/* $NetBSD: fdt_memory.c,v 1.10 2024/01/14 07:53:38 mlelstv Exp $ */
/*-
* Copyright (c) 2018 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jared McNeill <
[email protected]>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include "opt_fdt.h"
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fdt_memory.c,v 1.10 2024/01/14 07:53:38 mlelstv Exp $");
#include <sys/param.h>
#include <sys/queue.h>
#include <libfdt.h>
#include <dev/fdt/fdtvar.h>
#include <dev/fdt/fdt_memory.h>
struct fdt_memory_range {
struct fdt_memory mr_mem;
bool mr_used;
TAILQ_ENTRY(fdt_memory_range) mr_list;
};
static TAILQ_HEAD(fdt_memory_rangehead, fdt_memory_range) fdt_memory_ranges =
TAILQ_HEAD_INITIALIZER(fdt_memory_ranges);
static struct fdt_memory_range fdt_memory_range_pool[FDT_MEMORY_RANGES];
static struct fdt_memory_range *
fdt_memory_range_alloc(void)
{
for (size_t n = 0; n < FDT_MEMORY_RANGES; n++)
if (!fdt_memory_range_pool[n].mr_used) {
fdt_memory_range_pool[n].mr_used = true;
return &fdt_memory_range_pool[n];
}
printf("%s: no free memory ranges, increase FDT_MEMORY_RANGES!\n", __func__);
return NULL;
}
static void
fdt_memory_range_free(struct fdt_memory_range *mr)
{
mr->mr_used = false;
}
/*
* Get all of physical memory, including holes.
*/
void
fdt_memory_get(uint64_t *pstart, uint64_t *pend)
{
const void *fdt_data = fdtbus_get_data();
uint64_t cur_addr, cur_size;
int index, nadd = 0, off, memory;
off = fdt_node_offset_by_prop_value(fdt_data, -1,
"device_type", "memory", sizeof("memory"));
/*
* Device Tree Specification 3.2 says that memory
* nodes are named "memory" and have device_type
* "memory", but if the device_type is missing, try
* to find the (then single) node by name.
*/
if (off == -FDT_ERR_NOTFOUND)
off = fdt_path_offset(fdt_data, "/memory");
while (off != -FDT_ERR_NOTFOUND) {
memory = fdtbus_offset2phandle(off);
for (index = 0;
fdtbus_get_reg64(memory, index, &cur_addr, &cur_size) == 0;
index++) {
if (cur_size == 0)
continue;
fdt_memory_add_range(cur_addr, cur_size);
if (nadd++ == 0) {
*pstart = cur_addr;
*pend = cur_addr + cur_size;
continue;
}
if (cur_addr < *pstart)
*pstart = cur_addr;
if (cur_addr + cur_size > *pend)
*pend = cur_addr + cur_size;
}
off = fdt_node_offset_by_prop_value(fdt_data, off,
"device_type", "memory", sizeof("memory"));
}
if (nadd == 0)
panic("Cannot determine memory size");
}
/*
* Exclude memory ranges from memory config from the device tree
*/
void
fdt_memory_remove_reserved(uint64_t min_addr, uint64_t max_addr)
{
uint64_t lstart = 0, lend = 0;
int index, error, phandle, child;
const void *fdt_data = fdtbus_get_data();
const int num = fdt_num_mem_rsv(fdt_data);
for (index = 0; index <= num; index++) {
uint64_t addr, size;
error = fdt_get_mem_rsv(fdt_data, index, &addr, &size);
if (error != 0)
continue;
if (lstart <= addr && addr <= lend) {
size -= (lend - addr);
addr = lend;
}
if (size == 0)
continue;
if (addr + size <= min_addr)
continue;
if (addr >= max_addr)
continue;
if (addr < min_addr) {
size -= (min_addr - addr);
addr = min_addr;
}
if (addr + size > max_addr)
size = max_addr - addr;
fdt_memory_remove_range(addr, size);
lstart = addr;
lend = addr + size;
}
/*
* "no-map" ranges defined in the /reserved-memory node
* must also be excluded.
*/
phandle = OF_finddevice("/reserved-memory");
if (phandle != -1) {
for (child = OF_child(phandle); child; child = OF_peer(child)) {
bus_addr_t addr;
bus_size_t size;
if (fdtbus_get_reg(child, 0, &addr, &size) != 0)
continue;
if (size == 0)
continue;
fdt_memory_remove_range(addr, size);
}
}
}
void
fdt_memory_add_range(uint64_t start, uint64_t size)
{
struct fdt_memory_range *mr, *prev, *cur, *tmp;
bool inserted = false;
mr = fdt_memory_range_alloc();
if (mr == NULL)
return;
mr->mr_mem.start = start;
mr->mr_mem.end = start + size;
/*
* Add the new range to the list of sorted ranges.
*/
TAILQ_FOREACH(cur, &fdt_memory_ranges, mr_list)
if (mr->mr_mem.start <= cur->mr_mem.start) {
TAILQ_INSERT_BEFORE(cur, mr, mr_list);
inserted = true;
break;
}
if (!inserted)
TAILQ_INSERT_TAIL(&fdt_memory_ranges, mr, mr_list);
/*
* Remove overlaps.
*/
TAILQ_FOREACH_SAFE(mr, &fdt_memory_ranges, mr_list, tmp) {
prev = TAILQ_PREV(mr, fdt_memory_rangehead, mr_list);
if (prev && prev->mr_mem.end > mr->mr_mem.start) {
mr->mr_mem.start = prev->mr_mem.end;
if (mr->mr_mem.start >= mr->mr_mem.end) {
TAILQ_REMOVE(&fdt_memory_ranges, mr, mr_list);
fdt_memory_range_free(mr);
}
}
}
/*
* Combine adjacent ranges.
*/
TAILQ_FOREACH_SAFE(mr, &fdt_memory_ranges, mr_list, tmp) {
prev = TAILQ_PREV(mr, fdt_memory_rangehead, mr_list);
if (prev && prev->mr_mem.end == mr->mr_mem.start) {
prev->mr_mem.end = mr->mr_mem.end;
TAILQ_REMOVE(&fdt_memory_ranges, mr, mr_list);
fdt_memory_range_free(mr);
}
}
}
void
fdt_memory_remove_range(uint64_t start, uint64_t size)
{
struct fdt_memory_range *mr, *next, *tmp;
const uint64_t end = start + size;
TAILQ_FOREACH_SAFE(mr, &fdt_memory_ranges, mr_list, tmp) {
if (start <= mr->mr_mem.start && end >= mr->mr_mem.end) {
/*
* Removed range completely covers this range,
* just remove it.
*/
TAILQ_REMOVE(&fdt_memory_ranges, mr, mr_list);
fdt_memory_range_free(mr);
} else if (start > mr->mr_mem.start && end < mr->mr_mem.end) {
/*
* Removed range is completely contained by this range,
* split it.
*/
next = fdt_memory_range_alloc();
if (next == NULL)
panic("fdt_memory_remove_range");
next->mr_mem.start = end;
next->mr_mem.end = mr->mr_mem.end;
mr->mr_mem.end = start;
TAILQ_INSERT_AFTER(&fdt_memory_ranges, mr, next, mr_list);
} else if (start <= mr->mr_mem.start && end > mr->mr_mem.start && end < mr->mr_mem.end) {
/*
* Partial overlap at the beginning of the range.
*/
mr->mr_mem.start = end;
} else if (start > mr->mr_mem.start && start < mr->mr_mem.end && end >= mr->mr_mem.end) {
/*
* Partial overlap at the end of the range.
*/
mr->mr_mem.end = start;
}
KASSERT(mr->mr_mem.start < mr->mr_mem.end);
}
}
void
fdt_memory_foreach(void (*fn)(const struct fdt_memory *, void *), void *arg)
{
struct fdt_memory_range *mr;
TAILQ_FOREACH(mr, &fdt_memory_ranges, mr_list)
fn(&mr->mr_mem, arg);
}