/*      $NetBSD: ds1307.c,v 1.40 2023/01/24 07:09:48 mlelstv Exp $      */

/*
* Copyright (c) 2003 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Steve C. Woodford and Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ds1307.c,v 1.40 2023/01/24 07:09:48 mlelstv Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/fcntl.h>
#include <sys/uio.h>
#include <sys/conf.h>
#include <sys/event.h>

#include <dev/clock_subr.h>

#include <dev/i2c/i2cvar.h>
#include <dev/i2c/ds1307reg.h>
#include <dev/sysmon/sysmonvar.h>

#include "ioconf.h"
#include "opt_dsrtc.h"

struct dsrtc_model {
       const i2c_addr_t *dm_valid_addrs;
       uint16_t dm_model;
       uint8_t dm_ch_reg;
       uint8_t dm_ch_value;
       uint8_t dm_vbaten_reg;
       uint8_t dm_vbaten_value;
       uint8_t dm_rtc_start;
       uint8_t dm_rtc_size;
       uint8_t dm_nvram_start;
       uint8_t dm_nvram_size;
       uint8_t dm_flags;
#define DSRTC_FLAG_CLOCK_HOLD           0x01
#define DSRTC_FLAG_BCD                  0x02
#define DSRTC_FLAG_TEMP                 0x04
#define DSRTC_FLAG_VBATEN               0x08
#define DSRTC_FLAG_YEAR_START_2K        0x10
#define DSRTC_FLAG_CLOCK_HOLD_REVERSED  0x20
};

static const i2c_addr_t ds1307_valid_addrs[] = { DS1307_ADDR, 0 };
static const struct dsrtc_model ds1307_model = {
       .dm_valid_addrs = ds1307_valid_addrs,
       .dm_model = 1307,
       .dm_ch_reg = DSXXXX_SECONDS,
       .dm_ch_value = DS1307_SECONDS_CH,
       .dm_rtc_start = DS1307_RTC_START,
       .dm_rtc_size = DS1307_RTC_SIZE,
       .dm_nvram_start = DS1307_NVRAM_START,
       .dm_nvram_size = DS1307_NVRAM_SIZE,
       .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD,
};

static const struct dsrtc_model ds1339_model = {
       .dm_valid_addrs = ds1307_valid_addrs,
       .dm_model = 1339,
       .dm_rtc_start = DS1339_RTC_START,
       .dm_rtc_size = DS1339_RTC_SIZE,
       .dm_flags = DSRTC_FLAG_BCD,
};

static const struct dsrtc_model ds1340_model = {
       .dm_valid_addrs = ds1307_valid_addrs,
       .dm_model = 1340,
       .dm_ch_reg = DSXXXX_SECONDS,
       .dm_ch_value = DS1340_SECONDS_EOSC,
       .dm_rtc_start = DS1340_RTC_START,
       .dm_rtc_size = DS1340_RTC_SIZE,
       .dm_flags = DSRTC_FLAG_BCD,
};

static const struct dsrtc_model ds1672_model = {
       .dm_valid_addrs = ds1307_valid_addrs,
       .dm_model = 1672,
       .dm_rtc_start = DS1672_RTC_START,
       .dm_rtc_size = DS1672_RTC_SIZE,
       .dm_ch_reg = DS1672_CONTROL,
       .dm_ch_value = DS1672_CONTROL_CH,
       .dm_flags = 0,
};

static const struct dsrtc_model ds3231_model = {
       .dm_valid_addrs = ds1307_valid_addrs,
       .dm_model = 3231,
       .dm_rtc_start = DS3232_RTC_START,
       .dm_rtc_size = DS3232_RTC_SIZE,
       .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_TEMP,
};

static const struct dsrtc_model ds3232_model = {
       .dm_valid_addrs = ds1307_valid_addrs,
       .dm_model = 3232,
       .dm_rtc_start = DS3232_RTC_START,
       .dm_rtc_size = DS3232_RTC_SIZE,
       .dm_nvram_start = DS3232_NVRAM_START,
       .dm_nvram_size = DS3232_NVRAM_SIZE,
       /*
        * XXX
        * the DS3232 likely has the temperature sensor too but I can't
        * easily verify or test that right now
        */
       .dm_flags = DSRTC_FLAG_BCD,
};

static const i2c_addr_t mcp7940_valid_addrs[] = { MCP7940_ADDR, 0 };
static const struct dsrtc_model mcp7940_model = {
       .dm_valid_addrs = mcp7940_valid_addrs,
       .dm_model = 7940,
       .dm_rtc_start = DS1307_RTC_START,
       .dm_rtc_size = DS1307_RTC_SIZE,
       .dm_ch_reg = DSXXXX_SECONDS,
       .dm_ch_value = DS1307_SECONDS_CH,
       .dm_vbaten_reg = DSXXXX_DAY,
       .dm_vbaten_value = MCP7940_TOD_DAY_VBATEN,
       .dm_nvram_start = MCP7940_NVRAM_START,
       .dm_nvram_size = MCP7940_NVRAM_SIZE,
       .dm_flags = DSRTC_FLAG_BCD | DSRTC_FLAG_CLOCK_HOLD |
               DSRTC_FLAG_VBATEN | DSRTC_FLAG_CLOCK_HOLD_REVERSED,
};

static const struct device_compatible_entry compat_data[] = {
       { .compat = "dallas,ds1307",            .data = &ds1307_model },
       { .compat = "maxim,ds1307",             .data = &ds1307_model },
       { .compat = "i2c-ds1307",               .data = &ds1307_model },

       { .compat = "dallas,ds1339",            .data = &ds1339_model },
       { .compat = "maxim,ds1339",             .data = &ds1339_model },

       { .compat = "dallas,ds1340",            .data = &ds1340_model },
       { .compat = "maxim,ds1340",             .data = &ds1340_model },

       { .compat = "dallas,ds1672",            .data = &ds1672_model },
       { .compat = "maxim,ds1672",             .data = &ds1672_model },

       { .compat = "dallas,ds3231",            .data = &ds3231_model },
       { .compat = "maxim,ds3231",             .data = &ds3231_model },

       { .compat = "dallas,ds3232",            .data = &ds3232_model },
       { .compat = "maxim,ds3232",             .data = &ds3232_model },

       { .compat = "microchip,mcp7940",        .data = &mcp7940_model },

       DEVICE_COMPAT_EOL
};

struct dsrtc_softc {
       device_t sc_dev;
       i2c_tag_t sc_tag;
       uint8_t sc_address;
       bool sc_open;
       struct dsrtc_model sc_model;
       struct todr_chip_handle sc_todr;
       struct sysmon_envsys *sc_sme;
       envsys_data_t sc_sensor;
};

static void     dsrtc_attach(device_t, device_t, void *);
static int      dsrtc_match(device_t, cfdata_t, void *);

CFATTACH_DECL_NEW(dsrtc, sizeof(struct dsrtc_softc),
   dsrtc_match, dsrtc_attach, NULL, NULL);

dev_type_open(dsrtc_open);
dev_type_close(dsrtc_close);
dev_type_read(dsrtc_read);
dev_type_write(dsrtc_write);

const struct cdevsw dsrtc_cdevsw = {
       .d_open = dsrtc_open,
       .d_close = dsrtc_close,
       .d_read = dsrtc_read,
       .d_write = dsrtc_write,
       .d_ioctl = noioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_OTHER
};

static int dsrtc_gettime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
static int dsrtc_settime_ymdhms(struct todr_chip_handle *, struct clock_ymdhms *);
static int dsrtc_clock_read_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);
static int dsrtc_clock_write_ymdhms(struct dsrtc_softc *, struct clock_ymdhms *);

static int dsrtc_gettime_timeval(struct todr_chip_handle *, struct timeval *);
static int dsrtc_settime_timeval(struct todr_chip_handle *, struct timeval *);
static int dsrtc_clock_read_timeval(struct dsrtc_softc *, time_t *);
static int dsrtc_clock_write_timeval(struct dsrtc_softc *, time_t);

static int dsrtc_read_temp(struct dsrtc_softc *, uint32_t *);
static void dsrtc_refresh(struct sysmon_envsys *, envsys_data_t *);

static const struct dsrtc_model *
dsrtc_model_by_number(u_int model)
{
       const struct device_compatible_entry *dce;
       const struct dsrtc_model *dm;

       /* no model given, assume it's a DS1307 */
       if (model == 0)
               return &ds1307_model;

       for (dce = compat_data; dce->compat != NULL; dce++) {
               dm = dce->data;
               if (dm->dm_model == model)
                       return dm;
       }
       return NULL;
}

static const struct dsrtc_model *
dsrtc_model_by_compat(const struct i2c_attach_args *ia)
{
       const struct dsrtc_model *dm = NULL;
       const struct device_compatible_entry *dce;

       if ((dce = iic_compatible_lookup(ia, compat_data)) != NULL)
               dm = dce->data;

       return dm;
}

static bool
dsrtc_is_valid_addr_for_model(const struct dsrtc_model *dm, i2c_addr_t addr)
{

       for (int i = 0; dm->dm_valid_addrs[i] != 0; i++) {
               if (addr == dm->dm_valid_addrs[i])
                       return true;
       }
       return false;
}

static int
dsrtc_match(device_t parent, cfdata_t cf, void *arg)
{
       struct i2c_attach_args *ia = arg;
       const struct dsrtc_model *dm;
       int match_result;

       if (iic_use_direct_match(ia, cf, compat_data, &match_result))
               return match_result;

       dm = dsrtc_model_by_number(cf->cf_flags & 0xffff);
       if (dm == NULL)
               return 0;

       if (dsrtc_is_valid_addr_for_model(dm, ia->ia_addr))
               return I2C_MATCH_ADDRESS_ONLY;

       return 0;
}

static void
dsrtc_attach(device_t parent, device_t self, void *arg)
{
       struct dsrtc_softc *sc = device_private(self);
       struct i2c_attach_args *ia = arg;
       const struct dsrtc_model *dm;
       prop_dictionary_t dict = device_properties(self);
       bool base_2k = FALSE;

       if ((dm = dsrtc_model_by_compat(ia)) == NULL)
               dm = dsrtc_model_by_number(device_cfdata(self)->cf_flags);

       if (dm == NULL) {
               aprint_error(": unable to determine model!\n");
               return;
       }

       aprint_naive(": Real-time Clock%s\n",
           dm->dm_nvram_size > 0 ? "/NVRAM" : "");
       aprint_normal(": DS%u Real-time Clock%s\n", dm->dm_model,
           dm->dm_nvram_size > 0 ? "/NVRAM" : "");

       sc->sc_tag = ia->ia_tag;
       sc->sc_address = ia->ia_addr;
       sc->sc_model = *dm;
       sc->sc_dev = self;
       sc->sc_open = 0;
       sc->sc_todr.cookie = sc;

       if (dm->dm_flags & DSRTC_FLAG_BCD) {
               sc->sc_todr.todr_gettime_ymdhms = dsrtc_gettime_ymdhms;
               sc->sc_todr.todr_settime_ymdhms = dsrtc_settime_ymdhms;
       } else {
               sc->sc_todr.todr_gettime = dsrtc_gettime_timeval;
               sc->sc_todr.todr_settime = dsrtc_settime_timeval;
       }
       sc->sc_todr.todr_setwen = NULL;

#ifdef DSRTC_YEAR_START_2K
       sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;
#endif

       prop_dictionary_get_bool(dict, "base_year_is_2000", &base_2k);
       if (base_2k) sc->sc_model.dm_flags |= DSRTC_FLAG_YEAR_START_2K;


       todr_attach(&sc->sc_todr);
       if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) != 0) {
               int error;

               sc->sc_sme = sysmon_envsys_create();
               sc->sc_sme->sme_name = device_xname(self);
               sc->sc_sme->sme_cookie = sc;
               sc->sc_sme->sme_refresh = dsrtc_refresh;

               sc->sc_sensor.units =  ENVSYS_STEMP;
               sc->sc_sensor.state = ENVSYS_SINVALID;
               sc->sc_sensor.flags = 0;
               (void)strlcpy(sc->sc_sensor.desc, "temperature",
                   sizeof(sc->sc_sensor.desc));

               if (sysmon_envsys_sensor_attach(sc->sc_sme, &sc->sc_sensor)) {
                       aprint_error_dev(self, "unable to attach sensor\n");
                       goto bad;
               }

               error = sysmon_envsys_register(sc->sc_sme);
               if (error) {
                       aprint_error_dev(self,
                           "error %d registering with sysmon\n", error);
                       goto bad;
               }
       }
       return;
bad:
       sysmon_envsys_destroy(sc->sc_sme);
}

/*ARGSUSED*/
int
dsrtc_open(dev_t dev, int flag, int fmt, struct lwp *l)
{
       struct dsrtc_softc *sc;

       if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
               return ENXIO;

       /* XXX: Locking */
       if (sc->sc_open)
               return EBUSY;

       sc->sc_open = true;
       return 0;
}

/*ARGSUSED*/
int
dsrtc_close(dev_t dev, int flag, int fmt, struct lwp *l)
{
       struct dsrtc_softc *sc;

       if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
               return ENXIO;

       sc->sc_open = false;
       return 0;
}

/*ARGSUSED*/
int
dsrtc_read(dev_t dev, struct uio *uio, int flags)
{
       struct dsrtc_softc *sc;
       int error;

       if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
               return ENXIO;

       const struct dsrtc_model * const dm = &sc->sc_model;
       if (uio->uio_offset < 0 || uio->uio_offset >= dm->dm_nvram_size)
               return EINVAL;

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
               return error;

       while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
               uint8_t ch, cmd;
               const u_int a = uio->uio_offset;
               cmd = a + dm->dm_nvram_start;
               if ((error = iic_exec(sc->sc_tag,
                   uio->uio_resid > 1 ? I2C_OP_READ : I2C_OP_READ_WITH_STOP,
                   sc->sc_address, &cmd, 1, &ch, 1, 0)) != 0) {
                       iic_release_bus(sc->sc_tag, 0);
                       aprint_error_dev(sc->sc_dev,
                           "%s: read failed at 0x%x: %d\n",
                           __func__, a, error);
                       return error;
               }
               if ((error = uiomove(&ch, 1, uio)) != 0) {
                       iic_release_bus(sc->sc_tag, 0);
                       return error;
               }
       }

       iic_release_bus(sc->sc_tag, 0);

       return 0;
}

/*ARGSUSED*/
int
dsrtc_write(dev_t dev, struct uio *uio, int flags)
{
       struct dsrtc_softc *sc;
       int error;

       if ((sc = device_lookup_private(&dsrtc_cd, minor(dev))) == NULL)
               return ENXIO;

       const struct dsrtc_model * const dm = &sc->sc_model;
       if (uio->uio_offset >= dm->dm_nvram_size)
               return EINVAL;

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0)
               return error;

       while (uio->uio_resid && uio->uio_offset < dm->dm_nvram_size) {
               uint8_t cmdbuf[2];
               const u_int a = (int)uio->uio_offset;
               cmdbuf[0] = a + dm->dm_nvram_start;
               if ((error = uiomove(&cmdbuf[1], 1, uio)) != 0)
                       break;

               if ((error = iic_exec(sc->sc_tag,
                   uio->uio_resid ? I2C_OP_WRITE : I2C_OP_WRITE_WITH_STOP,
                   sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
                       aprint_error_dev(sc->sc_dev,
                           "%s: write failed at 0x%x: %d\n",
                           __func__, a, error);
                       break;
               }
       }

       iic_release_bus(sc->sc_tag, 0);

       return error;
}

static int
dsrtc_gettime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
{
       struct dsrtc_softc *sc = ch->cookie;
       struct clock_ymdhms check;
       int retries;

       memset(dt, 0, sizeof(*dt));
       memset(&check, 0, sizeof(check));

       /*
        * Since we don't support Burst Read, we have to read the clock twice
        * until we get two consecutive identical results.
        */
       retries = 5;
       do {
               dsrtc_clock_read_ymdhms(sc, dt);
               dsrtc_clock_read_ymdhms(sc, &check);
       } while (memcmp(dt, &check, sizeof(check)) != 0 && --retries);

       return 0;
}

static int
dsrtc_settime_ymdhms(struct todr_chip_handle *ch, struct clock_ymdhms *dt)
{
       struct dsrtc_softc *sc = ch->cookie;

       if (dsrtc_clock_write_ymdhms(sc, dt) == 0)
               return -1;

       return 0;
}

static int
dsrtc_clock_read_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
{
       struct dsrtc_model * const dm = &sc->sc_model;
       uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[1];
       int error;

       KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to acquire I2C bus: %d\n",
                   __func__, error);
               return 0;
       }

       /* Read each RTC register in order. */
       for (u_int i = 0; !error && i < dm->dm_rtc_size; i++) {
               cmdbuf[0] = dm->dm_rtc_start + i;

               error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP,
                   sc->sc_address, cmdbuf, 1, &bcd[i], 1, 0);
       }

       /* Done with I2C */
       iic_release_bus(sc->sc_tag, 0);

       if (error != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to read rtc at 0x%x: %d\n",
                   __func__, cmdbuf[0], error);
               return 0;
       }

       /*
        * Convert the RTC's register values into something useable
        */
       dt->dt_sec = bcdtobin(bcd[DSXXXX_SECONDS] & DSXXXX_SECONDS_MASK);
       dt->dt_min = bcdtobin(bcd[DSXXXX_MINUTES] & DSXXXX_MINUTES_MASK);

       if ((bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_MODE) != 0) {
               dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
                   DSXXXX_HOURS_12MASK) % 12; /* 12AM -> 0, 12PM -> 12 */
               if (bcd[DSXXXX_HOURS] & DSXXXX_HOURS_12HRS_PM)
                       dt->dt_hour += 12;
       } else
               dt->dt_hour = bcdtobin(bcd[DSXXXX_HOURS] &
                   DSXXXX_HOURS_24MASK);

       dt->dt_day = bcdtobin(bcd[DSXXXX_DATE] & DSXXXX_DATE_MASK);
       dt->dt_mon = bcdtobin(bcd[DSXXXX_MONTH] & DSXXXX_MONTH_MASK);

       /* XXX: Should be an MD way to specify EPOCH used by BIOS/Firmware */
       if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K)
               dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + 2000;
       else {
               dt->dt_year = bcdtobin(bcd[DSXXXX_YEAR]) + POSIX_BASE_YEAR;
               if (bcd[DSXXXX_MONTH] & DSXXXX_MONTH_CENTURY)
                       dt->dt_year += 100;
       }

       return 1;
}

static int
dsrtc_clock_write_ymdhms(struct dsrtc_softc *sc, struct clock_ymdhms *dt)
{
       struct dsrtc_model * const dm = &sc->sc_model;
       uint8_t bcd[DSXXXX_RTC_SIZE], cmdbuf[2];
       int error, offset;

       KASSERT(DSXXXX_RTC_SIZE >= dm->dm_rtc_size);

       /*
        * Convert our time representation into something the DSXXXX
        * can understand.
        */
       bcd[DSXXXX_SECONDS] = bintobcd(dt->dt_sec);
       bcd[DSXXXX_MINUTES] = bintobcd(dt->dt_min);
       bcd[DSXXXX_HOURS] = bintobcd(dt->dt_hour); /* DSXXXX_HOURS_12HRS_MODE=0 */
       bcd[DSXXXX_DATE] = bintobcd(dt->dt_day);
       bcd[DSXXXX_DAY] = bintobcd(dt->dt_wday);
       bcd[DSXXXX_MONTH] = bintobcd(dt->dt_mon);

       if (sc->sc_model.dm_flags & DSRTC_FLAG_YEAR_START_2K) {
               offset = 2000;
       } else {
               offset = POSIX_BASE_YEAR;
       }

       bcd[DSXXXX_YEAR] = bintobcd((dt->dt_year - offset) % 100);
       if (dt->dt_year - offset >= 100)
               bcd[DSXXXX_MONTH] |= DSXXXX_MONTH_CENTURY;

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to acquire I2C bus: %d\n",
                   __func__, error);
               return 0;
       }

       /* Stop the clock */
       cmdbuf[0] = dm->dm_ch_reg;

       if ((error = iic_exec(sc->sc_tag, I2C_OP_READ, sc->sc_address,
           cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
               iic_release_bus(sc->sc_tag, 0);
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to read Hold Clock: %d\n",
                   __func__, error);
               return 0;
       }

       if (sc->sc_model.dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
               cmdbuf[1] &= ~dm->dm_ch_value;
       else
               cmdbuf[1] |= dm->dm_ch_value;

       if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE, sc->sc_address,
           cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
               iic_release_bus(sc->sc_tag, 0);
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to write Hold Clock: %d\n",
                   __func__, error);
               return 0;
       }

       /*
        * Write registers in reverse order. The last write (to the Seconds
        * register) will undo the Clock Hold, above.
        */
       uint8_t op = I2C_OP_WRITE;
       for (signed int i = dm->dm_rtc_size - 1; i >= 0; i--) {
               cmdbuf[0] = dm->dm_rtc_start + i;
               if ((dm->dm_flags & DSRTC_FLAG_VBATEN) &&
                               dm->dm_rtc_start + i == dm->dm_vbaten_reg)
                       bcd[i] |= dm->dm_vbaten_value;
               if (dm->dm_rtc_start + i == dm->dm_ch_reg) {
                       op = I2C_OP_WRITE_WITH_STOP;
                       if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
                               bcd[i] |= dm->dm_ch_value;
               }
               if ((error = iic_exec(sc->sc_tag, op, sc->sc_address,
                   cmdbuf, 1, &bcd[i], 1, 0)) != 0) {
                       iic_release_bus(sc->sc_tag, 0);
                       aprint_error_dev(sc->sc_dev,
                           "%s: failed to write rtc at 0x%x: %d\n",
                           __func__, i, error);
                       /* XXX: Clock Hold is likely still asserted! */
                       return 0;
               }
       }
       /*
        * If the clock hold register isn't the same register as seconds,
        * we need to reenable the clock.
        */
       if (op != I2C_OP_WRITE_WITH_STOP) {
               cmdbuf[0] = dm->dm_ch_reg;
               if (dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD_REVERSED)
                       cmdbuf[1] |= dm->dm_ch_value;
               else
                       cmdbuf[1] &= ~dm->dm_ch_value;

               if ((error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP,
                   sc->sc_address, cmdbuf, 1, &cmdbuf[1], 1, 0)) != 0) {
                       iic_release_bus(sc->sc_tag, 0);
                       aprint_error_dev(sc->sc_dev,
                           "%s: failed to Hold Clock: %d\n",
                           __func__, error);
                       return 0;
               }
       }

       iic_release_bus(sc->sc_tag, 0);

       return 1;
}

static int
dsrtc_gettime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
{
       struct dsrtc_softc *sc = ch->cookie;
       struct timeval check;
       int retries;

       memset(tv, 0, sizeof(*tv));
       memset(&check, 0, sizeof(check));

       /*
        * Since we don't support Burst Read, we have to read the clock twice
        * until we get two consecutive identical results.
        */
       retries = 5;
       do {
               dsrtc_clock_read_timeval(sc, &tv->tv_sec);
               dsrtc_clock_read_timeval(sc, &check.tv_sec);
       } while (memcmp(tv, &check, sizeof(check)) != 0 && --retries);

       return 0;
}

static int
dsrtc_settime_timeval(struct todr_chip_handle *ch, struct timeval *tv)
{
       struct dsrtc_softc *sc = ch->cookie;

       if (dsrtc_clock_write_timeval(sc, tv->tv_sec) == 0)
               return -1;

       return 0;
}

/*
* The RTC probably has a nice Clock Burst Read/Write command, but we can't use
* it, since some I2C controllers don't support anything other than single-byte
* transfers.
*/
static int
dsrtc_clock_read_timeval(struct dsrtc_softc *sc, time_t *tp)
{
       const struct dsrtc_model * const dm = &sc->sc_model;
       uint8_t buf[4];
       int error;

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to acquire I2C bus: %d\n",
                   __func__, error);
               return 0;
       }

       /* read all registers: */
       uint8_t reg = dm->dm_rtc_start;
       error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
            &reg, 1, buf, 4, 0);

       /* Done with I2C */
       iic_release_bus(sc->sc_tag, 0);

       if (error != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to read rtc at 0x%x: %d\n",
                   __func__, reg, error);
               return 0;
       }

       uint32_t v = (buf[3] << 24) | (buf[2] << 16) | (buf[1] << 8) | buf[0];
       *tp = v;

       aprint_debug_dev(sc->sc_dev, "%s: cntr=0x%08"PRIx32"\n",
           __func__, v);

       return 1;
}

static int
dsrtc_clock_write_timeval(struct dsrtc_softc *sc, time_t t)
{
       const struct dsrtc_model * const dm = &sc->sc_model;
       size_t buflen = dm->dm_rtc_size + 2;
       /* XXX: the biggest dm_rtc_size we have now is 7, so we should be ok */
       uint8_t buf[16];
       int error;

       KASSERT((dm->dm_flags & DSRTC_FLAG_CLOCK_HOLD) == 0);
       KASSERT(dm->dm_ch_reg == dm->dm_rtc_start + 4);

       buf[0] = dm->dm_rtc_start;
       buf[1] = (t >> 0) & 0xff;
       buf[2] = (t >> 8) & 0xff;
       buf[3] = (t >> 16) & 0xff;
       buf[4] = (t >> 24) & 0xff;
       buf[5] = 0;

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to acquire I2C bus: %d\n",
                   __func__, error);
               return 0;
       }

       error = iic_exec(sc->sc_tag, I2C_OP_WRITE_WITH_STOP, sc->sc_address,
           &buf, buflen, NULL, 0, 0);

       /* Done with I2C */
       iic_release_bus(sc->sc_tag, 0);

       /* send data */
       if (error != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to set time: %d\n",
                   __func__, error);
               return 0;
       }

       return 1;
}

static int
dsrtc_read_temp(struct dsrtc_softc *sc, uint32_t *temp)
{
       int error, tc;
       uint8_t reg = DS3232_TEMP_MSB;
       uint8_t buf[2];

       if ((sc->sc_model.dm_flags & DSRTC_FLAG_TEMP) == 0)
               return ENOTSUP;

       if ((error = iic_acquire_bus(sc->sc_tag, 0)) != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to acquire I2C bus: %d\n",
                   __func__, error);
               return 0;
       }

       /* read temperature registers: */
       error = iic_exec(sc->sc_tag, I2C_OP_READ_WITH_STOP, sc->sc_address,
            &reg, 1, buf, 2, 0);

       /* Done with I2C */
       iic_release_bus(sc->sc_tag, 0);

       if (error != 0) {
               aprint_error_dev(sc->sc_dev,
                   "%s: failed to read temperature: %d\n",
                   __func__, error);
               return 0;
       }

       /* convert to microkelvin */
       tc = buf[0] * 1000000 + (buf[1] >> 6) * 250000;
       *temp = tc + 273150000;
       return 1;
}

static void
dsrtc_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
       struct dsrtc_softc *sc = sme->sme_cookie;
       uint32_t temp = 0;      /* XXX gcc */

       if (dsrtc_read_temp(sc, &temp) == 0) {
               edata->state = ENVSYS_SINVALID;
               return;
       }

       edata->value_cur = temp;

       edata->state = ENVSYS_SVALID;
}