/* $NetBSD: acpi_cpu_pstate.c,v 1.54 2020/12/07 10:57:41 jmcneill Exp $ */

/*-
* Copyright (c) 2010, 2011 Jukka Ruohonen <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu_pstate.c,v 1.54 2020/12/07 10:57:41 jmcneill Exp $");

#include <sys/param.h>
#include <sys/cpufreq.h>
#include <sys/cpu.h>
#include <sys/kmem.h>

#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>

#define _COMPONENT       ACPI_BUS_COMPONENT
ACPI_MODULE_NAME         ("acpi_cpu_pstate")

static ACPI_STATUS       acpicpu_pstate_pss(struct acpicpu_softc *);
static ACPI_STATUS       acpicpu_pstate_pss_add(struct acpicpu_pstate *,
                                               ACPI_OBJECT *);
static ACPI_STATUS       acpicpu_pstate_xpss(struct acpicpu_softc *);
static ACPI_STATUS       acpicpu_pstate_xpss_add(struct acpicpu_pstate *,
                                                ACPI_OBJECT *);
static ACPI_STATUS       acpicpu_pstate_pct(struct acpicpu_softc *);
static ACPI_STATUS       acpicpu_pstate_dep(struct acpicpu_softc *);
static int               acpicpu_pstate_max(struct acpicpu_softc *);
static int               acpicpu_pstate_min(struct acpicpu_softc *);
static void              acpicpu_pstate_change(struct acpicpu_softc *);
static void              acpicpu_pstate_reset(struct acpicpu_softc *);
static void              acpicpu_pstate_bios(void);

extern struct acpicpu_softc **acpicpu_sc;

void
acpicpu_pstate_attach(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);
       const char *str;
       ACPI_HANDLE tmp;
       ACPI_STATUS rv;

       rv = acpicpu_pstate_pss(sc);

       if (ACPI_FAILURE(rv)) {
               str = "_PSS";
               goto fail;
       }

       /*
        * Append additional information from the extended _PSS,
        * if available. Note that XPSS can not be used on Intel
        * systems that use either _PDC or _OSC. From the XPSS
        * method specification:
        *
        *   "The platform must not require the use of the
        *    optional _PDC or _OSC methods to coordinate
        *    between the operating system and firmware for
        *    the purposes of enabling specific processor
        *    power management features or implementations."
        */
       if (sc->sc_cap == 0) {

               rv = acpicpu_pstate_xpss(sc);

               if (ACPI_SUCCESS(rv))
                       sc->sc_flags |= ACPICPU_FLAG_P_XPSS;
       }

       rv = acpicpu_pstate_pct(sc);

       if (ACPI_FAILURE(rv)) {
               str = "_PCT";
               goto fail;
       }

       /*
        * The ACPI 3.0 and 4.0 specifications mandate three
        * objects for P-states: _PSS, _PCT, and _PPC. A less
        * strict wording is however used in the earlier 2.0
        * standard, and some systems conforming to ACPI 2.0
        * do not have _PPC, the method for dynamic maximum.
        */
       rv = AcpiGetHandle(sc->sc_node->ad_handle, "_PPC", &tmp);

       if (ACPI_FAILURE(rv))
               aprint_debug_dev(self, "_PPC missing\n");

       /*
        * Carry out MD initialization.
        */
       rv = acpicpu_md_pstate_init(sc);

       if (rv != 0) {
               rv = AE_SUPPORT;
               goto fail;
       }

       /*
        * Query the optional _PSD.
        */
       rv = acpicpu_pstate_dep(sc);

       if (ACPI_SUCCESS(rv))
               sc->sc_flags |= ACPICPU_FLAG_P_DEP;

       sc->sc_pstate_current = 0;
       sc->sc_flags |= ACPICPU_FLAG_P;

       acpicpu_pstate_bios();
       acpicpu_pstate_reset(sc);

       return;

fail:
       switch (rv) {

       case AE_NOT_FOUND:
               return;

       case AE_SUPPORT:
               aprint_verbose_dev(self, "P-states not supported\n");
               return;

       default:
               aprint_error_dev(self, "failed to evaluate "
                   "%s: %s\n", str, AcpiFormatException(rv));
       }
}

void
acpicpu_pstate_detach(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);
       size_t size;

       if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
               return;

       (void)acpicpu_md_pstate_stop();

       size = sc->sc_pstate_count * sizeof(*sc->sc_pstate);

       if (sc->sc_pstate != NULL)
               kmem_free(sc->sc_pstate, size);

       sc->sc_flags &= ~ACPICPU_FLAG_P;
}

void
acpicpu_pstate_start(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);

       if (acpicpu_md_pstate_start(sc) == 0)
               return;

       sc->sc_flags &= ~ACPICPU_FLAG_P;
       aprint_error_dev(self, "failed to start P-states\n");
}

void
acpicpu_pstate_suspend(void *aux)
{
       struct acpicpu_softc *sc;
       device_t self = aux;

       /*
        * Reset any dynamic limits.
        */
       sc = device_private(self);
       mutex_enter(&sc->sc_mtx);
       acpicpu_pstate_reset(sc);
       mutex_exit(&sc->sc_mtx);
}

void
acpicpu_pstate_resume(void *aux)
{
       /* Nothing. */
}

void
acpicpu_pstate_callback(void *aux)
{
       struct acpicpu_softc *sc;
       device_t self = aux;
       uint32_t freq;

       sc = device_private(self);
       mutex_enter(&sc->sc_mtx);
       acpicpu_pstate_change(sc);

       freq = sc->sc_pstate[sc->sc_pstate_max].ps_freq;

       if (sc->sc_pstate_saved == 0)
               sc->sc_pstate_saved = sc->sc_pstate_current;

       if (sc->sc_pstate_saved <= freq) {
               freq = sc->sc_pstate_saved;
               sc->sc_pstate_saved = 0;
       }

       mutex_exit(&sc->sc_mtx);
       cpufreq_set(sc->sc_ci, freq);
}

static ACPI_STATUS
acpicpu_pstate_pss(struct acpicpu_softc *sc)
{
       struct acpicpu_pstate *ps;
       ACPI_OBJECT *obj;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;
       uint32_t count;
       uint32_t i, j;

       rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSS", &buf);

       if (ACPI_FAILURE(rv))
               return rv;

       obj = buf.Pointer;

       if (obj->Type != ACPI_TYPE_PACKAGE) {
               rv = AE_TYPE;
               goto out;
       }

       sc->sc_pstate_count = obj->Package.Count;

       if (sc->sc_pstate_count == 0) {
               rv = AE_NOT_EXIST;
               goto out;
       }

       if (sc->sc_pstate_count > ACPICPU_P_STATE_MAX) {
               rv = AE_LIMIT;
               goto out;
       }

       sc->sc_pstate = kmem_zalloc(sc->sc_pstate_count *
           sizeof(struct acpicpu_pstate), KM_SLEEP);

       if (sc->sc_pstate == NULL) {
               rv = AE_NO_MEMORY;
               goto out;
       }

       for (count = i = 0; i < sc->sc_pstate_count; i++) {

               ps = &sc->sc_pstate[i];
               rv = acpicpu_pstate_pss_add(ps, &obj->Package.Elements[i]);

               if (ACPI_FAILURE(rv)) {
                       aprint_error_dev(sc->sc_dev, "failed to add "
                           "P-state: %s\n", AcpiFormatException(rv));
                       ps->ps_freq = 0;
                       continue;
               }

               for (j = 0; j < i; j++) {

                       if (ps->ps_freq >= sc->sc_pstate[j].ps_freq) {
                               ps->ps_freq = 0;
                               break;
                       }
               }

               if (ps->ps_freq != 0)
                       count++;
       }

       rv = (count != 0) ? AE_OK : AE_NOT_EXIST;

out:
       if (buf.Pointer != NULL)
               ACPI_FREE(buf.Pointer);

       return rv;
}

static ACPI_STATUS
acpicpu_pstate_pss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
{
       ACPI_OBJECT *elm;
       int i;

       if (obj->Type != ACPI_TYPE_PACKAGE)
               return AE_TYPE;

       if (obj->Package.Count != 6)
               return AE_BAD_DATA;

       elm = obj->Package.Elements;

       for (i = 0; i < 6; i++) {

               if (elm[i].Type != ACPI_TYPE_INTEGER)
                       return AE_TYPE;

               if (elm[i].Integer.Value > UINT32_MAX)
                       return AE_AML_NUMERIC_OVERFLOW;
       }

       ps->ps_freq       = elm[0].Integer.Value;
       ps->ps_power      = elm[1].Integer.Value;
       ps->ps_latency    = elm[2].Integer.Value;
       ps->ps_latency_bm = elm[3].Integer.Value;
       ps->ps_control    = elm[4].Integer.Value;
       ps->ps_status     = elm[5].Integer.Value;

       if (ps->ps_freq == 0 || ps->ps_freq > 9999)
               return AE_BAD_DECIMAL_CONSTANT;

       /*
        * Sanity check also the latency levels. Some systems may
        * report a value zero, but we keep one microsecond as the
        * lower bound; see for instance AMD family 12h,
        *
        *      Advanced Micro Devices: BIOS and Kernel Developer's
        *      Guide (BKDG) for AMD Family 12h Processors. Section
        *      2.5.3.1.9.2, Revision 3.02, October, 2011.
        */
       if (ps->ps_latency == 0 || ps->ps_latency > 1000)
               ps->ps_latency = 1;

       return AE_OK;
}

static ACPI_STATUS
acpicpu_pstate_xpss(struct acpicpu_softc *sc)
{
       struct acpicpu_pstate *ps;
       ACPI_OBJECT *obj;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;
       uint32_t i = 0;

       rv = acpi_eval_struct(sc->sc_node->ad_handle, "XPSS", &buf);

       if (ACPI_FAILURE(rv))
               goto out;

       obj = buf.Pointer;

       if (obj->Type != ACPI_TYPE_PACKAGE) {
               rv = AE_TYPE;
               goto out;
       }

       if (obj->Package.Count != sc->sc_pstate_count) {
               rv = AE_LIMIT;
               goto out;
       }

       while (i < sc->sc_pstate_count) {

               ps = &sc->sc_pstate[i];
               acpicpu_pstate_xpss_add(ps, &obj->Package.Elements[i]);

               i++;
       }

out:
       if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
               aprint_error_dev(sc->sc_dev, "failed to evaluate "
                   "XPSS: %s\n", AcpiFormatException(rv));

       if (buf.Pointer != NULL)
               ACPI_FREE(buf.Pointer);

       return rv;
}

static ACPI_STATUS
acpicpu_pstate_xpss_add(struct acpicpu_pstate *ps, ACPI_OBJECT *obj)
{
       ACPI_OBJECT *elm;
       int i;

       if (obj->Type != ACPI_TYPE_PACKAGE)
               return AE_TYPE;

       if (obj->Package.Count != 8)
               return AE_BAD_DATA;

       elm = obj->Package.Elements;

       for (i = 0; i < 4; i++) {

               if (elm[i].Type != ACPI_TYPE_INTEGER)
                       return AE_TYPE;

               if (elm[i].Integer.Value > UINT32_MAX)
                       return AE_AML_NUMERIC_OVERFLOW;
       }

       for (; i < 8; i++) {

               if (elm[i].Type != ACPI_TYPE_BUFFER)
                       return AE_TYPE;

               if (elm[i].Buffer.Length != 8)
                       return AE_LIMIT;
       }

       /*
        * Only overwrite the elements that were
        * not available from the conventional _PSS.
        */
       if (ps->ps_freq == 0)
               ps->ps_freq = elm[0].Integer.Value;

       if (ps->ps_power == 0)
               ps->ps_power = elm[1].Integer.Value;

       if (ps->ps_latency == 0)
               ps->ps_latency = elm[2].Integer.Value;

       if (ps->ps_latency_bm == 0)
               ps->ps_latency_bm = elm[3].Integer.Value;

       if (ps->ps_control == 0)
               ps->ps_control = ACPI_GET64(elm[4].Buffer.Pointer);

       if (ps->ps_status == 0)
               ps->ps_status = ACPI_GET64(elm[5].Buffer.Pointer);

       if (ps->ps_control_mask == 0)
               ps->ps_control_mask = ACPI_GET64(elm[6].Buffer.Pointer);

       if (ps->ps_status_mask == 0)
               ps->ps_status_mask = ACPI_GET64(elm[7].Buffer.Pointer);

       ps->ps_flags |= ACPICPU_FLAG_P_XPSS;

       if (ps->ps_freq == 0 || ps->ps_freq > 9999)
               return AE_BAD_DECIMAL_CONSTANT;

       if (ps->ps_latency == 0 || ps->ps_latency > 1000)
               ps->ps_latency = 1;

       return AE_OK;
}

static ACPI_STATUS
acpicpu_pstate_pct(struct acpicpu_softc *sc)
{
       static const size_t size = sizeof(struct acpicpu_reg);
       struct acpicpu_reg *reg[2];
       struct acpicpu_pstate *ps;
       ACPI_OBJECT *elm, *obj;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;
       uint8_t width;
       uint32_t i;

       rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PCT", &buf);

       if (ACPI_FAILURE(rv))
               return rv;

       obj = buf.Pointer;

       if (obj->Type != ACPI_TYPE_PACKAGE) {
               rv = AE_TYPE;
               goto out;
       }

       if (obj->Package.Count != 2) {
               rv = AE_LIMIT;
               goto out;
       }

       for (i = 0; i < 2; i++) {

               elm = &obj->Package.Elements[i];

               if (elm->Type != ACPI_TYPE_BUFFER) {
                       rv = AE_TYPE;
                       goto out;
               }

               if (size > elm->Buffer.Length) {
                       rv = AE_AML_BAD_RESOURCE_LENGTH;
                       goto out;
               }

               reg[i] = (struct acpicpu_reg *)elm->Buffer.Pointer;

               switch (reg[i]->reg_spaceid) {

               case ACPI_ADR_SPACE_SYSTEM_MEMORY:
               case ACPI_ADR_SPACE_SYSTEM_IO:

                       if (reg[i]->reg_addr == 0) {
                               rv = AE_AML_ILLEGAL_ADDRESS;
                               goto out;
                       }

                       width = reg[i]->reg_bitwidth;

                       if (width + reg[i]->reg_bitoffset > 32) {
                               rv = AE_AML_BAD_RESOURCE_VALUE;
                               goto out;
                       }

                       if (width != 8 && width != 16 && width != 32) {
                               rv = AE_AML_BAD_RESOURCE_VALUE;
                               goto out;
                       }

                       break;

               case ACPI_ADR_SPACE_FIXED_HARDWARE:

                       if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {

                               if (reg[i]->reg_bitwidth != 64) {
                                       rv = AE_AML_BAD_RESOURCE_VALUE;
                                       goto out;
                               }

                               if (reg[i]->reg_bitoffset != 0) {
                                       rv = AE_AML_BAD_RESOURCE_VALUE;
                                       goto out;
                               }

                               break;
                       }

                       if ((sc->sc_flags & ACPICPU_FLAG_P_FFH) == 0) {
                               rv = AE_SUPPORT;
                               goto out;
                       }

                       break;

               default:
                       rv = AE_AML_INVALID_SPACE_ID;
                       goto out;
               }
       }

       if (reg[0]->reg_spaceid != reg[1]->reg_spaceid) {
               rv = AE_AML_INVALID_SPACE_ID;
               goto out;
       }

       (void)memcpy(&sc->sc_pstate_control, reg[0], size);
       (void)memcpy(&sc->sc_pstate_status,  reg[1], size);

       if ((sc->sc_flags & ACPICPU_FLAG_P_XPSS) != 0) {

               /*
                * At the very least, mandate that
                * XPSS supplies the control address.
                */
               if (sc->sc_pstate_control.reg_addr == 0) {
                       rv = AE_AML_BAD_RESOURCE_LENGTH;
                       goto out;
               }

               /*
                * If XPSS is present, copy the supplied
                * MSR addresses to the P-state structures.
                */
               for (i = 0; i < sc->sc_pstate_count; i++) {

                       ps = &sc->sc_pstate[i];

                       if (ps->ps_freq == 0)
                               continue;

                       ps->ps_status_addr  = sc->sc_pstate_status.reg_addr;
                       ps->ps_control_addr = sc->sc_pstate_control.reg_addr;
               }
       }

out:
       if (buf.Pointer != NULL)
               ACPI_FREE(buf.Pointer);

       return rv;
}

static ACPI_STATUS
acpicpu_pstate_dep(struct acpicpu_softc *sc)
{
       ACPI_OBJECT *elm, *obj;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;
       uint32_t val;
       uint8_t i, n;

       rv = acpi_eval_struct(sc->sc_node->ad_handle, "_PSD", &buf);

       if (ACPI_FAILURE(rv))
               goto out;

       obj = buf.Pointer;

       if (obj->Type != ACPI_TYPE_PACKAGE) {
               rv = AE_TYPE;
               goto out;
       }

       if (obj->Package.Count != 1) {
               rv = AE_LIMIT;
               goto out;
       }

       elm = &obj->Package.Elements[0];

       if (obj->Type != ACPI_TYPE_PACKAGE) {
               rv = AE_TYPE;
               goto out;
       }

       n = elm->Package.Count;

       if (n != 5) {
               rv = AE_LIMIT;
               goto out;
       }

       elm = elm->Package.Elements;

       for (i = 0; i < n; i++) {

               if (elm[i].Type != ACPI_TYPE_INTEGER) {
                       rv = AE_TYPE;
                       goto out;
               }

               if (elm[i].Integer.Value > UINT32_MAX) {
                       rv = AE_AML_NUMERIC_OVERFLOW;
                       goto out;
               }
       }

       val = elm[1].Integer.Value;

       if (val != 0)
               aprint_debug_dev(sc->sc_dev, "invalid revision in _PSD\n");

       val = elm[3].Integer.Value;

       if (val < ACPICPU_DEP_SW_ALL || val > ACPICPU_DEP_HW_ALL) {
               rv = AE_AML_BAD_RESOURCE_VALUE;
               goto out;
       }

       val = elm[4].Integer.Value;

       if (val > sc->sc_ncpus) {
               rv = AE_BAD_VALUE;
               goto out;
       }

       sc->sc_pstate_dep.dep_domain = elm[2].Integer.Value;
       sc->sc_pstate_dep.dep_type   = elm[3].Integer.Value;
       sc->sc_pstate_dep.dep_ncpus  = elm[4].Integer.Value;

out:
       if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND)
               aprint_debug_dev(sc->sc_dev, "failed to evaluate "
                   "_PSD: %s\n", AcpiFormatException(rv));

       if (buf.Pointer != NULL)
               ACPI_FREE(buf.Pointer);

       return rv;
}

static int
acpicpu_pstate_max(struct acpicpu_softc *sc)
{
       ACPI_INTEGER val;
       ACPI_STATUS rv;

       /*
        * Evaluate the currently highest P-state that can be used.
        * If available, we can use either this state or any lower
        * power (i.e. higher numbered) state from the _PSS object.
        * Note that the return value must match the _OST parameter.
        */
       rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PPC", &val);

       if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {

               if (sc->sc_pstate[val].ps_freq != 0) {
                       sc->sc_pstate_max = val;
                       return 0;
               }
       }

       return 1;
}

static int
acpicpu_pstate_min(struct acpicpu_softc *sc)
{
       ACPI_INTEGER val;
       ACPI_STATUS rv;

       /*
        * The _PDL object defines the minimum when passive cooling
        * is being performed. If available, we can use the returned
        * state or any higher power (i.e. lower numbered) state.
        */
       rv = acpi_eval_integer(sc->sc_node->ad_handle, "_PDL", &val);

       if (ACPI_SUCCESS(rv) && val < sc->sc_pstate_count) {

               if (sc->sc_pstate[val].ps_freq == 0)
                       return 1;

               if (val >= sc->sc_pstate_max) {
                       sc->sc_pstate_min = val;
                       return 0;
               }
       }

       return 1;
}

static void
acpicpu_pstate_change(struct acpicpu_softc *sc)
{
       static ACPI_STATUS rv = AE_OK;
       ACPI_OBJECT_LIST arg;
       ACPI_OBJECT obj[2];
       static int val = 0;

       acpicpu_pstate_reset(sc);

       /*
        * Cache the checks as the optional
        * _PDL and _OST are rarely present.
        */
       if (val == 0)
               val = acpicpu_pstate_min(sc);

       arg.Count = 2;
       arg.Pointer = obj;

       obj[0].Type = ACPI_TYPE_INTEGER;
       obj[1].Type = ACPI_TYPE_INTEGER;

       obj[0].Integer.Value = ACPICPU_P_NOTIFY;
       obj[1].Integer.Value = acpicpu_pstate_max(sc);

       if (ACPI_FAILURE(rv))
               return;

       rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OST", &arg, NULL);
}

static void
acpicpu_pstate_reset(struct acpicpu_softc *sc)
{

       sc->sc_pstate_max = 0;
       sc->sc_pstate_min = sc->sc_pstate_count - 1;

}

static void
acpicpu_pstate_bios(void)
{
       const uint8_t val = AcpiGbl_FADT.PstateControl;
       const uint32_t addr = AcpiGbl_FADT.SmiCommand;

       if (addr == 0 || val == 0)
               return;

       (void)AcpiOsWritePort(addr, val, 8);
}

void
acpicpu_pstate_get(void *aux, void *cpu_freq)
{
       struct acpicpu_pstate *ps = NULL;
       struct cpu_info *ci = curcpu();
       struct acpicpu_softc *sc;
       uint32_t freq, i, val = 0;
       int rv;

       sc = acpicpu_sc[ci->ci_acpiid];

       if (__predict_false(sc == NULL)) {
               rv = ENXIO;
               goto fail;
       }

       if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
               rv = ENODEV;
               goto fail;
       }

       mutex_enter(&sc->sc_mtx);

       /*
        * Use the cached value, if available.
        */
       if (sc->sc_pstate_current != 0) {
               *(uint32_t *)cpu_freq = sc->sc_pstate_current;
               mutex_exit(&sc->sc_mtx);
               return;
       }

       mutex_exit(&sc->sc_mtx);

       switch (sc->sc_pstate_status.reg_spaceid) {

       case ACPI_ADR_SPACE_FIXED_HARDWARE:

               rv = acpicpu_md_pstate_get(sc, &freq);

               if (__predict_false(rv != 0))
                       goto fail;

               break;

       case ACPI_ADR_SPACE_SYSTEM_MEMORY:
       case ACPI_ADR_SPACE_SYSTEM_IO:

               val = acpicpu_readreg(&sc->sc_pstate_status);

               if (val == 0) {
                       rv = EIO;
                       goto fail;
               }

               for (i = 0; i < sc->sc_pstate_count; i++) {

                       if (sc->sc_pstate[i].ps_freq == 0)
                               continue;

                       if (val == sc->sc_pstate[i].ps_status) {
                               ps = &sc->sc_pstate[i];
                               break;
                       }
               }

               if (ps == NULL) {
                       rv = EIO;
                       goto fail;
               }

               freq = ps->ps_freq;
               break;

       default:
               rv = ENOTTY;
               goto fail;
       }

       mutex_enter(&sc->sc_mtx);
       sc->sc_pstate_current = freq;
       *(uint32_t *)cpu_freq = freq;
       mutex_exit(&sc->sc_mtx);

       return;

fail:
       aprint_error_dev(sc->sc_dev, "failed "
           "to get frequency (err %d)\n", rv);

       mutex_enter(&sc->sc_mtx);
       sc->sc_pstate_current = 0;
       *(uint32_t *)cpu_freq = 0;
       mutex_exit(&sc->sc_mtx);
}

void
acpicpu_pstate_set(void *aux, void *cpu_freq)
{
       struct acpicpu_pstate *ps = NULL;
       struct cpu_info *ci = curcpu();
       struct acpicpu_softc *sc;
       uint32_t freq, i, val;
       int rv;

       freq = *(uint32_t *)cpu_freq;
       sc = acpicpu_sc[ci->ci_acpiid];

       if (__predict_false(sc == NULL)) {
               rv = ENXIO;
               goto fail;
       }

       if (__predict_false((sc->sc_flags & ACPICPU_FLAG_P) == 0)) {
               rv = ENODEV;
               goto fail;
       }

       mutex_enter(&sc->sc_mtx);

       if (sc->sc_pstate_current == freq) {
               mutex_exit(&sc->sc_mtx);
               return;
       }

       /*
        * Verify that the requested frequency is available.
        *
        * The access needs to be protected since the currently
        * available maximum and minimum may change dynamically.
        */
       for (i = sc->sc_pstate_max; i <= sc->sc_pstate_min; i++) {

               if (__predict_false(sc->sc_pstate[i].ps_freq == 0))
                       continue;

               if (sc->sc_pstate[i].ps_freq == freq) {
                       ps = &sc->sc_pstate[i];
                       break;
               }
       }

       mutex_exit(&sc->sc_mtx);

       if (__predict_false(ps == NULL)) {
               rv = EINVAL;
               goto fail;
       }

       switch (sc->sc_pstate_control.reg_spaceid) {

       case ACPI_ADR_SPACE_FIXED_HARDWARE:

               rv = acpicpu_md_pstate_set(ps);

               if (__predict_false(rv != 0))
                       goto fail;

               break;

       case ACPI_ADR_SPACE_SYSTEM_MEMORY:
       case ACPI_ADR_SPACE_SYSTEM_IO:

               acpicpu_writereg(&sc->sc_pstate_control, ps->ps_control);

               /*
                * Some systems take longer to respond
                * than the reported worst-case latency.
                */
               for (i = val = 0; i < ACPICPU_P_STATE_RETRY; i++) {

                       val = acpicpu_readreg(&sc->sc_pstate_status);

                       if (val == ps->ps_status)
                               break;

                       DELAY(ps->ps_latency);
               }

               if (i == ACPICPU_P_STATE_RETRY) {
                       rv = EAGAIN;
                       goto fail;
               }

               break;

       default:
               rv = ENOTTY;
               goto fail;
       }

       mutex_enter(&sc->sc_mtx);
       ps->ps_evcnt.ev_count++;
       sc->sc_pstate_current = freq;
       mutex_exit(&sc->sc_mtx);

       return;

fail:
       if (rv != EINVAL)
               aprint_error_dev(sc->sc_dev, "failed to set "
                   "frequency to %u (err %d)\n", freq, rv);

       mutex_enter(&sc->sc_mtx);
       sc->sc_pstate_current = 0;
       mutex_exit(&sc->sc_mtx);
}