd_tmode_tstate **tstate)
{
       /*
        * Transfer data structures are stored from the perspective
        * of the target role.  Since the parameters for a connection
        * in the initiator role to a given target are the same as
        * when the roles are reversed, we pretend we are the target.
        */
       if (channel == 'B')
               our_id += 8;
       *tstate = ahd->enabled_targets[our_id];
       return (&(*tstate)->transinfo[remote_id]);
}

#define AHD_COPY_COL_IDX(dst, src)                              \
do {                                                            \
       dst->hscb->scsiid = src->hscb->scsiid;                  \
       dst->hscb->lun = src->hscb->lun;                        \
} while (0)

static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port)
{
       return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
}

static __inline void
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
{
       ahd_outb(ahd, port, value & 0xFF);
       ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
}

static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port)
{
       return ((ahd_inb(ahd, port))
             | (ahd_inb(ahd, port+1) << 8)
             | (ahd_inb(ahd, port+2) << 16)
             | (ahd_inb(ahd, port+3) << 24));
}

static __inline void
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
{
       ahd_outb(ahd, port, (value) & 0xFF);
       ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
       ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
       ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
}

static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port)
{
       return ((ahd_inb(ahd, port))
             | (ahd_inb(ahd, port+1) << 8)
             | (ahd_inb(ahd, port+2) << 16)
             | (((uint64_t)ahd_inb(ahd, port+3)) << 24)
             | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
             | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
             | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
             | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
}

static __inline void
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
{
       ahd_outb(ahd, port, value & 0xFF);
       ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
       ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
       ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
       ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
       ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
       ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
       ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
}

static __inline u_int
ahd_get_scbptr(struct ahd_softc *ahd)
{
       AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
                        ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
       return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
}

static __inline void
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
{
       AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
                        ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
       ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
       ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
}

static __inline u_int
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
{
       return (ahd_inw_atomic(ahd, HNSCB_QOFF));
}

static __inline void
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
{
       ahd_outw_atomic(ahd, HNSCB_QOFF, value);
}

static __inline u_int
ahd_get_hescb_qoff(struct ahd_softc *ahd)
{
       return (ahd_inb(ahd, HESCB_QOFF));
}

static __inline void
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
{
       ahd_outb(ahd, HESCB_QOFF, value);
}

static __inline u_int
ahd_get_snscb_qoff(struct ahd_softc *ahd)
{
       u_int oldvalue;

       AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
       oldvalue = ahd_inw(ahd, SNSCB_QOFF);
       ahd_outw(ahd, SNSCB_QOFF, oldvalue);
       return (oldvalue);
}

static __inline void
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
{
       AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
       ahd_outw(ahd, SNSCB_QOFF, value);
}

static __inline u_int
ahd_get_sescb_qoff(struct ahd_softc *ahd)
{
       AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
       return (ahd_inb(ahd, SESCB_QOFF));
}

static __inline void
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
{
       AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
       ahd_outb(ahd, SESCB_QOFF, value);
}

static __inline u_int
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
{
       AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
       return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
}

static __inline void
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
{
       AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
       ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
       ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
}

static __inline u_int
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
{
       u_int value;

       /*
        * Workaround PCI-X Rev A. hardware bug.
        * After a host read of SCB memory, the chip
        * may become confused into thinking prefetch
        * was required.  This starts the discard timer
        * running and can cause an unexpected discard
        * timer interrupt.  The work around is to read
        * a normal register prior to the exhaustion of
        * the discard timer.  The mode pointer register
        * has no side effects and so serves well for
        * this purpose.
        *
        * Razor #528
        */
       value = ahd_inb(ahd, offset);
       if ((ahd->flags & AHD_PCIX_SCBRAM_RD_BUG) != 0)
               ahd_inb(ahd, MODE_PTR);
       return (value);
}

static __inline u_int
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
{
       return (ahd_inb_scbram(ahd, offset)
             | (ahd_inb_scbram(ahd, offset+1) << 8));
}

static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
{
       return (ahd_inw_scbram(ahd, offset)
             | (ahd_inw_scbram(ahd, offset+2) << 16));
}

static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
{
       return (ahd_inl_scbram(ahd, offset)
             | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
}

static __inline struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
{
       struct scb* scb;

       if (tag >= AHD_SCB_MAX)
               return (NULL);
       scb = ahd->scb_data.scbindex[tag];
       if (scb != NULL)
               ahd_sync_scb(ahd, scb,
                            BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
       return (scb);
}

static __inline void
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
{
       struct hardware_scb *q_hscb;
       struct map_node *q_hscb_map;
       uint32_t saved_hscb_busaddr;

       /*
        * Our queuing method is a bit tricky.  The card
        * knows in advance which HSCB (by address) to download,
        * and we can't disappoint it.  To achieve this, the next
        * HSCB to download is saved off in ahd->next_queued_hscb.
        * When we are called to queue "an arbitrary scb",
        * we copy the contents of the incoming HSCB to the one
        * the sequencer knows about, swap HSCB pointers and
        * finally assign the SCB to the tag indexed location
        * in the scb_array.  This makes sure that we can still
        * locate the correct SCB by SCB_TAG.
        */
       q_hscb = ahd->next_queued_hscb;
       q_hscb_map = ahd->next_queued_hscb_map;
       saved_hscb_busaddr = q_hscb->hscb_busaddr;
       memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
       q_hscb->hscb_busaddr = saved_hscb_busaddr;
       q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;

       /* Now swap HSCB pointers. */
       ahd->next_queued_hscb = scb->hscb;
       ahd->next_queued_hscb_map = scb->hscb_map;
       scb->hscb = q_hscb;
       scb->hscb_map = q_hscb_map;

       KASSERT((vaddr_t)scb->hscb >= (vaddr_t)scb->hscb_map->vaddr &&
               (vaddr_t)scb->hscb < (vaddr_t)scb->hscb_map->vaddr + PAGE_SIZE);

       /* Now define the mapping from tag to SCB in the scbindex */
       ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
}

/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
{
       ahd_swap_with_next_hscb(ahd, scb);

       if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
               panic("Attempt to queue invalid SCB tag %x\n",
                     SCB_GET_TAG(scb));

       /*
        * Keep a history of SCBs we've downloaded in the qinfifo.
        */
       ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
       ahd->qinfifonext++;

       if (scb->sg_count != 0)
               ahd_setup_data_scb(ahd, scb);
       else
               ahd_setup_noxfer_scb(ahd, scb);
       ahd_setup_scb_common(ahd, scb);

       /*
        * Make sure our data is consistent from the
        * perspective of the adapter.
        */
       ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);

#ifdef AHD_DEBUG
       if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
               uint64_t host_dataptr;

               host_dataptr = ahd_le64toh(scb->hscb->dataptr);
               printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
                      ahd_name(ahd),
                      SCB_GET_TAG(scb), ahd_le32toh(scb->hscb->hscb_busaddr),
                      (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
                      (u_int)(host_dataptr & 0xFFFFFFFF),
                      ahd_le32toh(scb->hscb->datacnt));
       }
#endif
       /* Tell the adapter about the newly queued SCB */
       ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
}

static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
{
       return (scb->sense_data);
}

static __inline uint32_t
ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
{
       return (scb->sense_busaddr);
}

/************************** Interrupt Processing ******************************/
static __inline void    ahd_sync_qoutfifo(struct ahd_softc *, int);
static __inline void    ahd_sync_tqinfifo(struct ahd_softc *, int);
static __inline u_int   ahd_check_cmdcmpltqueues(struct ahd_softc *);
static __inline int     ahd_intr(void *);
static __inline void    ahd_minphys(struct buf *);

static __inline void
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
{
       ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_map.dmamap,
                       /*offset*/0, /*len*/AHD_SCB_MAX * sizeof(uint16_t), op);
}

static __inline void
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
{
#ifdef AHD_TARGET_MODE
       if ((ahd->flags & AHD_TARGETROLE) != 0) {
               ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
                               ahd->shared_data_map.dmamap,
                               ahd_targetcmd_offset(ahd, 0),
                               sizeof(struct target_cmd) * AHD_TMODE_CMDS,
                               op);
       }
#endif
}

/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHD_RUN_QOUTFIFO 0x1
#define AHD_RUN_TQINFIFO 0x2
static __inline u_int
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
{
       u_int retval;

       retval = 0;
       ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/, ahd->shared_data_map.dmamap,
                       /*offset*/ahd->qoutfifonext, /*len*/2,
                       BUS_DMASYNC_POSTREAD);
       if ((ahd->qoutfifo[ahd->qoutfifonext]
            & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
               retval |= AHD_RUN_QOUTFIFO;
#ifdef AHD_TARGET_MODE
       if ((ahd->flags & AHD_TARGETROLE) != 0
        && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
               ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
                               ahd->shared_data_map.dmamap,
                               ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
                               /*len*/sizeof(struct target_cmd),
                               BUS_DMASYNC_POSTREAD);
               if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
                       retval |= AHD_RUN_TQINFIFO;
       }
#endif
       return (retval);
}

/*
* Catch an interrupt from the adapter
*/
static __inline int
ahd_intr(void *arg)
{
       struct ahd_softc *ahd = arg;
       u_int   intstat;

       if ((ahd->pause & INTEN) == 0) {
               /*
                * Our interrupt is not enabled on the chip
                * and may be disabled for re-entrancy reasons,
                * so just return.  This is likely just a shared
                * interrupt.
                */
               return (0);
       }

       /*
        * Instead of directly reading the interrupt status register,
        * infer the cause of the interrupt by checking our in-core
        * completion queues.  This avoids a costly PCI bus read in
        * most cases.
        */
       if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
           && (ahd_check_cmdcmpltqueues(ahd) != 0))
               intstat = CMDCMPLT;
       else
               intstat = ahd_inb(ahd, INTSTAT);

       if ((intstat & INT_PEND) == 0)
               return (0);

       if (intstat & CMDCMPLT) {
               ahd_outb(ahd, CLRINT, CLRCMDINT);

               /*
                * Ensure that the chip sees that we've cleared
                * this interrupt before we walk the output fifo.
                * Otherwise, we may, due to posted bus writes,
                * clear the interrupt after we finish the scan,
                * and after the sequencer has added new entries
                * and asserted the interrupt again.
                */
               if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
                       if (ahd_is_paused(ahd)) {
                               /*
                                * Potentially lost SEQINT.
                                * If SEQINTCODE is non-zero,
                                * simulate the SEQINT.
                                */
                               if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
                                       intstat |= SEQINT;
                       }
               } else {
                       ahd_flush_device_writes(ahd);
               }
               scsipi_channel_freeze(&ahd->sc_channel, 1);
               ahd_run_qoutfifo(ahd);
               scsipi_channel_thaw(&ahd->sc_channel, 1);
               ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
               ahd->cmdcmplt_total++;
#ifdef AHD_TARGET_MODE
               if ((ahd->flags & AHD_TARGETROLE) != 0)
                       ahd_run_tqinfifo(ahd, /*paused*/FALSE);
#endif
               if (intstat == CMDCMPLT)
                       return 1;
       }

       /*
        * Handle statuses that may invalidate our cached
        * copy of INTSTAT separately.
        */
       if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
               /* Hot eject.  Do nothing */
       } else if (intstat & HWERRINT) {
               ahd_handle_hwerrint(ahd);
       } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
               ahd->bus_intr(ahd);
       } else {

               if ((intstat & SEQINT) != 0)
                       ahd_handle_seqint(ahd, intstat);

               if ((intstat & SCSIINT) != 0)
                       ahd_handle_scsiint(ahd, intstat);
       }

       return (1);
}

static __inline void
ahd_minphys(struct buf *bp)
{
/*
* Even though the card can transfer up to 16megs per command
* we are limited by the number of segments in the DMA segment
* list that we can hold.  The worst case is that all pages are
* discontinuous physically, hence the "page per segment" limit
* enforced here.
*/
       if (bp->b_bcount > AHD_MAXTRANSFER_SIZE) {
               bp->b_bcount = AHD_MAXTRANSFER_SIZE;
       }
       minphys(bp);
}

static __inline u_int32_t scsi_4btoul(u_int8_t *);

static __inline u_int32_t
scsi_4btoul(u_int8_t *bytes)
{
       u_int32_t rv;

       rv = (bytes[0] << 24) |
            (bytes[1] << 16) |
            (bytes[2] << 8) |
            bytes[3];
       return (rv);
}


#endif  /* _AIC79XX_INLINE_H_ */