/* $NetBSD: qcompas.c,v 1.1 2024/12/30 12:31:10 jmcneill Exp $ */
/* $OpenBSD: qcpas.c,v 1.8 2024/11/08 21:13:34 landry Exp $ */
/*
* Copyright (c) 2023 Patrick Wildt <
[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/mutex.h>
#include <sys/condvar.h>
#include <sys/callout.h>
#include <sys/exec_elf.h>
#include <dev/firmload.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/sysmon/sysmon_taskq.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_intr.h>
#include <dev/acpi/qcomipcc.h>
#include <dev/acpi/qcompep.h>
#include <dev/acpi/qcomscm.h>
#include <dev/acpi/qcomsmem.h>
#include <dev/acpi/qcomsmptp.h>
#define DRIVER_NAME "qcompas"
#define MDT_TYPE_MASK (7 << 24)
#define MDT_TYPE_HASH (2 << 24)
#define MDT_RELOCATABLE (1 << 27)
extern struct arm32_bus_dma_tag arm_generic_dma_tag;
enum qcpas_batt_sensor {
/* Battery sensors (must be first) */
QCPAS_DVOLTAGE,
QCPAS_VOLTAGE,
QCPAS_DCAPACITY,
QCPAS_LFCCAPACITY,
QCPAS_CAPACITY,
QCPAS_CHARGERATE,
QCPAS_DISCHARGERATE,
QCPAS_CHARGING,
QCPAS_CHARGE_STATE,
QCPAS_DCYCLES,
QCPAS_TEMPERATURE,
/* AC adapter sensors */
QCPAS_ACADAPTER,
/* Total number of sensors */
QCPAS_NUM_SENSORS
};
struct qcpas_dmamem {
bus_dmamap_t tdm_map;
bus_dma_segment_t tdm_seg;
size_t tdm_size;
void *tdm_kva;
};
#define QCPAS_DMA_MAP(_tdm) ((_tdm)->tdm_map)
#define QCPAS_DMA_LEN(_tdm) ((_tdm)->tdm_size)
#define QCPAS_DMA_DVA(_tdm) ((_tdm)->tdm_map->dm_segs[0].ds_addr)
#define QCPAS_DMA_KVA(_tdm) ((_tdm)->tdm_kva)
struct qcpas_softc {
device_t sc_dev;
bus_dma_tag_t sc_dmat;
char *sc_sub;
void *sc_ih[5];
kmutex_t sc_ready_lock;
kcondvar_t sc_ready_cv;
bool sc_ready;
paddr_t sc_mem_phys[2];
size_t sc_mem_size[2];
uint8_t *sc_mem_region[2];
vaddr_t sc_mem_reloc[2];
const char *sc_fwname;
const char *sc_dtb_fwname;
uint32_t sc_pas_id;
uint32_t sc_dtb_pas_id;
uint32_t sc_lite_pas_id;
const char *sc_load_state;
uint32_t sc_glink_remote_pid;
uint32_t sc_crash_reason;
struct qcpas_dmamem *sc_metadata[2];
/* GLINK */
volatile uint32_t *sc_tx_tail;
volatile uint32_t *sc_tx_head;
volatile uint32_t *sc_rx_tail;
volatile uint32_t *sc_rx_head;
uint32_t sc_tx_off;
uint32_t sc_rx_off;
uint8_t *sc_tx_fifo;
int sc_tx_fifolen;
uint8_t *sc_rx_fifo;
int sc_rx_fifolen;
void *sc_glink_ih;
void *sc_ipcc;
uint32_t sc_glink_max_channel;
TAILQ_HEAD(,qcpas_glink_channel) sc_glink_channels;
uint32_t sc_warning_capacity;
uint32_t sc_low_capacity;
uint32_t sc_power_state;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sens[QCPAS_NUM_SENSORS];
struct sysmon_envsys *sc_sme_acadapter;
struct sysmon_pswitch sc_smpsw_acadapter;
callout_t sc_rtr_refresh;
};
static int qcpas_match(device_t, cfdata_t, void *);
static void qcpas_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(qcompas, sizeof(struct qcpas_softc),
qcpas_match, qcpas_attach, NULL, NULL);
static void qcpas_mountroot(device_t);
static void qcpas_firmload(void *);
static int qcpas_map_memory(struct qcpas_softc *);
static int qcpas_mdt_init(struct qcpas_softc *, int, u_char *, size_t);
static void qcpas_glink_attach(struct qcpas_softc *);
static void qcpas_glink_recv(void *);
static void qcpas_get_limits(struct sysmon_envsys *, envsys_data_t *,
sysmon_envsys_lim_t *, uint32_t *);
static struct qcpas_dmamem *
qcpas_dmamem_alloc(struct qcpas_softc *, bus_size_t, bus_size_t);
static void qcpas_dmamem_free(struct qcpas_softc *, struct qcpas_dmamem *);
static int qcpas_intr_wdog(void *);
static int qcpas_intr_fatal(void *);
static int qcpas_intr_ready(void *);
static int qcpas_intr_handover(void *);
static int qcpas_intr_stop_ack(void *);
struct qcpas_mem_region {
bus_addr_t start;
bus_size_t size;
};
struct qcpas_data {
bus_addr_t reg_addr;
bus_size_t reg_size;
uint32_t pas_id;
uint32_t dtb_pas_id;
uint32_t lite_pas_id;
const char *load_state;
uint32_t glink_remote_pid;
struct qcpas_mem_region mem_region[2];
const char *fwname;
const char *dtb_fwname;
uint32_t crash_reason;
};
static struct qcpas_data qcpas_x1e_data = {
.reg_addr = 0x30000000,
.reg_size = 0x100,
.pas_id = 1,
.dtb_pas_id = 36,
.lite_pas_id = 31,
.load_state = "adsp",
.glink_remote_pid = 2,
.mem_region = {
[0] = { .start = 0x87e00000, .size = 0x3a00000 },
[1] = { .start = 0x8b800000, .size = 0x80000 },
},
.fwname = "qcadsp8380.mbn",
.dtb_fwname = "adsp_dtbs.elf",
.crash_reason = 423,
};
#define IPCC_CLIENT_LPASS 3
#define IPCC_MPROC_SIGNAL_GLINK_QMP 0
static const struct device_compatible_entry compat_data[] = {
{ .compat = "QCOM0C1B", .data = &qcpas_x1e_data },
DEVICE_COMPAT_EOL
};
static int
qcpas_match(device_t parent, cfdata_t match, void *aux)
{
struct acpi_attach_args *aa = aux;
return acpi_compatible_match(aa, compat_data);
}
static void
qcpas_attach(device_t parent, device_t self, void *aux)
{
struct qcpas_softc *sc = device_private(self);
struct acpi_attach_args *aa = aux;
const struct qcpas_data *data;
struct acpi_resources res;
ACPI_STATUS rv;
int i;
rv = acpi_resource_parse(self, aa->aa_node->ad_handle, "_CRS", &res,
&acpi_resource_parse_ops_default);
if (ACPI_FAILURE(rv)) {
return;
}
acpi_resource_cleanup(&res);
data = acpi_compatible_lookup(aa, compat_data)->data;
sc->sc_dev = self;
sc->sc_dmat = &arm_generic_dma_tag;
mutex_init(&sc->sc_ready_lock, MUTEX_DEFAULT, IPL_VM);
cv_init(&sc->sc_ready_cv, "qcpasrdy");
sc->sc_fwname = data->fwname;
sc->sc_dtb_fwname = data->dtb_fwname;
sc->sc_pas_id = data->pas_id;
sc->sc_dtb_pas_id = data->dtb_pas_id;
sc->sc_lite_pas_id = data->lite_pas_id;
sc->sc_load_state = data->load_state;
sc->sc_glink_remote_pid = data->glink_remote_pid;
sc->sc_crash_reason = data->crash_reason;
for (i = 0; i < __arraycount(sc->sc_mem_phys); i++) {
sc->sc_mem_phys[i] = data->mem_region[i].start;
KASSERT((sc->sc_mem_phys[i] & PAGE_MASK) == 0);
sc->sc_mem_size[i] = data->mem_region[i].size;
KASSERT((sc->sc_mem_size[i] & PAGE_MASK) == 0);
}
rv = acpi_eval_string(aa->aa_node->ad_handle, "_SUB", &sc->sc_sub);
if (ACPI_FAILURE(rv)) {
aprint_error_dev(self, "failed to evaluate _SUB: %s\n",
AcpiFormatException(rv));
return;
}
aprint_verbose_dev(self, "subsystem ID %s\n", sc->sc_sub);
sc->sc_ih[0] = acpi_intr_establish(self,
(uint64_t)(uintptr_t)aa->aa_node->ad_handle,
IPL_VM, false, qcpas_intr_wdog, sc, device_xname(self));
sc->sc_ih[1] =
qcsmptp_intr_establish(0, qcpas_intr_fatal, sc);
sc->sc_ih[2] =
qcsmptp_intr_establish(1, qcpas_intr_ready, sc);
sc->sc_ih[3] =
qcsmptp_intr_establish(2, qcpas_intr_handover, sc);
sc->sc_ih[4] =
qcsmptp_intr_establish(3, qcpas_intr_stop_ack, sc);
if (qcpas_map_memory(sc) != 0)
return;
config_mountroot(self, qcpas_mountroot);
}
static void
qcpas_firmload(void *arg)
{
struct qcpas_softc *sc = arg;
firmware_handle_t fwh = NULL, dtb_fwh = NULL;
char fwname[128];
size_t fwlen = 0, dtb_fwlen = 0;
u_char *fw = NULL, *dtb_fw = NULL;
int ret, error;
snprintf(fwname, sizeof(fwname), "%s/%s", sc->sc_sub, sc->sc_fwname);
error = firmware_open(DRIVER_NAME, fwname, &fwh);
if (error == 0) {
fwlen = firmware_get_size(fwh);
fw = fwlen ? firmware_malloc(fwlen) : NULL;
error = fw == NULL ? ENOMEM :
firmware_read(fwh, 0, fw, fwlen);
}
if (error) {
device_printf(sc->sc_dev, "failed to load %s/%s: %d\n",
DRIVER_NAME, fwname, error);
goto cleanup;
}
aprint_normal_dev(sc->sc_dev, "loading %s/%s\n", DRIVER_NAME, fwname);
if (sc->sc_lite_pas_id) {
if (qcscm_pas_shutdown(sc->sc_lite_pas_id)) {
device_printf(sc->sc_dev,
"failed to shutdown lite firmware\n");
}
}
if (sc->sc_dtb_pas_id) {
snprintf(fwname, sizeof(fwname), "%s/%s", sc->sc_sub,
sc->sc_dtb_fwname);
error = firmware_open(DRIVER_NAME, fwname, &dtb_fwh);
if (error == 0) {
dtb_fwlen = firmware_get_size(dtb_fwh);
dtb_fw = dtb_fwlen ? firmware_malloc(dtb_fwlen) : NULL;
error = dtb_fw == NULL ? ENOMEM :
firmware_read(dtb_fwh, 0, dtb_fw, dtb_fwlen);
}
if (error) {
device_printf(sc->sc_dev, "failed to load %s/%s: %d\n",
DRIVER_NAME, fwname, error);
goto cleanup;
}
aprint_normal_dev(sc->sc_dev, "loading %s/%s\n", DRIVER_NAME, fwname);
}
if (sc->sc_load_state) {
char buf[64];
snprintf(buf, sizeof(buf),
"{class: image, res: load_state, name: %s, val: on}",
sc->sc_load_state);
ret = qcaoss_send(buf, sizeof(buf));
if (ret != 0) {
device_printf(sc->sc_dev, "failed to toggle load state\n");
goto cleanup;
}
}
if (sc->sc_dtb_pas_id) {
qcpas_mdt_init(sc, sc->sc_dtb_pas_id, dtb_fw, dtb_fwlen);
}
ret = qcpas_mdt_init(sc, sc->sc_pas_id, fw, fwlen);
if (ret != 0) {
device_printf(sc->sc_dev, "failed to boot coprocessor\n");
goto cleanup;
}
qcpas_glink_attach(sc);
/* Battery sensors */
sc->sc_sme = sysmon_envsys_create();
sc->sc_sme->sme_name = "battery";
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_flags = SME_DISABLE_REFRESH;
sc->sc_sme->sme_class = SME_CLASS_BATTERY;
sc->sc_sme->sme_get_limits = qcpas_get_limits;
/* AC adapter sensors */
sc->sc_sme_acadapter = sysmon_envsys_create();
sc->sc_sme_acadapter->sme_name = "charger";
sc->sc_sme_acadapter->sme_cookie = sc;
sc->sc_sme_acadapter->sme_flags = SME_DISABLE_REFRESH;
sc->sc_sme_acadapter->sme_class = SME_CLASS_ACADAPTER;
#define INIT_SENSOR(sme, idx, unit, str) \
do { \
strlcpy(sc->sc_sens[idx].desc, str, \
sizeof(sc->sc_sens[0].desc)); \
sc->sc_sens[idx].units = unit; \
sc->sc_sens[idx].state = ENVSYS_SINVALID; \
sysmon_envsys_sensor_attach(sme, \
&sc->sc_sens[idx]); \
} while (0)
INIT_SENSOR(sc->sc_sme, QCPAS_DVOLTAGE, ENVSYS_SVOLTS_DC, "design voltage");
INIT_SENSOR(sc->sc_sme, QCPAS_VOLTAGE, ENVSYS_SVOLTS_DC, "voltage");
INIT_SENSOR(sc->sc_sme, QCPAS_DCAPACITY, ENVSYS_SWATTHOUR, "design cap");
INIT_SENSOR(sc->sc_sme, QCPAS_LFCCAPACITY, ENVSYS_SWATTHOUR, "last full cap");
INIT_SENSOR(sc->sc_sme, QCPAS_CAPACITY, ENVSYS_SWATTHOUR, "charge");
INIT_SENSOR(sc->sc_sme, QCPAS_CHARGERATE, ENVSYS_SWATTS, "charge rate");
INIT_SENSOR(sc->sc_sme, QCPAS_DISCHARGERATE, ENVSYS_SWATTS, "discharge rate");
INIT_SENSOR(sc->sc_sme, QCPAS_CHARGING, ENVSYS_BATTERY_CHARGE, "charging");
INIT_SENSOR(sc->sc_sme, QCPAS_CHARGE_STATE, ENVSYS_BATTERY_CAPACITY, "charge state");
INIT_SENSOR(sc->sc_sme, QCPAS_DCYCLES, ENVSYS_INTEGER, "discharge cycles");
INIT_SENSOR(sc->sc_sme, QCPAS_TEMPERATURE, ENVSYS_STEMP, "temperature");
INIT_SENSOR(sc->sc_sme_acadapter, QCPAS_ACADAPTER, ENVSYS_INDICATOR, "connected");
#undef INIT_SENSOR
sc->sc_sens[QCPAS_CHARGE_STATE].value_cur =
ENVSYS_BATTERY_CAPACITY_NORMAL;
sc->sc_sens[QCPAS_CAPACITY].flags |=
ENVSYS_FPERCENT | ENVSYS_FVALID_MAX | ENVSYS_FMONLIMITS;
sc->sc_sens[QCPAS_CHARGE_STATE].flags |=
ENVSYS_FMONSTCHANGED;
sc->sc_sens[QCPAS_VOLTAGE].flags = ENVSYS_FMONNOTSUPP;
sc->sc_sens[QCPAS_CHARGERATE].flags = ENVSYS_FMONNOTSUPP;
sc->sc_sens[QCPAS_DISCHARGERATE].flags = ENVSYS_FMONNOTSUPP;
sc->sc_sens[QCPAS_DCAPACITY].flags = ENVSYS_FMONNOTSUPP;
sc->sc_sens[QCPAS_LFCCAPACITY].flags = ENVSYS_FMONNOTSUPP;
sc->sc_sens[QCPAS_DVOLTAGE].flags = ENVSYS_FMONNOTSUPP;
sc->sc_sens[QCPAS_CHARGERATE].flags |= ENVSYS_FHAS_ENTROPY;
sc->sc_sens[QCPAS_DISCHARGERATE].flags |= ENVSYS_FHAS_ENTROPY;
sysmon_envsys_register(sc->sc_sme);
sysmon_envsys_register(sc->sc_sme_acadapter);
sc->sc_smpsw_acadapter.smpsw_name = "acpiacad0";
sc->sc_smpsw_acadapter.smpsw_type = PSWITCH_TYPE_ACADAPTER;
sysmon_pswitch_register(&sc->sc_smpsw_acadapter);
cleanup:
if (dtb_fw != NULL) {
firmware_free(dtb_fw, dtb_fwlen);
}
if (fw != NULL) {
firmware_free(fw, fwlen);
}
if (dtb_fwh != NULL) {
firmware_close(dtb_fwh);
}
if (fwh != NULL) {
firmware_close(fwh);
}
}
static void
qcpas_mountroot(device_t self)
{
struct qcpas_softc *sc = device_private(self);
sysmon_task_queue_sched(0, qcpas_firmload, sc);
}
static int
qcpas_map_memory(struct qcpas_softc *sc)
{
int i;
for (i = 0; i < __arraycount(sc->sc_mem_phys); i++) {
paddr_t pa, epa;
vaddr_t va;
if (sc->sc_mem_size[i] == 0)
break;
va = uvm_km_alloc(kernel_map, sc->sc_mem_size[i], 0, UVM_KMF_VAONLY);
KASSERT(va != 0);
sc->sc_mem_region[i] = (void *)va;
for (pa = sc->sc_mem_phys[i], epa = sc->sc_mem_phys[i] + sc->sc_mem_size[i];
pa < epa;
pa += PAGE_SIZE, va += PAGE_SIZE) {
pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE, PMAP_WRITE_COMBINE);
}
pmap_update(pmap_kernel());
}
return 0;
}
static int
qcpas_mdt_init(struct qcpas_softc *sc, int pas_id, u_char *fw, size_t fwlen)
{
Elf32_Ehdr *ehdr;
Elf32_Phdr *phdr;
paddr_t minpa = -1, maxpa = 0;
int i, hashseg = 0, relocate = 0;
uint8_t *metadata;
int error;
ssize_t off;
int idx;
if (pas_id == sc->sc_dtb_pas_id)
idx = 1;
else
idx = 0;
ehdr = (Elf32_Ehdr *)fw;
phdr = (Elf32_Phdr *)&ehdr[1];
if (ehdr->e_phnum < 2 || phdr[0].p_type == PT_LOAD)
return EINVAL;
for (i = 0; i < ehdr->e_phnum; i++) {
if ((phdr[i].p_flags & MDT_TYPE_MASK) == MDT_TYPE_HASH) {
if (i > 0 && !hashseg)
hashseg = i;
continue;
}
if (phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
continue;
if (phdr[i].p_flags & MDT_RELOCATABLE)
relocate = 1;
if (phdr[i].p_paddr < minpa)
minpa = phdr[i].p_paddr;
if (phdr[i].p_paddr + phdr[i].p_memsz > maxpa)
maxpa =
roundup(phdr[i].p_paddr + phdr[i].p_memsz,
PAGE_SIZE);
}
if (!hashseg)
return EINVAL;
if (sc->sc_metadata[idx] == NULL) {
sc->sc_metadata[idx] = qcpas_dmamem_alloc(sc, phdr[0].p_filesz +
phdr[hashseg].p_filesz, PAGE_SIZE);
if (sc->sc_metadata[idx] == NULL) {
return EINVAL;
}
}
metadata = QCPAS_DMA_KVA(sc->sc_metadata[idx]);
memcpy(metadata, fw, phdr[0].p_filesz);
if (phdr[0].p_filesz + phdr[hashseg].p_filesz == fwlen) {
memcpy(metadata + phdr[0].p_filesz,
fw + phdr[0].p_filesz, phdr[hashseg].p_filesz);
} else if (phdr[hashseg].p_offset + phdr[hashseg].p_filesz <= fwlen) {
memcpy(metadata + phdr[0].p_filesz,
fw + phdr[hashseg].p_offset, phdr[hashseg].p_filesz);
} else {
device_printf(sc->sc_dev, "metadata split segment not supported\n");
return EINVAL;
}
cpu_drain_writebuf();
error = qcscm_pas_init_image(pas_id,
QCPAS_DMA_DVA(sc->sc_metadata[idx]));
if (error != 0) {
device_printf(sc->sc_dev, "init image failed: %d\n", error);
qcpas_dmamem_free(sc, sc->sc_metadata[idx]);
return error;
}
if (relocate) {
if (qcscm_pas_mem_setup(pas_id,
sc->sc_mem_phys[idx], maxpa - minpa) != 0) {
device_printf(sc->sc_dev, "mem setup failed\n");
qcpas_dmamem_free(sc, sc->sc_metadata[idx]);
return EINVAL;
}
}
sc->sc_mem_reloc[idx] = relocate ? minpa : sc->sc_mem_phys[idx];
for (i = 0; i < ehdr->e_phnum; i++) {
if ((phdr[i].p_flags & MDT_TYPE_MASK) == MDT_TYPE_HASH ||
phdr[i].p_type != PT_LOAD || phdr[i].p_memsz == 0)
continue;
off = phdr[i].p_paddr - sc->sc_mem_reloc[idx];
if (off < 0 || off + phdr[i].p_memsz > sc->sc_mem_size[0])
return EINVAL;
if (phdr[i].p_filesz > phdr[i].p_memsz)
return EINVAL;
if (phdr[i].p_filesz && phdr[i].p_offset < fwlen &&
phdr[i].p_offset + phdr[i].p_filesz <= fwlen) {
memcpy(sc->sc_mem_region[idx] + off,
fw + phdr[i].p_offset, phdr[i].p_filesz);
} else if (phdr[i].p_filesz) {
device_printf(sc->sc_dev, "firmware split segment not supported\n");
return EINVAL;
}
if (phdr[i].p_memsz > phdr[i].p_filesz)
memset(sc->sc_mem_region[idx] + off + phdr[i].p_filesz,
0, phdr[i].p_memsz - phdr[i].p_filesz);
}
cpu_drain_writebuf();
if (qcscm_pas_auth_and_reset(pas_id) != 0) {
device_printf(sc->sc_dev, "auth and reset failed\n");
qcpas_dmamem_free(sc, sc->sc_metadata[idx]);
return EINVAL;
}
if (pas_id == sc->sc_dtb_pas_id)
return 0;
mutex_enter(&sc->sc_ready_lock);
while (!sc->sc_ready) {
error = cv_timedwait(&sc->sc_ready_cv, &sc->sc_ready_lock,
hz * 5);
if (error == EWOULDBLOCK) {
break;
}
}
mutex_exit(&sc->sc_ready_lock);
if (!sc->sc_ready) {
device_printf(sc->sc_dev, "timeout waiting for ready signal\n");
return ETIMEDOUT;
}
/* XXX: free metadata ? */
return 0;
}
static struct qcpas_dmamem *
qcpas_dmamem_alloc(struct qcpas_softc *sc, bus_size_t size, bus_size_t align)
{
struct qcpas_dmamem *tdm;
int nsegs;
tdm = kmem_zalloc(sizeof(*tdm), KM_SLEEP);
tdm->tdm_size = size;
if (bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW, &tdm->tdm_map) != 0)
goto tdmfree;
if (bus_dmamem_alloc(sc->sc_dmat, size, align, 0,
&tdm->tdm_seg, 1, &nsegs, BUS_DMA_WAITOK) != 0)
goto destroy;
if (bus_dmamem_map(sc->sc_dmat, &tdm->tdm_seg, nsegs, size,
&tdm->tdm_kva, BUS_DMA_WAITOK | BUS_DMA_PREFETCHABLE) != 0)
goto free;
if (bus_dmamap_load(sc->sc_dmat, tdm->tdm_map, tdm->tdm_kva, size,
NULL, BUS_DMA_WAITOK) != 0)
goto unmap;
memset(tdm->tdm_kva, 0, size);
return (tdm);
unmap:
bus_dmamem_unmap(sc->sc_dmat, tdm->tdm_kva, size);
free:
bus_dmamem_free(sc->sc_dmat, &tdm->tdm_seg, 1);
destroy:
bus_dmamap_destroy(sc->sc_dmat, tdm->tdm_map);
tdmfree:
kmem_free(tdm, sizeof(*tdm));
return (NULL);
}
static void
qcpas_dmamem_free(struct qcpas_softc *sc, struct qcpas_dmamem *tdm)
{
bus_dmamem_unmap(sc->sc_dmat, tdm->tdm_kva, tdm->tdm_size);
bus_dmamem_free(sc->sc_dmat, &tdm->tdm_seg, 1);
bus_dmamap_destroy(sc->sc_dmat, tdm->tdm_map);
kmem_free(tdm, sizeof(*tdm));
}
static void
qcpas_report_crash(struct qcpas_softc *sc, const char *source)
{
char *msg;
int size;
msg = qcsmem_get(-1, sc->sc_crash_reason, &size);
if (msg == NULL || size <= 0) {
device_printf(sc->sc_dev, "%s\n", source);
} else {
device_printf(sc->sc_dev, "%s: \"%s\"\n", source, msg);
}
}
static int
qcpas_intr_wdog(void *cookie)
{
struct qcpas_softc *sc = cookie;
qcpas_report_crash(sc, "watchdog");
return 0;
}
static int
qcpas_intr_fatal(void *cookie)
{
struct qcpas_softc *sc = cookie;
qcpas_report_crash(sc, "fatal error");
return 0;
}
static int
qcpas_intr_ready(void *cookie)
{
struct qcpas_softc *sc = cookie;
aprint_debug_dev(sc->sc_dev, "%s\n", __func__);
mutex_enter(&sc->sc_ready_lock);
sc->sc_ready = true;
cv_broadcast(&sc->sc_ready_cv);
mutex_exit(&sc->sc_ready_lock);
return 0;
}
static int
qcpas_intr_handover(void *cookie)
{
struct qcpas_softc *sc = cookie;
aprint_debug_dev(sc->sc_dev, "%s\n", __func__);
return 0;
}
static int
qcpas_intr_stop_ack(void *cookie)
{
struct qcpas_softc *sc = cookie;
aprint_debug_dev(sc->sc_dev, "%s\n", __func__);
return 0;
}
/* GLINK */
#define SMEM_GLINK_NATIVE_XPRT_DESCRIPTOR 478
#define SMEM_GLINK_NATIVE_XPRT_FIFO_0 479
#define SMEM_GLINK_NATIVE_XPRT_FIFO_1 480
struct glink_msg {
uint16_t cmd;
uint16_t param1;
uint32_t param2;
uint8_t data[];
} __packed;
struct qcpas_glink_intent_pair {
uint32_t size;
uint32_t iid;
} __packed;
struct qcpas_glink_intent {
TAILQ_ENTRY(qcpas_glink_intent) it_q;
uint32_t it_id;
uint32_t it_size;
int it_inuse;
};
struct qcpas_glink_channel {
TAILQ_ENTRY(qcpas_glink_channel) ch_q;
struct qcpas_softc *ch_sc;
struct qcpas_glink_protocol *ch_proto;
uint32_t ch_rcid;
uint32_t ch_lcid;
uint32_t ch_max_intent;
TAILQ_HEAD(,qcpas_glink_intent) ch_l_intents;
TAILQ_HEAD(,qcpas_glink_intent) ch_r_intents;
};
#define GLINK_CMD_VERSION 0
#define GLINK_CMD_VERSION_ACK 1
#define GLINK_VERSION 1
#define GLINK_FEATURE_INTENT_REUSE (1 << 0)
#define GLINK_CMD_OPEN 2
#define GLINK_CMD_CLOSE 3
#define GLINK_CMD_OPEN_ACK 4
#define GLINK_CMD_INTENT 5
#define GLINK_CMD_RX_DONE 6
#define GLINK_CMD_RX_INTENT_REQ 7
#define GLINK_CMD_RX_INTENT_REQ_ACK 8
#define GLINK_CMD_TX_DATA 9
#define GLINK_CMD_CLOSE_ACK 11
#define GLINK_CMD_TX_DATA_CONT 12
#define GLINK_CMD_READ_NOTIF 13
#define GLINK_CMD_RX_DONE_W_REUSE 14
static int qcpas_glink_intr(void *);
static void qcpas_glink_tx(struct qcpas_softc *, uint8_t *, int);
static void qcpas_glink_tx_commit(struct qcpas_softc *);
static void qcpas_glink_rx(struct qcpas_softc *, uint8_t *, int);
static void qcpas_glink_rx_commit(struct qcpas_softc *);
static void qcpas_glink_send(void *, void *, int);
static int qcpas_pmic_rtr_init(void *);
static int qcpas_pmic_rtr_recv(void *, uint8_t *, int);
struct qcpas_glink_protocol {
const char *name;
int (*init)(void *cookie);
int (*recv)(void *cookie, uint8_t *buf, int len);
} qcpas_glink_protocols[] = {
{ "PMIC_RTR_ADSP_APPS", qcpas_pmic_rtr_init , qcpas_pmic_rtr_recv },
};
static void
qcpas_glink_attach(struct qcpas_softc *sc)
{
uint32_t remote = sc->sc_glink_remote_pid;
uint32_t *descs;
int size;
if (qcsmem_alloc(remote, SMEM_GLINK_NATIVE_XPRT_DESCRIPTOR, 32) != 0 ||
qcsmem_alloc(remote, SMEM_GLINK_NATIVE_XPRT_FIFO_0, 16384) != 0)
return;
descs = qcsmem_get(remote, SMEM_GLINK_NATIVE_XPRT_DESCRIPTOR, &size);
if (descs == NULL || size != 32)
return;
sc->sc_tx_tail = &descs[0];
sc->sc_tx_head = &descs[1];
sc->sc_rx_tail = &descs[2];
sc->sc_rx_head = &descs[3];
sc->sc_tx_fifo = qcsmem_get(remote, SMEM_GLINK_NATIVE_XPRT_FIFO_0,
&sc->sc_tx_fifolen);
if (sc->sc_tx_fifo == NULL)
return;
sc->sc_rx_fifo = qcsmem_get(remote, SMEM_GLINK_NATIVE_XPRT_FIFO_1,
&sc->sc_rx_fifolen);
if (sc->sc_rx_fifo == NULL)
return;
sc->sc_ipcc = qcipcc_channel(IPCC_CLIENT_LPASS,
IPCC_MPROC_SIGNAL_GLINK_QMP);
if (sc->sc_ipcc == NULL)
return;
TAILQ_INIT(&sc->sc_glink_channels);
sc->sc_glink_ih = qcipcc_intr_establish(IPCC_CLIENT_LPASS,
IPCC_MPROC_SIGNAL_GLINK_QMP, IPL_VM, qcpas_glink_intr, sc);
if (sc->sc_glink_ih == NULL)
return;
/* Expect peer to send initial message */
}
static void
qcpas_glink_rx(struct qcpas_softc *sc, uint8_t *buf, int len)
{
uint32_t head, tail;
int avail;
head = *sc->sc_rx_head;
tail = *sc->sc_rx_tail + sc->sc_rx_off;
if (tail >= sc->sc_rx_fifolen)
tail -= sc->sc_rx_fifolen;
/* Checked by caller */
KASSERT(head != tail);
if (head >= tail)
avail = head - tail;
else
avail = (sc->sc_rx_fifolen - tail) + head;
/* Dumb, but should do. */
KASSERT(avail >= len);
while (len > 0) {
*buf = sc->sc_rx_fifo[tail];
tail++;
if (tail >= sc->sc_rx_fifolen)
tail -= sc->sc_rx_fifolen;
buf++;
sc->sc_rx_off++;
len--;
}
}
static void
qcpas_glink_rx_commit(struct qcpas_softc *sc)
{
uint32_t tail;
tail = *sc->sc_rx_tail + roundup(sc->sc_rx_off, 8);
if (tail >= sc->sc_rx_fifolen)
tail -= sc->sc_rx_fifolen;
membar_producer();
*sc->sc_rx_tail = tail;
sc->sc_rx_off = 0;
}
static void
qcpas_glink_tx(struct qcpas_softc *sc, uint8_t *buf, int len)
{
uint32_t head, tail;
int avail;
head = *sc->sc_tx_head + sc->sc_tx_off;
if (head >= sc->sc_tx_fifolen)
head -= sc->sc_tx_fifolen;
tail = *sc->sc_tx_tail;
if (head < tail)
avail = tail - head;
else
avail = (sc->sc_rx_fifolen - head) + tail;
/* Dumb, but should do. */
KASSERT(avail >= len);
while (len > 0) {
sc->sc_tx_fifo[head] = *buf;
head++;
if (head >= sc->sc_tx_fifolen)
head -= sc->sc_tx_fifolen;
buf++;
sc->sc_tx_off++;
len--;
}
}
static void
qcpas_glink_tx_commit(struct qcpas_softc *sc)
{
uint32_t head;
head = *sc->sc_tx_head + roundup(sc->sc_tx_off, 8);
if (head >= sc->sc_tx_fifolen)
head -= sc->sc_tx_fifolen;
membar_producer();
*sc->sc_tx_head = head;
sc->sc_tx_off = 0;
qcipcc_send(sc->sc_ipcc);
}
static void
qcpas_glink_send(void *cookie, void *buf, int len)
{
struct qcpas_glink_channel *ch = cookie;
struct qcpas_softc *sc = ch->ch_sc;
struct qcpas_glink_intent *it;
struct glink_msg msg;
uint32_t chunk_size, left_size;
TAILQ_FOREACH(it, &ch->ch_r_intents, it_q) {
if (!it->it_inuse)
break;
if (it->it_size < len)
continue;
}
if (it == NULL) {
device_printf(sc->sc_dev, "all intents in use\n");
return;
}
it->it_inuse = 1;
msg.cmd = GLINK_CMD_TX_DATA;
msg.param1 = ch->ch_lcid;
msg.param2 = it->it_id;
chunk_size = len;
left_size = 0;
qcpas_glink_tx(sc, (char *)&msg, sizeof(msg));
qcpas_glink_tx(sc, (char *)&chunk_size, sizeof(chunk_size));
qcpas_glink_tx(sc, (char *)&left_size, sizeof(left_size));
qcpas_glink_tx(sc, buf, len);
qcpas_glink_tx_commit(sc);
}
static void
qcpas_glink_recv_version(struct qcpas_softc *sc, uint32_t ver,
uint32_t features)
{
struct glink_msg msg;
if (ver != GLINK_VERSION) {
device_printf(sc->sc_dev,
"unsupported glink version %u\n", ver);
return;
}
msg.cmd = GLINK_CMD_VERSION_ACK;
msg.param1 = GLINK_VERSION;
msg.param2 = features & GLINK_FEATURE_INTENT_REUSE;
qcpas_glink_tx(sc, (char *)&msg, sizeof(msg));
qcpas_glink_tx_commit(sc);
}
static void
qcpas_glink_recv_open(struct qcpas_softc *sc, uint32_t rcid, uint32_t namelen)
{
struct qcpas_glink_protocol *proto = NULL;
struct qcpas_glink_channel *ch;
struct glink_msg msg;
char *name;
int i, err;
name = kmem_zalloc(namelen, KM_SLEEP);
qcpas_glink_rx(sc, name, namelen);
qcpas_glink_rx_commit(sc);
TAILQ_FOREACH(ch, &sc->sc_glink_channels, ch_q) {
if (ch->ch_rcid == rcid) {
device_printf(sc->sc_dev, "duplicate open for %s\n",
name);
kmem_free(name, namelen);
return;
}
}
for (i = 0; i < __arraycount(qcpas_glink_protocols); i++) {
if (strcmp(qcpas_glink_protocols[i].name, name) != 0)
continue;
proto = &qcpas_glink_protocols[i];
break;
}
if (proto == NULL) {
kmem_free(name, namelen);
return;
}
ch = kmem_zalloc(sizeof(*ch), KM_SLEEP);
ch->ch_sc = sc;
ch->ch_proto = proto;
ch->ch_rcid = rcid;
ch->ch_lcid = ++sc->sc_glink_max_channel;
TAILQ_INIT(&ch->ch_l_intents);
TAILQ_INIT(&ch->ch_r_intents);
TAILQ_INSERT_TAIL(&sc->sc_glink_channels, ch, ch_q);
/* Assume we can leave HW dangling if proto init fails */
err = proto->init(ch);
if (err) {
TAILQ_REMOVE(&sc->sc_glink_channels, ch, ch_q);
kmem_free(ch, sizeof(*ch));
kmem_free(name, namelen);
return;
}
msg.cmd = GLINK_CMD_OPEN_ACK;
msg.param1 = ch->ch_rcid;
msg.param2 = 0;
qcpas_glink_tx(sc, (char *)&msg, sizeof(msg));
qcpas_glink_tx_commit(sc);
msg.cmd = GLINK_CMD_OPEN;
msg.param1 = ch->ch_lcid;
msg.param2 = strlen(name) + 1;
qcpas_glink_tx(sc, (char *)&msg, sizeof(msg));
qcpas_glink_tx(sc, name, strlen(name) + 1);
qcpas_glink_tx_commit(sc);
kmem_free(name, namelen);
}
static void
qcpas_glink_recv_open_ack(struct qcpas_softc *sc, uint32_t lcid)
{
struct qcpas_glink_channel *ch;
struct glink_msg msg;
struct qcpas_glink_intent_pair intent;
int i;
TAILQ_FOREACH(ch, &sc->sc_glink_channels, ch_q) {
if (ch->ch_lcid == lcid)
break;
}
if (ch == NULL) {
device_printf(sc->sc_dev, "unknown channel %u for OPEN_ACK\n",
lcid);
return;
}
/* Respond with default intent now that channel is open */
for (i = 0; i < 5; i++) {
struct qcpas_glink_intent *it;
it = kmem_zalloc(sizeof(*it), KM_SLEEP);
it->it_id = ++ch->ch_max_intent;
it->it_size = 1024;
TAILQ_INSERT_TAIL(&ch->ch_l_intents, it, it_q);
msg.cmd = GLINK_CMD_INTENT;
msg.param1 = ch->ch_lcid;
msg.param2 = 1;
intent.size = it->it_size;
intent.iid = it->it_id;
}
qcpas_glink_tx(sc, (char *)&msg, sizeof(msg));
qcpas_glink_tx(sc, (char *)&intent, sizeof(intent));
qcpas_glink_tx_commit(sc);
}
static void
qcpas_glink_recv_intent(struct qcpas_softc *sc, uint32_t rcid, uint32_t count)
{
struct qcpas_glink_intent_pair *intents;
struct qcpas_glink_channel *ch;
struct qcpas_glink_intent *it;
int i;
intents = kmem_zalloc(sizeof(*intents) * count, KM_SLEEP);
qcpas_glink_rx(sc, (char *)intents, sizeof(*intents) * count);
qcpas_glink_rx_commit(sc);
TAILQ_FOREACH(ch, &sc->sc_glink_channels, ch_q) {
if (ch->ch_rcid == rcid)
break;
}
if (ch == NULL) {
device_printf(sc->sc_dev, "unknown channel %u for INTENT\n",
rcid);
kmem_free(intents, sizeof(*intents) * count);
return;
}
for (i = 0; i < count; i++) {
it = kmem_zalloc(sizeof(*it), KM_SLEEP);
it->it_id = intents[i].iid;
it->it_size = intents[i].size;
TAILQ_INSERT_TAIL(&ch->ch_r_intents, it, it_q);
}
kmem_free(intents, sizeof(*intents) * count);
}
static void
qcpas_glink_recv_tx_data(struct qcpas_softc *sc, uint32_t rcid, uint32_t liid)
{
struct qcpas_glink_channel *ch;
struct qcpas_glink_intent *it;
struct glink_msg msg;
uint32_t chunk_size, left_size;
char *buf;
qcpas_glink_rx(sc, (char *)&chunk_size, sizeof(chunk_size));
qcpas_glink_rx(sc, (char *)&left_size, sizeof(left_size));
qcpas_glink_rx_commit(sc);
buf = kmem_zalloc(chunk_size, KM_SLEEP);
qcpas_glink_rx(sc, buf, chunk_size);
qcpas_glink_rx_commit(sc);
TAILQ_FOREACH(ch, &sc->sc_glink_channels, ch_q) {
if (ch->ch_rcid == rcid)
break;
}
if (ch == NULL) {
device_printf(sc->sc_dev, "unknown channel %u for TX_DATA\n",
rcid);
kmem_free(buf, chunk_size);
return;
}
TAILQ_FOREACH(it, &ch->ch_l_intents, it_q) {
if (it->it_id == liid)
break;
}
if (it == NULL) {
device_printf(sc->sc_dev, "unknown intent %u for TX_DATA\n",
liid);
kmem_free(buf, chunk_size);
return;
}
/* FIXME: handle message chunking */
KASSERT(left_size == 0);
ch->ch_proto->recv(ch, buf, chunk_size);
kmem_free(buf, chunk_size);
if (!left_size) {
msg.cmd = GLINK_CMD_RX_DONE_W_REUSE;
msg.param1 = ch->ch_lcid;
msg.param2 = it->it_id;
qcpas_glink_tx(sc, (char *)&msg, sizeof(msg));
qcpas_glink_tx_commit(sc);
}
}
static void
qcpas_glink_recv_rx_done(struct qcpas_softc *sc, uint32_t rcid, uint32_t riid,
int reuse)
{
struct qcpas_glink_channel *ch;
struct qcpas_glink_intent *it;
TAILQ_FOREACH(ch, &sc->sc_glink_channels, ch_q) {
if (ch->ch_rcid == rcid)
break;
}
if (ch == NULL) {
device_printf(sc->sc_dev, "unknown channel %u for RX_DONE\n",
rcid);
return;
}
TAILQ_FOREACH(it, &ch->ch_r_intents, it_q) {
if (it->it_id == riid)
break;
}
if (it == NULL) {
device_printf(sc->sc_dev, "unknown intent %u for RX_DONE\n",
riid);
return;
}
/* FIXME: handle non-reuse */
KASSERT(reuse);
KASSERT(it->it_inuse);
it->it_inuse = 0;
}
static void
qcpas_glink_recv(void *arg)
{
struct qcpas_softc *sc = arg;
struct glink_msg msg;
while (*sc->sc_rx_tail != *sc->sc_rx_head) {
membar_consumer();
qcpas_glink_rx(sc, (uint8_t *)&msg, sizeof(msg));
qcpas_glink_rx_commit(sc);
switch (msg.cmd) {
case GLINK_CMD_VERSION:
qcpas_glink_recv_version(sc, msg.param1, msg.param2);
break;
case GLINK_CMD_OPEN:
qcpas_glink_recv_open(sc, msg.param1, msg.param2);
break;
case GLINK_CMD_OPEN_ACK:
qcpas_glink_recv_open_ack(sc, msg.param1);
break;
case GLINK_CMD_INTENT:
qcpas_glink_recv_intent(sc, msg.param1, msg.param2);
break;
case GLINK_CMD_RX_INTENT_REQ:
/* Nothing to do so far */
break;
case GLINK_CMD_TX_DATA:
qcpas_glink_recv_tx_data(sc, msg.param1, msg.param2);
break;
case GLINK_CMD_RX_DONE:
qcpas_glink_recv_rx_done(sc, msg.param1, msg.param2, 0);
break;
case GLINK_CMD_RX_DONE_W_REUSE:
qcpas_glink_recv_rx_done(sc, msg.param1, msg.param2, 1);
break;
default:
device_printf(sc->sc_dev, "unknown cmd %u\n", msg.cmd);
return;
}
}
}
static int
qcpas_glink_intr(void *cookie)
{
struct qcpas_softc *sc = cookie;
sysmon_task_queue_sched(0, qcpas_glink_recv, sc);
return 1;
}
/* GLINK PMIC Router */
struct pmic_glink_hdr {
uint32_t owner;
#define PMIC_GLINK_OWNER_BATTMGR 32778
#define PMIC_GLINK_OWNER_USBC 32779
#define PMIC_GLINK_OWNER_USBC_PAN 32780
uint32_t type;
#define PMIC_GLINK_TYPE_REQ_RESP 1
#define PMIC_GLINK_TYPE_NOTIFY 2
uint32_t opcode;
};
#define BATTMGR_OPCODE_BAT_STATUS 0x1
#define BATTMGR_OPCODR_REQUEST_NOTIFICATION 0x4
#define BATTMGR_OPCODE_NOTIF 0x7
#define BATTMGR_OPCODE_BAT_INFO 0x9
#define BATTMGR_OPCODE_BAT_DISCHARGE_TIME 0xc
#define BATTMGR_OPCODE_BAT_CHARGE_TIME 0xd
#define BATTMGR_NOTIF_BAT_PROPERTY 0x30
#define BATTMGR_NOTIF_USB_PROPERTY 0x32
#define BATTMGR_NOTIF_WLS_PROPERTY 0x34
#define BATTMGR_NOTIF_BAT_STATUS 0x80
#define BATTMGR_NOTIF_BAT_INFO 0x81
#define BATTMGR_CHEMISTRY_LEN 4
#define BATTMGR_STRING_LEN 128
struct battmgr_bat_info {
uint32_t power_unit;
uint32_t design_capacity;
uint32_t last_full_capacity;
uint32_t battery_tech;
uint32_t design_voltage;
uint32_t capacity_low;
uint32_t capacity_warning;
uint32_t cycle_count;
uint32_t accuracy;
uint32_t max_sample_time_ms;
uint32_t min_sample_time_ms;
uint32_t max_average_interval_ms;
uint32_t min_average_interval_ms;
uint32_t capacity_granularity1;
uint32_t capacity_granularity2;
uint32_t swappable;
uint32_t capabilities;
char model_number[BATTMGR_STRING_LEN];
char serial_number[BATTMGR_STRING_LEN];
char battery_type[BATTMGR_STRING_LEN];
char oem_info[BATTMGR_STRING_LEN];
char battery_chemistry[BATTMGR_CHEMISTRY_LEN];
char uid[BATTMGR_STRING_LEN];
uint32_t critical_bias;
uint8_t day;
uint8_t month;
uint16_t year;
uint32_t battery_id;
};
struct battmgr_bat_status {
uint32_t battery_state;
#define BATTMGR_BAT_STATE_DISCHARGE (1 << 0)
#define BATTMGR_BAT_STATE_CHARGING (1 << 1)
#define BATTMGR_BAT_STATE_CRITICAL_LOW (1 << 2)
uint32_t capacity;
int32_t rate;
uint32_t battery_voltage;
uint32_t power_state;
#define BATTMGR_PWR_STATE_AC_ON (1 << 0)
uint32_t charging_source;
#define BATTMGR_CHARGING_SOURCE_AC 1
#define BATTMGR_CHARGING_SOURCE_USB 2
#define BATTMGR_CHARGING_SOURCE_WIRELESS 3
uint32_t temperature;
};
static void qcpas_pmic_rtr_refresh(void *);
static void qcpas_pmic_rtr_bat_info(struct qcpas_softc *,
struct battmgr_bat_info *);
static void qcpas_pmic_rtr_bat_status(struct qcpas_softc *,
struct battmgr_bat_status *);
static void
qcpas_pmic_rtr_battmgr_req_info(void *cookie)
{
struct {
struct pmic_glink_hdr hdr;
uint32_t battery_id;
} msg;
msg.hdr.owner = PMIC_GLINK_OWNER_BATTMGR;
msg.hdr.type = PMIC_GLINK_TYPE_REQ_RESP;
msg.hdr.opcode = BATTMGR_OPCODE_BAT_INFO;
msg.battery_id = 0;
qcpas_glink_send(cookie, &msg, sizeof(msg));
}
static void
qcpas_pmic_rtr_battmgr_req_status(void *cookie)
{
struct {
struct pmic_glink_hdr hdr;
uint32_t battery_id;
} msg;
msg.hdr.owner = PMIC_GLINK_OWNER_BATTMGR;
msg.hdr.type = PMIC_GLINK_TYPE_REQ_RESP;
msg.hdr.opcode = BATTMGR_OPCODE_BAT_STATUS;
msg.battery_id = 0;
qcpas_glink_send(cookie, &msg, sizeof(msg));
}
static int
qcpas_pmic_rtr_init(void *cookie)
{
struct qcpas_glink_channel *ch = cookie;
struct qcpas_softc *sc = ch->ch_sc;
callout_init(&sc->sc_rtr_refresh, 0);
callout_setfunc(&sc->sc_rtr_refresh, qcpas_pmic_rtr_refresh, ch);
callout_schedule(&sc->sc_rtr_refresh, hz * 5);
return 0;
}
static int
qcpas_pmic_rtr_recv(void *cookie, uint8_t *buf, int len)
{
struct qcpas_glink_channel *ch = cookie;
struct qcpas_softc *sc = ch->ch_sc;
struct pmic_glink_hdr hdr;
uint32_t notification;
if (len < sizeof(hdr)) {
device_printf(sc->sc_dev, "pmic glink message too small\n");
return 0;
}
memcpy(&hdr, buf, sizeof(hdr));
switch (hdr.owner) {
case PMIC_GLINK_OWNER_BATTMGR:
switch (hdr.opcode) {
case BATTMGR_OPCODE_NOTIF:
if (len - sizeof(hdr) != sizeof(uint32_t)) {
device_printf(sc->sc_dev,
"invalid battgmr notification\n");
return 0;
}
memcpy(¬ification, buf + sizeof(hdr),
sizeof(uint32_t));
switch (notification) {
case BATTMGR_NOTIF_BAT_INFO:
qcpas_pmic_rtr_battmgr_req_info(cookie);
/* FALLTHROUGH */
case BATTMGR_NOTIF_BAT_STATUS:
case BATTMGR_NOTIF_BAT_PROPERTY:
qcpas_pmic_rtr_battmgr_req_status(cookie);
break;
default:
aprint_debug_dev(sc->sc_dev,
"unknown battmgr notification 0x%02x\n",
notification);
break;
}
break;
case BATTMGR_OPCODE_BAT_INFO: {
struct battmgr_bat_info *bat;
if (len - sizeof(hdr) < sizeof(*bat)) {
device_printf(sc->sc_dev,
"invalid battgmr bat info\n");
return 0;
}
bat = kmem_alloc(sizeof(*bat), KM_SLEEP);
memcpy(bat, buf + sizeof(hdr), sizeof(*bat));
qcpas_pmic_rtr_bat_info(sc, bat);
kmem_free(bat, sizeof(*bat));
break;
}
case BATTMGR_OPCODE_BAT_STATUS: {
struct battmgr_bat_status *bat;
if (len - sizeof(hdr) != sizeof(*bat)) {
device_printf(sc->sc_dev,
"invalid battgmr bat status\n");
return 0;
}
bat = kmem_alloc(sizeof(*bat), KM_SLEEP);
memcpy(bat, buf + sizeof(hdr), sizeof(*bat));
qcpas_pmic_rtr_bat_status(sc, bat);
kmem_free(bat, sizeof(*bat));
break;
}
default:
device_printf(sc->sc_dev,
"unknown battmgr opcode 0x%02x\n",
hdr.opcode);
break;
}
break;
default:
device_printf(sc->sc_dev,
"unknown pmic glink owner 0x%04x\n",
hdr.owner);
break;
}
return 0;
}
static void
qcpas_pmic_rtr_refresh(void *arg)
{
struct qcpas_glink_channel *ch = arg;
struct qcpas_softc *sc = ch->ch_sc;
qcpas_pmic_rtr_battmgr_req_status(ch);
callout_schedule(&sc->sc_rtr_refresh, hz * 5);
}
static void
qcpas_pmic_rtr_bat_info(struct qcpas_softc *sc, struct battmgr_bat_info *bat)
{
sc->sc_warning_capacity = bat->capacity_warning;
sc->sc_low_capacity = bat->capacity_low;
sc->sc_sens[QCPAS_DCAPACITY].value_cur =
bat->design_capacity * 1000;
sc->sc_sens[QCPAS_DCAPACITY].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_LFCCAPACITY].value_cur =
bat->last_full_capacity * 1000;
sc->sc_sens[QCPAS_LFCCAPACITY].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_DVOLTAGE].value_cur =
bat->design_voltage * 1000;
sc->sc_sens[QCPAS_DVOLTAGE].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_DCYCLES].value_cur =
bat->cycle_count;
sc->sc_sens[QCPAS_DCYCLES].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_CAPACITY].value_max =
bat->last_full_capacity * 1000;
sysmon_envsys_update_limits(sc->sc_sme,
&sc->sc_sens[QCPAS_CAPACITY]);
}
void
qcpas_pmic_rtr_bat_status(struct qcpas_softc *sc,
struct battmgr_bat_status *bat)
{
sc->sc_sens[QCPAS_CHARGING].value_cur =
(bat->battery_state & BATTMGR_BAT_STATE_CHARGING) != 0;
sc->sc_sens[QCPAS_CHARGING].state = ENVSYS_SVALID;
if ((bat->battery_state & BATTMGR_BAT_STATE_CHARGING) != 0) {
sc->sc_sens[QCPAS_CHARGERATE].value_cur =
abs(bat->rate) * 1000;
sc->sc_sens[QCPAS_CHARGERATE].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_DISCHARGERATE].state = ENVSYS_SINVALID;
} else if ((bat->battery_state & BATTMGR_BAT_STATE_DISCHARGE) != 0) {
sc->sc_sens[QCPAS_CHARGERATE].state = ENVSYS_SINVALID;
sc->sc_sens[QCPAS_DISCHARGERATE].value_cur =
abs(bat->rate) * 1000;
sc->sc_sens[QCPAS_DISCHARGERATE].state = ENVSYS_SVALID;
} else {
sc->sc_sens[QCPAS_DISCHARGERATE].state = ENVSYS_SINVALID;
sc->sc_sens[QCPAS_CHARGERATE].state = ENVSYS_SINVALID;
}
sc->sc_sens[QCPAS_VOLTAGE].value_cur =
bat->battery_voltage * 1000;
sc->sc_sens[QCPAS_VOLTAGE].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_TEMPERATURE].value_cur =
(bat->temperature * 10000) + 273150000;
sc->sc_sens[QCPAS_TEMPERATURE].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_CAPACITY].value_cur =
bat->capacity * 1000;
sc->sc_sens[QCPAS_CAPACITY].state = ENVSYS_SVALID;
sc->sc_sens[QCPAS_CHARGE_STATE].value_cur =
ENVSYS_BATTERY_CAPACITY_NORMAL;
sc->sc_sens[QCPAS_CHARGE_STATE].state = ENVSYS_SVALID;
if (bat->capacity < sc->sc_warning_capacity) {
sc->sc_sens[QCPAS_CAPACITY].state = ENVSYS_SWARNUNDER;
sc->sc_sens[QCPAS_CHARGE_STATE].value_cur =
ENVSYS_BATTERY_CAPACITY_WARNING;
}
if (bat->capacity < sc->sc_low_capacity) {
sc->sc_sens[QCPAS_CAPACITY].state = ENVSYS_SCRITUNDER;
sc->sc_sens[QCPAS_CHARGE_STATE].value_cur =
ENVSYS_BATTERY_CAPACITY_LOW;
}
if ((bat->battery_state & BATTMGR_BAT_STATE_CRITICAL_LOW) != 0) {
sc->sc_sens[QCPAS_CAPACITY].state = ENVSYS_SCRITICAL;
sc->sc_sens[QCPAS_CHARGE_STATE].value_cur =
ENVSYS_BATTERY_CAPACITY_CRITICAL;
}
if ((bat->power_state & BATTMGR_PWR_STATE_AC_ON) !=
(sc->sc_power_state & BATTMGR_PWR_STATE_AC_ON)) {
sysmon_pswitch_event(&sc->sc_smpsw_acadapter,
(bat->power_state & BATTMGR_PWR_STATE_AC_ON) != 0 ?
PSWITCH_EVENT_PRESSED : PSWITCH_EVENT_RELEASED);
aprint_debug_dev(sc->sc_dev, "AC adapter %sconnected\n",
(bat->power_state & BATTMGR_PWR_STATE_AC_ON) == 0 ?
"not " : "");
}
sc->sc_power_state = bat->power_state;
sc->sc_sens[QCPAS_ACADAPTER].value_cur =
(bat->power_state & BATTMGR_PWR_STATE_AC_ON) != 0;
sc->sc_sens[QCPAS_ACADAPTER].state = ENVSYS_SVALID;
}
static void
qcpas_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
sysmon_envsys_lim_t *limits, uint32_t *props)
{
struct qcpas_softc *sc = sme->sme_cookie;
if (edata->sensor != QCPAS_CAPACITY) {
return;
}
limits->sel_critmin = sc->sc_low_capacity * 1000;
limits->sel_warnmin = sc->sc_warning_capacity * 1000;
*props |= PROP_BATTCAP | PROP_BATTWARN | PROP_DRIVER_LIMITS;
}