/* $NetBSD: cpufreq_dt.c,v 1.19 2021/02/22 06:21:35 ryo Exp $ */

/*-
* Copyright (c) 2015-2017 Jared McNeill <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.19 2021/02/22 06:21:35 ryo Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/bus.h>
#include <sys/atomic.h>
#include <sys/xcall.h>
#include <sys/sysctl.h>
#include <sys/queue.h>
#include <sys/once.h>
#include <sys/cpu.h>

#include <dev/fdt/fdtvar.h>

struct cpufreq_dt_table {
       int                     phandle;
       TAILQ_ENTRY(cpufreq_dt_table) next;
};

static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
   TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
static kmutex_t cpufreq_dt_tables_lock;

struct cpufreq_dt_opp {
       u_int                   freq_khz;
       u_int                   voltage_uv;
       u_int                   latency_ns;
};

struct cpufreq_dt_softc {
       device_t                sc_dev;
       int                     sc_phandle;
       struct clk              *sc_clk;
       struct fdtbus_regulator *sc_supply;

       struct cpufreq_dt_opp   *sc_opp;
       ssize_t                 sc_nopp;

       u_int                   sc_freq_target;
       bool                    sc_freq_throttle;

       u_int                   sc_busy;

       char                    *sc_freq_available;
       int                     sc_node_target;
       int                     sc_node_current;
       int                     sc_node_available;

       struct cpufreq_dt_table sc_table;
};

static void
cpufreq_dt_change_cb(void *arg1, void *arg2)
{
       struct cpufreq_dt_softc * const sc = arg1;
       struct cpu_info *ci = curcpu();

       ci->ci_data.cpu_cc_freq = clk_get_rate(sc->sc_clk);
}

static int
cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
{
       struct cpufreq_dt_opp *opp = NULL;
       u_int old_rate, new_rate, old_uv, new_uv;
       uint64_t xc;
       int error;
       ssize_t n;

       for (n = 0; n < sc->sc_nopp; n++)
               if (sc->sc_opp[n].freq_khz == freq_khz) {
                       opp = &sc->sc_opp[n];
                       break;
               }
       if (opp == NULL)
               return EINVAL;

       old_rate = clk_get_rate(sc->sc_clk);
       new_rate = freq_khz * 1000;
       new_uv = opp->voltage_uv;

       if (old_rate == new_rate)
               return 0;

       if (sc->sc_supply != NULL) {
               error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
               if (error != 0)
                       return error;

               if (new_uv > old_uv) {
                       error = fdtbus_regulator_set_voltage(sc->sc_supply,
                           new_uv, new_uv);
                       if (error != 0)
                               return error;
               }
       }

       error = clk_set_rate(sc->sc_clk, new_rate);
       if (error != 0)
               return error;

       const u_int latency_us = howmany(opp->latency_ns, 1000);
       if (latency_us > 0)
               delay(latency_us);

       if (sc->sc_supply != NULL) {
               if (new_uv < old_uv) {
                       error = fdtbus_regulator_set_voltage(sc->sc_supply,
                           new_uv, new_uv);
                       if (error != 0)
                               return error;
               }
       }

       if (error == 0) {
               xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
               xc_wait(xc);

               pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
       }

       return 0;
}

static void
cpufreq_dt_throttle_enable(device_t dev)
{
       struct cpufreq_dt_softc * const sc = device_private(dev);

       if (sc->sc_freq_throttle)
               return;

       const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;

       while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
               kpause("throttle", false, 1, NULL);

       if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
               aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
                   freq_khz / 1000, freq_khz % 1000);
               sc->sc_freq_throttle = true;
               if (sc->sc_freq_target == 0)
                       sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
       }

       atomic_dec_uint(&sc->sc_busy);
}

static void
cpufreq_dt_throttle_disable(device_t dev)
{
       struct cpufreq_dt_softc * const sc = device_private(dev);

       if (!sc->sc_freq_throttle)
               return;

       while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
               kpause("throttle", false, 1, NULL);

       const u_int freq_khz = sc->sc_freq_target * 1000;

       if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
               aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
                   freq_khz / 1000, freq_khz % 1000);
               sc->sc_freq_throttle = false;
       }

       atomic_dec_uint(&sc->sc_busy);
}

static int
cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
{
       struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
       struct sysctlnode node;
       u_int fq, oldfq = 0;
       int error, n;

       node = *rnode;
       node.sysctl_data = &fq;

       if (rnode->sysctl_num == sc->sc_node_target) {
               if (sc->sc_freq_target == 0)
                       sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
               fq = sc->sc_freq_target;
       } else
               fq = clk_get_rate(sc->sc_clk) / 1000000;

       if (rnode->sysctl_num == sc->sc_node_target)
               oldfq = fq;

       if (sc->sc_freq_target == 0)
               sc->sc_freq_target = fq;

       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
               return 0;

       for (n = 0; n < sc->sc_nopp; n++)
               if (sc->sc_opp[n].freq_khz / 1000 == fq)
                       break;
       if (n == sc->sc_nopp)
               return EINVAL;

       if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
               return EBUSY;

       sc->sc_freq_target = fq;

       if (sc->sc_freq_throttle)
               error = 0;
       else
               error = cpufreq_dt_set_rate(sc, fq * 1000);

       atomic_dec_uint(&sc->sc_busy);

       return error;
}

static struct cpu_info *
cpufreq_dt_cpu_lookup(cpuid_t mpidr)
{
       CPU_INFO_ITERATOR cii;
       struct cpu_info *ci;

       for (CPU_INFO_FOREACH(cii, ci)) {
               if (ci->ci_cpuid == mpidr)
                       return ci;
       }

       return NULL;
}

static void
cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
{
       const struct sysctlnode *node, *cpunode;
       struct sysctllog *cpufreq_log = NULL;
       struct cpu_info *ci;
       bus_addr_t mpidr;
       int error, i;

       if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0)
               return;

       ci = cpufreq_dt_cpu_lookup(mpidr);
       if (ci == NULL)
               return;

       sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
       for (i = 0; i < sc->sc_nopp; i++) {
               char buf[6];
               snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
               strcat(sc->sc_freq_available, buf);
       }

       error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
           CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
           NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
       if (error)
               goto sysctl_failed;
       error = sysctl_createv(&cpufreq_log, 0, &node, &node,
           0, CTLTYPE_NODE, "cpufreq", NULL,
           NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
       if (error)
               goto sysctl_failed;
       error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
           0, CTLTYPE_NODE, cpu_name(ci), NULL,
           NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
       if (error)
               goto sysctl_failed;

       error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
           CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
           cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
           CTL_CREATE, CTL_EOL);
       if (error)
               goto sysctl_failed;
       sc->sc_node_target = node->sysctl_num;

       error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
           CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
           cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
           CTL_CREATE, CTL_EOL);
       if (error)
               goto sysctl_failed;
       sc->sc_node_current = node->sysctl_num;

       error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
           0, CTLTYPE_STRING, "available", NULL,
           NULL, 0, sc->sc_freq_available, 0,
           CTL_CREATE, CTL_EOL);
       if (error)
               goto sysctl_failed;
       sc->sc_node_available = node->sysctl_num;

       return;

sysctl_failed:
       aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
       sysctl_teardown(&cpufreq_log);
}

static int
cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
{
       const int phandle = sc->sc_phandle;
       const u_int *opp;
       int len, i;

       opp = fdtbus_get_prop(phandle, "operating-points", &len);
       if (len < 8)
               return ENXIO;

       sc->sc_nopp = len / 8;
       sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
       for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
               sc->sc_opp[i].freq_khz = be32toh(opp[0]);
               sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
       }

       return 0;
}

static const struct fdt_opp_info *
cpufreq_dt_lookup_opp_info(const int opp_table)
{
       __link_set_decl(fdt_opps, struct fdt_opp_info);
       struct fdt_opp_info * const *opp;
       const struct fdt_opp_info *best_opp = NULL;
       int match, best_match = 0;

       __link_set_foreach(opp, fdt_opps) {
               const struct device_compatible_entry compat_data[] = {
                       { .compat = (*opp)->opp_compat },
                       DEVICE_COMPAT_EOL
               };

               match = of_compatible_match(opp_table, compat_data);
               if (match > best_match) {
                       best_match = match;
                       best_opp = *opp;
               }
       }

       return best_opp;
}

static bool
cpufreq_dt_opp_v2_supported(const int opp_table, const int opp_node)
{
       return true;
}

FDT_OPP(opp_v2, "operating-points-v2", cpufreq_dt_opp_v2_supported);

static bool
cpufreq_dt_node_supported(const struct fdt_opp_info *opp_info, const int opp_table, const int opp_node)
{
       if (!fdtbus_status_okay(opp_node))
               return false;
       if (of_hasprop(opp_node, "opp-suspend"))
               return false;

       if (opp_info != NULL)
               return opp_info->opp_supported(opp_table, opp_node);

       return false;
}

static int
cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
{
       const int phandle = sc->sc_phandle;
       struct cpufreq_dt_table *table;
       const struct fdt_opp_info *opp_info;
       const u_int *opp_uv;
       uint64_t opp_hz;
       int opp_node, len, i, index;

       const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
       if (opp_table < 0)
               return ENOENT;

       /* If the table is shared, only setup a single instance */
       if (of_hasprop(opp_table, "opp-shared")) {
               TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
                       if (table->phandle == opp_table)
                               return EEXIST;
               sc->sc_table.phandle = opp_table;
               TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
       }

       opp_info = cpufreq_dt_lookup_opp_info(opp_table);

       for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
               if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
                       continue;
               sc->sc_nopp++;
       }

       if (sc->sc_nopp == 0)
               return EINVAL;

       sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
       index = sc->sc_nopp - 1;
       for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
               if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
                       continue;
               if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
                       return EINVAL;
               opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len);
               if (opp_uv == NULL || len < 1)
                       return EINVAL;
               /* Table is in reverse order */
               sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000);
               sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]);
               of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns);
               --index;
       }

       return 0;
}

static int
cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
{
       const int phandle = sc->sc_phandle;
       int error, i;

       if (of_hasprop(phandle, "cpu-supply")) {
               sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
               if (sc->sc_supply == NULL) {
                       aprint_error_dev(sc->sc_dev,
                           "couldn't acquire cpu-supply\n");
                       return ENXIO;
               }
       }
       sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
       if (sc->sc_clk == NULL) {
               aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
               return ENXIO;
       }

       mutex_enter(&cpufreq_dt_tables_lock);
       if (of_hasprop(phandle, "operating-points"))
               error = cpufreq_dt_parse_opp(sc);
       else if (of_hasprop(phandle, "operating-points-v2"))
               error = cpufreq_dt_parse_opp_v2(sc);
       else
               error = EINVAL;
       mutex_exit(&cpufreq_dt_tables_lock);

       if (error) {
               if (error != EEXIST)
                       aprint_error_dev(sc->sc_dev,
                           "couldn't parse operating points: %d\n", error);
               return error;
       }

       for (i = 0; i < sc->sc_nopp; i++) {
               aprint_debug_dev(sc->sc_dev, "supported rate: %u.%03u MHz, %u uV\n",
                   sc->sc_opp[i].freq_khz / 1000,
                   sc->sc_opp[i].freq_khz % 1000,
                   sc->sc_opp[i].voltage_uv);
       }

       return 0;
}

static int
cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
{
       struct fdt_attach_args * const faa = aux;
       const int phandle = faa->faa_phandle;
       bus_addr_t addr;

       if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
               return 0;

       if (!of_hasprop(phandle, "clocks"))
               return 0;

       if (!of_hasprop(phandle, "operating-points") &&
           !of_hasprop(phandle, "operating-points-v2"))
               return 0;

       return 1;
}

static void
cpufreq_dt_init(device_t self)
{
       struct cpufreq_dt_softc * const sc = device_private(self);
       int error;

       if ((error = cpufreq_dt_parse(sc)) != 0)
               return;

       pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
       pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);

       cpufreq_dt_init_sysctl(sc);

       if (sc->sc_nopp > 0) {
               struct cpufreq_dt_opp * const opp = &sc->sc_opp[0];

               aprint_normal_dev(sc->sc_dev, "rate: %u.%03u MHz, %u uV\n",
                   opp->freq_khz / 1000, opp->freq_khz % 1000, opp->voltage_uv);
               cpufreq_dt_set_rate(sc, opp->freq_khz);
       }
}

static int
cpufreq_dt_lock_init(void)
{
       mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
       return 0;
}

static void
cpufreq_dt_attach(device_t parent, device_t self, void *aux)
{
       static ONCE_DECL(locks);
       struct cpufreq_dt_softc * const sc = device_private(self);
       struct fdt_attach_args * const faa = aux;

       RUN_ONCE(&locks, cpufreq_dt_lock_init);

       sc->sc_dev = self;
       sc->sc_phandle = faa->faa_phandle;

       aprint_naive("\n");
       aprint_normal("\n");

       config_interrupts(self, cpufreq_dt_init);
}

CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
   cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);