/* $NetBSD: tsllux.c,v 1.4 2022/02/12 03:24:35 riastradh Exp $ */

/*-
* Copyright (c) 2018 Jason R. Thorpe
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tsllux.c,v 1.4 2022/02/12 03:24:35 riastradh Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sysctl.h>

#include <dev/i2c/i2cvar.h>
#include <dev/i2c/tsl256xreg.h>

#include <dev/sysmon/sysmonvar.h>

struct tsllux_softc {
       device_t        sc_dev;
       i2c_tag_t       sc_i2c;
       i2c_addr_t      sc_addr;

       uint32_t        sc_poweron;

       /*
        * Locking order is:
        *      tsllux mutex -> i2c bus
        */
       kmutex_t        sc_lock;

       uint8_t         sc_itime;
       uint8_t         sc_gain;
       bool            sc_cs_package;
       bool            sc_auto_gain;

       struct sysmon_envsys *sc_sme;
       envsys_data_t   sc_sensor;

       struct sysctllog *sc_sysctllog;
};

#define TSLLUX_F_CS_PACKAGE     0x01

static int      tsllux_match(device_t, cfdata_t, void *);
static void     tsllux_attach(device_t, device_t, void *);

CFATTACH_DECL_NEW(tsllux, sizeof(struct tsllux_softc),
   tsllux_match, tsllux_attach, NULL, NULL);

static const struct device_compatible_entry tsllux_compat_data[] = {
       { .compat = "amstaos,tsl2560" },
       { .compat = "amstaos,tsl2561" },
       DEVICE_COMPAT_EOL
};

static int      tsllux_read1(struct tsllux_softc *, uint8_t, uint8_t *);
static int      tsllux_read2(struct tsllux_softc *, uint8_t, uint16_t *);
static int      tsllux_write1(struct tsllux_softc *, uint8_t, uint8_t);
#if 0
static int      tsllux_write2(struct tsllux_softc *, uint8_t, uint16_t);
#endif

static void     tsllux_sysctl_attach(struct tsllux_softc *);

static int      tsllux_poweron(struct tsllux_softc *);
static int      tsllux_poweroff(struct tsllux_softc *);

static int      tsllux_set_integration_time(struct tsllux_softc *, uint8_t);
static int      tsllux_set_gain(struct tsllux_softc *, uint8_t);
static int      tsllux_set_autogain(struct tsllux_softc *, bool);

static int      tsllux_get_lux(struct tsllux_softc *, uint32_t *,
                              uint16_t *, uint16_t *);

static void     tsllux_sensors_refresh(struct sysmon_envsys *, envsys_data_t *);

static int
tsllux_match(device_t parent, cfdata_t match, void *aux)
{
       struct i2c_attach_args *ia = aux;
       uint8_t id_reg;
       int error, match_result;

       if (iic_use_direct_match(ia, match, tsllux_compat_data, &match_result))
               return (match_result);

       switch (ia->ia_addr) {
       case TSL256x_SLAVEADDR_GND:
       case TSL256x_SLAVEADDR_FLOAT:
       case TSL256x_SLAVEADDR_VDD:
               break;

       default:
               return (0);
       }

       if (iic_acquire_bus(ia->ia_tag, 0) != 0)
               return (0);
       error = iic_smbus_read_byte(ia->ia_tag, ia->ia_addr,
           TSL256x_REG_ID | COMMAND6x_CMD, &id_reg, 0);
       iic_release_bus(ia->ia_tag, 0);

       if (error)
               return (0);

       /* XXX This loses if we have a 2560 rev. 0. */
       if (id_reg == 0)
               return (I2C_MATCH_ADDRESS_ONLY);

       return (I2C_MATCH_ADDRESS_AND_PROBE);
}

static void
tsllux_attach(device_t parent, device_t self, void *aux)
{
       struct tsllux_softc *sc = device_private(self);
       struct i2c_attach_args *ia = aux;
       bool have_i2c;

       /* XXX IPL_NONE changes when we support threshold interrupts. */
       mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);

       sc->sc_dev = self;
       sc->sc_i2c = ia->ia_tag;
       sc->sc_addr = ia->ia_addr;

       if (device_cfdata(self)->cf_flags & TSLLUX_F_CS_PACKAGE)
               sc->sc_cs_package = true;

       if (iic_acquire_bus(ia->ia_tag, 0) != 0) {
               return;
       }

       have_i2c = true;

       /* Power on the device and clear any pending interrupts. */
       if (tsllux_write1(sc, TSL256x_REG_CONTROL | COMMAND6x_CLEAR,
                         CONTROL6x_POWER_ON)) {
               aprint_error_dev(self, ": unable to power on device\n");
               goto out;
       }
       sc->sc_poweron = 1;

       /* Make sure interrupts are disabled. */
       if (tsllux_write1(sc, TSL256x_REG_INTERRUPT | COMMAND6x_CLEAR, 0)) {
               aprint_error_dev(self, ": unable to disable interrupts\n");
               goto out;
       }

       aprint_naive("\n");
       aprint_normal(": TSL256x Light-to-Digital converter%s\n",
                     sc->sc_cs_package ? " (CS package)" : "");

       /* Inititalize timing to reasonable defaults. */
       sc->sc_auto_gain = true;
       sc->sc_gain = TIMING6x_GAIN_16X;
       if (tsllux_set_integration_time(sc, TIMING6x_INTEG_101ms)) {
               aprint_error_dev(self, ": unable to set integration time\n");
               goto out;
       }

       tsllux_poweroff(sc);

       iic_release_bus(ia->ia_tag, 0);
       have_i2c = false;

       tsllux_sysctl_attach(sc);

       sc->sc_sme = sysmon_envsys_create();
       sc->sc_sme->sme_name = device_xname(self);
       sc->sc_sme->sme_cookie = sc;
       sc->sc_sme->sme_refresh = tsllux_sensors_refresh;

       sc->sc_sensor.units = ENVSYS_LUX;
       sc->sc_sensor.state = ENVSYS_SINVALID;
       snprintf(sc->sc_sensor.desc, sizeof(sc->sc_sensor.desc),
                "ambient light");
       sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor);

       sysmon_envsys_register(sc->sc_sme);

out:
       if (have_i2c) {
               if (sc->sc_poweron)
                       tsllux_poweroff(sc);
               iic_release_bus(ia->ia_tag, 0);
       }
}

static int
tsllux_sysctl_cs_package(SYSCTLFN_ARGS)
{
       struct tsllux_softc *sc;
       struct sysctlnode node;
       int error;
       u_int val;

       node = *rnode;
       sc = node.sysctl_data;

       mutex_enter(&sc->sc_lock);
       val = sc->sc_cs_package ? 1 : 0;
       node.sysctl_data = &val;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL) {
               mutex_exit(&sc->sc_lock);
               return (error);
       }

       /* CS package indicator is used only in software; no need for I2C. */

       sc->sc_cs_package = val ? true : false;
       mutex_exit(&sc->sc_lock);

       return (error);
}

static int
tsllux_sysctl_autogain(SYSCTLFN_ARGS)
{
       struct tsllux_softc *sc;
       struct sysctlnode node;
       int error;
       u_int val;

       node = *rnode;
       sc = node.sysctl_data;

       mutex_enter(&sc->sc_lock);
       val = sc->sc_auto_gain ? 1 : 0;
       node.sysctl_data = &val;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL) {
               mutex_exit(&sc->sc_lock);
               return (error);
       }

       /* Auto-gain is a software feature; no need for I2C. */

       error = tsllux_set_autogain(sc, val ? true : false);
       mutex_exit(&sc->sc_lock);

       return (error);
}

static int
tsllux_sysctl_gain(SYSCTLFN_ARGS)
{
       struct tsllux_softc *sc;
       struct sysctlnode node;
       int error;
       u_int val;
       uint8_t new_gain;

       node = *rnode;
       sc = node.sysctl_data;

       mutex_enter(&sc->sc_lock);

       switch (sc->sc_gain) {
       case TIMING6x_GAIN_1X:
               val = 1;
               break;

       case TIMING6x_GAIN_16X:
               val = 16;
               break;

       default:
               val = 1;
               break;
       }
       node.sysctl_data = &val;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL) {
               mutex_exit(&sc->sc_lock);
               return (error);
       }

       switch (val) {
       case 1:
               new_gain = TIMING6x_GAIN_1X;
               break;

       case 16:
               new_gain = TIMING6x_GAIN_16X;
               break;

       default:
               mutex_exit(&sc->sc_lock);
               return (EINVAL);
       }

       if ((error = iic_acquire_bus(sc->sc_i2c, 0)) != 0) {
               mutex_exit(&sc->sc_lock);
               return (error);
       }

       error = tsllux_set_gain(sc, new_gain);
       iic_release_bus(sc->sc_i2c, 0);
       mutex_exit(&sc->sc_lock);

       return (error);
}

static int
tsllux_sysctl_itime(SYSCTLFN_ARGS)
{
       struct tsllux_softc *sc;
       struct sysctlnode node;
       int error;
       u_int val;
       uint8_t new_itime;

       node = *rnode;
       sc = node.sysctl_data;

       mutex_enter(&sc->sc_lock);

       switch (sc->sc_itime) {
       case TIMING6x_INTEG_13_7ms:
               val = 13;
               break;

       case TIMING6x_INTEG_101ms:
               val = 101;
               break;

       case TIMING6x_INTEG_402ms:
       default:
               val = 402;
               break;
       }
       node.sysctl_data = &val;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL) {
               mutex_exit(&sc->sc_lock);
               return (error);
       }

       switch (val) {
       case 13:
       case 14:
               new_itime = TIMING6x_INTEG_13_7ms;
               break;

       case 101:
               new_itime = TIMING6x_INTEG_101ms;
               break;

       case 402:
               new_itime = TIMING6x_INTEG_402ms;
               break;

       default:
               mutex_exit(&sc->sc_lock);
               return (EINVAL);
       }

       if ((error = iic_acquire_bus(sc->sc_i2c, 0)) != 0) {
               mutex_exit(&sc->sc_lock);
               return (error);
       }

       error = tsllux_set_integration_time(sc, new_itime);
       iic_release_bus(sc->sc_i2c, 0);
       mutex_exit(&sc->sc_lock);

       return (error);
}

static void
tsllux_sysctl_attach(struct tsllux_softc *sc)
{
       struct sysctllog **log = &sc->sc_sysctllog;
       const struct sysctlnode *rnode, *cnode;
       int error;

       error = sysctl_createv(log, 0, NULL, &rnode, CTLFLAG_PERMANENT,
           CTLTYPE_NODE, device_xname(sc->sc_dev),
           SYSCTL_DESCR("tsl256x control"),
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
       if (error)
               return;

       error = sysctl_createv(log, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "cs_package",
           SYSCTL_DESCR("sensor in Chipscale (CS) package"),
           tsllux_sysctl_cs_package, 0,
           (void *)sc, 0, CTL_CREATE, CTL_EOL);
       if (error)
               return;

       error = sysctl_createv(log, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "auto_gain",
           SYSCTL_DESCR("auto-gain algorithm enabled"),
           tsllux_sysctl_autogain, 0,
           (void *)sc, 0, CTL_CREATE, CTL_EOL);
       if (error)
               return;

       error = sysctl_createv(log, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gain",
           SYSCTL_DESCR("sensor gain"), tsllux_sysctl_gain, 0,
           (void *)sc, 0, CTL_CREATE, CTL_EOL);
       if (error)
               return;

       error = sysctl_createv(log, 0, &rnode, &cnode,
           CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
           "integration_time",
           SYSCTL_DESCR("ADC integration time"), tsllux_sysctl_itime, 0,
           (void *)sc, 0, CTL_CREATE, CTL_EOL);
       if (error)
               return;
}

static void
tsllux_sensors_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
       struct tsllux_softc *sc = sme->sme_cookie;
       uint32_t lux;
       int error;

       if (edata != &sc->sc_sensor) {
               edata->state = ENVSYS_SINVALID;
               return;
       }

       mutex_enter(&sc->sc_lock);

       if ((error = iic_acquire_bus(sc->sc_i2c, 0)) == 0) {
               error = tsllux_get_lux(sc, &lux, NULL, NULL);
               iic_release_bus(sc->sc_i2c, 0);
       }

       if (error) {
               edata->state = ENVSYS_SINVALID;
       } else {
               edata->value_cur = lux;
               edata->state = ENVSYS_SVALID;
       }

       mutex_exit(&sc->sc_lock);
}

/*
* Allow pending interrupts to be cleared as part of another operation.
*/
#define REGMASK6x               (COMMAND6x_REGMASK | COMMAND6x_CLEAR)

static int
tsllux_read1(struct tsllux_softc *sc, uint8_t reg, uint8_t *valp)
{
       reg = (reg & REGMASK6x) | COMMAND6x_CMD;
       return (iic_smbus_read_byte(sc->sc_i2c, sc->sc_addr, reg, valp, 0));
}

static int
tsllux_read2(struct tsllux_softc *sc, uint8_t reg, uint16_t *valp)
{
       reg = (reg & REGMASK6x) | COMMAND6x_CMD | COMMAND6x_WORD;
       return (iic_smbus_read_word(sc->sc_i2c, sc->sc_addr, reg, valp, 0));
}

static int
tsllux_write1(struct tsllux_softc *sc, uint8_t reg, uint8_t val)
{
       reg = (reg & REGMASK6x) | COMMAND6x_CMD;
       return (iic_smbus_write_byte(sc->sc_i2c, sc->sc_addr, reg, val, 0));
}

#if 0
static int
tsllux_write2(struct tsllux_softc *sc, uint8_t reg, uint16_t val)
{
       reg = (reg & REGMASK6x) | COMMAND6x_CMD | COMMAND6x_WORD;
       return (iic_smbus_write_word(sc->sc_i2c, sc->sc_addr, reg, val, 0));
}
#endif

#undef REGMASK

static int
tsllux_poweron(struct tsllux_softc *sc)
{
       int error;

       if (sc->sc_poweron++ == 0) {
               uint8_t val;

               error = tsllux_write1(sc, TSL256x_REG_CONTROL,
                                     CONTROL6x_POWER_ON);
               if (error)
                       return (error);

               error = tsllux_read1(sc, TSL256x_REG_CONTROL, &val);
               if (error)
                       return (error);

               if (val != CONTROL6x_POWER_ON) {
                       aprint_error_dev(sc->sc_dev,
                                        "failed to power on sensor\n");
                       return (EIO);
               }
       }
       return (0);
}

static int
tsllux_poweroff(struct tsllux_softc *sc)
{
       if (sc->sc_poweron && --sc->sc_poweron == 0)
               return (tsllux_write1(sc, TSL256x_REG_CONTROL,
                                     CONTROL6x_POWER_OFF));
       return (0);
}

static int
tsllux_set_integration_time(struct tsllux_softc *sc, uint8_t time)
{
       int error;

       switch (time) {
       case TIMING6x_INTEG_13_7ms:
       case TIMING6x_INTEG_101ms:
       case TIMING6x_INTEG_402ms:
               break;

       default:
               return (EINVAL);
       }

       if ((error = tsllux_poweron(sc)) != 0)
               return (error);

       if ((error = tsllux_write1(sc, TSL256x_REG_TIMING,
                                  time | sc->sc_gain)) != 0)
               goto out;

       sc->sc_itime = time;

out:
       (void) tsllux_poweroff(sc);
       return (error);
}

static int
tsllux_set_gain0(struct tsllux_softc *sc, uint8_t gain)
{
       int error;

       if ((error = tsllux_write1(sc, TSL256x_REG_TIMING,
                                  sc->sc_itime | gain)) != 0)
               return (error);

       sc->sc_gain = gain;
       return (0);
}

static int
tsllux_set_gain(struct tsllux_softc *sc, uint8_t gain)
{
       int error;

       switch (gain) {
       case TIMING6x_GAIN_1X:
       case TIMING6x_GAIN_16X:
               break;

       default:
               return (EINVAL);
       }

       if ((error = tsllux_poweron(sc)) != 0)
               return (error);

       if ((error = tsllux_set_gain0(sc, gain)) != 0)
               goto out;

       sc->sc_auto_gain = false;

out:
       (void) tsllux_poweroff(sc);
       return (error);
}

static int
tsllux_set_autogain(struct tsllux_softc *sc, bool use_autogain)
{

       sc->sc_auto_gain = use_autogain;
       return (0);
}

static int
tsllux_wait_for_adcs(struct tsllux_softc *sc)
{
       int ms;

       switch (sc->sc_itime) {
       case TIMING6x_INTEG_13_7ms:
               /* Wait 15ms for 13.7ms integration */
               ms = 15;
               break;

       case TIMING6x_INTEG_101ms:
               /* Wait 120ms for 101ms integration */
               ms = 120;
               break;

       case TIMING6x_INTEG_402ms:
       default:
               /* Wait 450ms for 402ms integration */
               ms = 450;
               break;
       }

       if (ms < hztoms(1)) {
               /* Just busy-wait if we want to wait for less than 1 tick. */
               delay(ms * 1000);
       } else {
               /* Round up one tick for the case where we sleep. */
               (void) kpause("tslluxwait", false, mstohz(ms) + 1, NULL);
       }

       return (0);
}

static int
tsllux_read_adcs(struct tsllux_softc *sc, uint16_t *adc0valp,
                uint16_t *adc1valp)
{
       int error;

       if ((error = tsllux_read2(sc, TSL256x_REG_DATA0LOW, adc0valp)) == 0)
               error = tsllux_read2(sc, TSL256x_REG_DATA1LOW, adc1valp);

       return (error);
}

/*
* The following code is partially derived from Adafruit's TSL2561
* driver for Arduino (which was in turn derived from the data sheet),
* which carries this notice:
*
* @file Adafruit_TSL2561_U.cpp
*
* @mainpage Adafruit TSL2561 Light/Lux sensor driver
*
* @section intro_sec Introduction
*
* This is the documentation for Adafruit's TSL2561 driver for the
* Arduino platform.  It is designed specifically to work with the
* Adafruit TSL2561 breakout: http://www.adafruit.com/products/439
*
* These sensors use I2C to communicate, 2 pins (SCL+SDA) are required
* to interface with the breakout.
*
* Adafruit invests time and resources providing this open source code,
* please support Adafruit and open-source hardware by purchasing
* products from Adafruit!
*
* @section dependencies Dependencies
*
* This library depends on <a href="https://github.com/adafruit/Adafruit_Sensor">
* Adafruit_Sensor</a> being present on your system. Please make sure you have
* installed the latest version before using this library.
*
* @section author Author
*
* Written by Kevin "KTOWN" Townsend for Adafruit Industries.
*
* @section license License
*
* BSD license, all text here must be included in any redistribution.
*
*   @section  HISTORY
*
*   v2.0 - Rewrote driver for Adafruit_Sensor and Auto-Gain support, and
*          added lux clipping check (returns 0 lux on sensor saturation)
*   v1.0 - First release (previously TSL2561)
*/

static int
tsllux_read_sensors(struct tsllux_softc *sc, uint16_t *adc0p, uint16_t *adc1p)
{
       int error;

       if ((error = tsllux_poweron(sc)) != 0)
               return (error);

       if ((error = tsllux_wait_for_adcs(sc)) != 0)
               goto out;

       error = tsllux_read_adcs(sc, adc0p, adc1p);

out:
       (void) tsllux_poweroff(sc);
       return (error);
}

/*
* Auto-gain thresholds:
*/
#define TSL2561_AGC_THI_13MS    (4850)  /* Max value at Ti 13ms = 5047 */
#define TSL2561_AGC_TLO_13MS    (100)   /* Min value at Ti 13ms = 100 */
#define TSL2561_AGC_THI_101MS   (36000) /* Max value at Ti 101ms = 37177 */
#define TSL2561_AGC_TLO_101MS   (200)   /* Min value at Ti 101ms = 200 */
#define TSL2561_AGC_THI_402MS   (63000) /* Max value at Ti 402ms = 65535 */
#define TSL2561_AGC_TLO_402MS   (500)   /* Min value at Ti 402ms = 500 */

static int
tsllux_get_sensor_data(struct tsllux_softc *sc, uint16_t *broadband,
                      uint16_t *ir)
{
       int error = 0;
       uint16_t adc0, adc1;
       bool did_adjust_gain, valid;
       uint16_t hi, lo;

       if (sc->sc_auto_gain == false) {
               error = tsllux_read_sensors(sc, &adc0, &adc1);
               goto out;
       }

       /* Set the hi / lo threshold based on current integration time. */
       switch (sc->sc_itime) {
       case TIMING6x_INTEG_13_7ms:
               hi = TSL2561_AGC_THI_13MS;
               lo = TSL2561_AGC_TLO_13MS;
               break;

       case TIMING6x_INTEG_101ms:
               hi = TSL2561_AGC_THI_101MS;
               lo = TSL2561_AGC_TLO_101MS;
               break;

       case TIMING6x_INTEG_402ms:
       default:
               hi = TSL2561_AGC_THI_402MS;
               lo = TSL2561_AGC_TLO_402MS;
       }

       /* Read data and adjust the gain until we have a valid range. */
       for (valid = false, did_adjust_gain = false; valid == false; ) {
               if ((error = tsllux_read_sensors(sc, &adc0, &adc1)) != 0)
                       goto out;

               if (did_adjust_gain == false) {
                       if (adc0 < lo && sc->sc_gain == TIMING6x_GAIN_1X) {
                               /* Increase the gain and try again. */
                               if ((error =
                                    tsllux_set_gain0(sc,
                                                     TIMING6x_GAIN_16X)) != 0)
                                       goto out;
                               did_adjust_gain = true;
                       } else if (adc0 > hi &&
                                  sc->sc_gain == TIMING6x_GAIN_16X) {
                               /* Decrease the gain and try again. */
                               if ((error =
                                    tsllux_set_gain0(sc,
                                                     TIMING6x_GAIN_1X)) != 0)
                                       goto out;
                               did_adjust_gain = true;
                       } else {
                               /*
                                * Reading is either valid or we're already
                                * at the chip's limits.
                                */
                               valid = true;
                       }
               } else {
                       /*
                        * If we've already adjust the gain once, just
                        * return the new results.  This avoids endless
                        * loops where a value is at one extre pre-gain
                        * and at the other extreme post-gain.
                        */
                       valid = true;
               }
       }

out:
       if (error == 0) {
               if (broadband != NULL)
                       *broadband = adc0;
               if (ir != NULL)
                       *ir = adc1;
       }
       return (error);
}

/*
* Clipping thresholds:
*/
#define TSL2561_CLIPPING_13MS   (4900)
#define TSL2561_CLIPPING_101MS  (37000)
#define TSL2561_CLIPPING_402MS  (65000)

/*
* Scaling factors:
*/
#define TSL2561_LUX_LUXSCALE      (14)     /* Scale by 2^14 */
#define TSL2561_LUX_RATIOSCALE    (9)      /* Scale ratio by 2^9 */
#define TSL2561_LUX_CHSCALE       (10)     /* Scale channel values by 2^10 */
#define TSL2561_LUX_CHSCALE_TINT0 (0x7517) /* 322/11 * 2^TSL2561_LUX_CHSCALE */
#define TSL2561_LUX_CHSCALE_TINT1 (0x0FE7) /* 322/81 * 2^TSL2561_LUX_CHSCALE */

/*
* Lux factors (the datasheet explains how these magic constants
* are used):
*/
/* T, FN and CL package values */
#define TSL2561_LUX_K1T           (0x0040)  /* 0.125 * 2^RATIO_SCALE */
#define TSL2561_LUX_B1T           (0x01f2)  /* 0.0304 * 2^LUX_SCALE */
#define TSL2561_LUX_M1T           (0x01be)  /* 0.0272 * 2^LUX_SCALE */
#define TSL2561_LUX_K2T           (0x0080)  /* 0.250 * 2^RATIO_SCALE */
#define TSL2561_LUX_B2T           (0x0214)  /* 0.0325 * 2^LUX_SCALE */
#define TSL2561_LUX_M2T           (0x02d1)  /* 0.0440 * 2^LUX_SCALE */
#define TSL2561_LUX_K3T           (0x00c0)  /* 0.375 * 2^RATIO_SCALE */
#define TSL2561_LUX_B3T           (0x023f)  /* 0.0351 * 2^LUX_SCALE */
#define TSL2561_LUX_M3T           (0x037b)  /* 0.0544 * 2^LUX_SCALE */
#define TSL2561_LUX_K4T           (0x0100)  /* 0.50 * 2^RATIO_SCALE */
#define TSL2561_LUX_B4T           (0x0270)  /* 0.0381 * 2^LUX_SCALE */
#define TSL2561_LUX_M4T           (0x03fe)  /* 0.0624 * 2^LUX_SCALE */
#define TSL2561_LUX_K5T           (0x0138)  /* 0.61 * 2^RATIO_SCALE */
#define TSL2561_LUX_B5T           (0x016f)  /* 0.0224 * 2^LUX_SCALE */
#define TSL2561_LUX_M5T           (0x01fc)  /* 0.0310 * 2^LUX_SCALE */
#define TSL2561_LUX_K6T           (0x019a)  /* 0.80 * 2^RATIO_SCALE */
#define TSL2561_LUX_B6T           (0x00d2)  /* 0.0128 * 2^LUX_SCALE */
#define TSL2561_LUX_M6T           (0x00fb)  /* 0.0153 * 2^LUX_SCALE */
#define TSL2561_LUX_K7T           (0x029a)  /* 1.3 * 2^RATIO_SCALE */
#define TSL2561_LUX_B7T           (0x0018)  /* 0.00146 * 2^LUX_SCALE */
#define TSL2561_LUX_M7T           (0x0012)  /* 0.00112 * 2^LUX_SCALE */
#define TSL2561_LUX_K8T           (0x029a)  /* 1.3 * 2^RATIO_SCALE */
#define TSL2561_LUX_B8T           (0x0000)  /* 0.000 * 2^LUX_SCALE */
#define TSL2561_LUX_M8T           (0x0000)  /* 0.000 * 2^LUX_SCALE */

/* CS package values */
#define TSL2561_LUX_K1C           (0x0043)  /* 0.130 * 2^RATIO_SCALE */
#define TSL2561_LUX_B1C           (0x0204)  /* 0.0315 * 2^LUX_SCALE */
#define TSL2561_LUX_M1C           (0x01ad)  /* 0.0262 * 2^LUX_SCALE */
#define TSL2561_LUX_K2C           (0x0085)  /* 0.260 * 2^RATIO_SCALE */
#define TSL2561_LUX_B2C           (0x0228)  /* 0.0337 * 2^LUX_SCALE */
#define TSL2561_LUX_M2C           (0x02c1)  /* 0.0430 * 2^LUX_SCALE */
#define TSL2561_LUX_K3C           (0x00c8)  /* 0.390 * 2^RATIO_SCALE */
#define TSL2561_LUX_B3C           (0x0253)  /* 0.0363 * 2^LUX_SCALE */
#define TSL2561_LUX_M3C           (0x0363)  /* 0.0529 * 2^LUX_SCALE */
#define TSL2561_LUX_K4C           (0x010a)  /* 0.520 * 2^RATIO_SCALE */
#define TSL2561_LUX_B4C           (0x0282)  /* 0.0392 * 2^LUX_SCALE */
#define TSL2561_LUX_M4C           (0x03df)  /* 0.0605 * 2^LUX_SCALE */
#define TSL2561_LUX_K5C           (0x014d)  /* 0.65 * 2^RATIO_SCALE */
#define TSL2561_LUX_B5C           (0x0177)  /* 0.0229 * 2^LUX_SCALE */
#define TSL2561_LUX_M5C           (0x01dd)  /* 0.0291 * 2^LUX_SCALE */
#define TSL2561_LUX_K6C           (0x019a)  /* 0.80 * 2^RATIO_SCALE */
#define TSL2561_LUX_B6C           (0x0101)  /* 0.0157 * 2^LUX_SCALE */
#define TSL2561_LUX_M6C           (0x0127)  /* 0.0180 * 2^LUX_SCALE */
#define TSL2561_LUX_K7C           (0x029a)  /* 1.3 * 2^RATIO_SCALE */
#define TSL2561_LUX_B7C           (0x0037)  /* 0.00338 * 2^LUX_SCALE */
#define TSL2561_LUX_M7C           (0x002b)  /* 0.00260 * 2^LUX_SCALE */
#define TSL2561_LUX_K8C           (0x029a)  /* 1.3 * 2^RATIO_SCALE */
#define TSL2561_LUX_B8C           (0x0000)  /* 0.000 * 2^LUX_SCALE */
#define TSL2561_LUX_M8C           (0x0000)  /* 0.000 * 2^LUX_SCALE */

struct lux_factor_table_entry {
       uint16_t        k;
       uint16_t        b;
       uint16_t        m;
};

static const struct lux_factor_table_entry lux_factor_table[] = {
       { TSL2561_LUX_K1T,      TSL2561_LUX_B1T,        TSL2561_LUX_M1T },
       { TSL2561_LUX_K2T,      TSL2561_LUX_B2T,        TSL2561_LUX_M2T },
       { TSL2561_LUX_K3T,      TSL2561_LUX_B3T,        TSL2561_LUX_M3T },
       { TSL2561_LUX_K4T,      TSL2561_LUX_B4T,        TSL2561_LUX_M4T },
       { TSL2561_LUX_K5T,      TSL2561_LUX_B5T,        TSL2561_LUX_M5T },
       { TSL2561_LUX_K6T,      TSL2561_LUX_B6T,        TSL2561_LUX_M6T },
       { TSL2561_LUX_K7T,      TSL2561_LUX_B7T,        TSL2561_LUX_M7T },
       { TSL2561_LUX_K8T,      TSL2561_LUX_B8T,        TSL2561_LUX_M8T },
};
static const int lux_factor_table_last_entry =
   (sizeof(lux_factor_table) / sizeof(lux_factor_table[0])) - 1;

static const struct lux_factor_table_entry lux_factor_table_cs_package[] = {
       { TSL2561_LUX_K1C,      TSL2561_LUX_B1C,        TSL2561_LUX_M1C },
       { TSL2561_LUX_K2C,      TSL2561_LUX_B2C,        TSL2561_LUX_M2C },
       { TSL2561_LUX_K3C,      TSL2561_LUX_B3C,        TSL2561_LUX_M3C },
       { TSL2561_LUX_K4C,      TSL2561_LUX_B4C,        TSL2561_LUX_M4C },
       { TSL2561_LUX_K5C,      TSL2561_LUX_B5C,        TSL2561_LUX_M5C },
       { TSL2561_LUX_K6C,      TSL2561_LUX_B6C,        TSL2561_LUX_M6C },
       { TSL2561_LUX_K7C,      TSL2561_LUX_B7C,        TSL2561_LUX_M7C },
       { TSL2561_LUX_K8C,      TSL2561_LUX_B8C,        TSL2561_LUX_M8C },
};
static const int lux_factor_table_cs_package_last_entry =
   (sizeof(lux_factor_table_cs_package) /
    sizeof(lux_factor_table_cs_package[0])) - 1;

static int
tsllux_get_lux(struct tsllux_softc *sc, uint32_t *luxp,
              uint16_t *raw_broadband, uint16_t *raw_ir)
{
       uint32_t channel0, channel1, scale, ratio, lux = 0;
       uint16_t broadband, ir;
       uint16_t clip_threshold;
       const struct lux_factor_table_entry *table;
       int idx, last_entry, error;
       int32_t temp;

       if ((error = tsllux_get_sensor_data(sc, &broadband, &ir)) != 0)
               return (error);

       if (luxp == NULL) {
               /*
                * Caller doesn't want the calculated Lux value, so
                * don't bother calculating it.  Maybe they just want
                * the raw sensor data?
                */
               goto out;
       }

       /*
        * Check to see if the sensor is saturated.  If so,
        * just return a "max brightness" value.
        */
       switch (sc->sc_itime) {
       case TIMING6x_INTEG_13_7ms:
               clip_threshold = TSL2561_CLIPPING_13MS;
               break;

       case TIMING6x_INTEG_101ms:
               clip_threshold = TSL2561_CLIPPING_101MS;
               break;

       case TIMING6x_INTEG_402ms:
       default:
               clip_threshold = TSL2561_CLIPPING_402MS;
               break;
       }

       if (broadband > clip_threshold || ir > clip_threshold) {
               lux = 65536;
               goto out;
       }

       /* Get correct scale factor based on integration time. */
       switch (sc->sc_itime) {
       case TIMING6x_INTEG_13_7ms:
               scale = TSL2561_LUX_CHSCALE_TINT0;
               break;

       case TIMING6x_INTEG_101ms:
               scale = TSL2561_LUX_CHSCALE_TINT1;
               break;

       case TIMING6x_INTEG_402ms:
       default:
               scale = (1 << TSL2561_LUX_CHSCALE);
       }

       /* Scale for gain. */
       if (sc->sc_gain == TIMING6x_GAIN_1X)
               scale <<= 4;

       /* Scale the channel values. */
       channel0 = ((uint32_t)broadband * scale) >> TSL2561_LUX_CHSCALE;
       channel1 = ((uint32_t)ir * scale) >> TSL2561_LUX_CHSCALE;

       /* Find the ratio of the channel values (ir / broadband) */
       if (channel0 != 0)
               ratio = (channel1 << (TSL2561_LUX_RATIOSCALE + 1)) / channel0;
       else
               ratio = 0;

       /* Round the ratio value. */
       ratio = (ratio + 1) >> 1;

       if (sc->sc_cs_package) {
               table = lux_factor_table_cs_package;
               last_entry = lux_factor_table_cs_package_last_entry;
       } else {
               table = lux_factor_table;
               last_entry = lux_factor_table_last_entry;
       }

       /*
        * The table is arranged such that we compare <= against
        * the key, and if all else fails, we use the last entry.
        * The pseudo-code in the data sheet shows what's going on.
        */
       for (idx = 0; idx < last_entry; idx++) {
               if (ratio <= table[idx].k)
                       break;
       }

       temp = ((channel0 * table[idx].b) - (channel1 * table[idx].m));

       /* Do not allow negative Lux value. */
       if (temp < 0)
               temp = 0;

       /* Round lsb (2^(LUX_SCALE-1)) */
       temp += (1 << (TSL2561_LUX_LUXSCALE-1));

       /* Strip off fractional portion */
       lux = temp >> TSL2561_LUX_LUXSCALE;

out:
       if (error == 0) {
               if (luxp != NULL)
                       *luxp = lux;
               if (raw_broadband != NULL)
                       *raw_broadband = broadband;
               if (raw_ir != NULL)
                       *raw_ir = ir;
       }
       return (error);
}