/* $NetBSD: acpi_cpu.c,v 1.53 2020/12/07 10:57:41 jmcneill Exp $ */

/*-
* Copyright (c) 2010, 2011 Jukka Ruohonen <[email protected]>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_cpu.c,v 1.53 2020/12/07 10:57:41 jmcneill Exp $");

#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/evcnt.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/cpufreq.h>

#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_cpu.h>

#include <machine/acpi_machdep.h>

#if defined(__i386__) || defined(__x86_64__)
#include <machine/cpuvar.h>
#endif

#define _COMPONENT        ACPI_BUS_COMPONENT
ACPI_MODULE_NAME          ("acpi_cpu")

static int                acpicpu_match(device_t, cfdata_t, void *);
static void               acpicpu_attach(device_t, device_t, void *);
static int                acpicpu_detach(device_t, int);
static int                acpicpu_once_attach(void);
static int                acpicpu_once_detach(void);
static void               acpicpu_start(device_t);

static ACPI_STATUS        acpicpu_object(ACPI_HANDLE, struct acpicpu_object *);
static uint32_t           acpicpu_cap(struct acpicpu_softc *);
static ACPI_STATUS        acpicpu_cap_osc(struct acpicpu_softc *,
                                         uint32_t, uint32_t *);
static void               acpicpu_notify(ACPI_HANDLE, uint32_t, void *);
static bool               acpicpu_suspend(device_t, const pmf_qual_t *);
static bool               acpicpu_resume(device_t, const pmf_qual_t *);
static void               acpicpu_evcnt_attach(device_t);
static void               acpicpu_evcnt_detach(device_t);
static void               acpicpu_debug_print(device_t);
static const char        *acpicpu_debug_print_method_c(uint8_t);
static const char        *acpicpu_debug_print_method_pt(uint8_t);
static const char        *acpicpu_debug_print_dep(uint32_t);

static uint32_t           acpicpu_count = 0;
struct acpicpu_softc    **acpicpu_sc = NULL;
static bool               acpicpu_dynamic = true;
static bool               acpicpu_passive = true;

static const struct {
       const char       *manu;
       const char       *prod;
       const char       *vers;
} acpicpu_quirks[] = {
       { "Supermicro", "PDSMi-LN4", "0123456789" },
       { "ASUSTeK Computer INC.", "M2A-MX", "Rev 1.xx" },
};

CFATTACH_DECL_NEW(acpicpu, sizeof(struct acpicpu_softc),
   acpicpu_match, acpicpu_attach, acpicpu_detach, NULL);

static int
acpicpu_match(device_t parent, cfdata_t match, void *aux)
{
       const char *manu, *prod, *vers;
       struct cpu_info *ci;
       size_t i;

       if (acpi_softc == NULL)
               return 0;

       manu = pmf_get_platform("board-vendor");
       prod = pmf_get_platform("board-product");
       vers = pmf_get_platform("board-version");

       if (manu != NULL && prod != NULL && vers != NULL) {

               for (i = 0; i < __arraycount(acpicpu_quirks); i++) {

                       if (strcasecmp(acpicpu_quirks[i].manu, manu) == 0 &&
                           strcasecmp(acpicpu_quirks[i].prod, prod) == 0 &&
                           strcasecmp(acpicpu_quirks[i].vers, vers) == 0)
                               return 0;
               }
       }

       ci = acpicpu_md_match(parent, match, aux);

       if (ci == NULL)
               return 0;

       if (acpi_match_cpu_info(ci) == NULL)
               return 0;

       return 10;
}

static void
acpicpu_attach(device_t parent, device_t self, void *aux)
{
       struct acpicpu_softc *sc = device_private(self);
       struct cpu_info *ci;
       ACPI_HANDLE hdl;
       cpuid_t id;
       int rv;

       ci = acpicpu_md_attach(parent, self, aux);

       if (ci == NULL)
               return;

       sc->sc_ci = ci;
       sc->sc_dev = self;
       sc->sc_cold = true;

       hdl = acpi_match_cpu_info(ci);

       if (hdl == NULL) {
               aprint_normal(": failed to match processor\n");
               return;
       }

       sc->sc_node = acpi_match_node(hdl);

       if (acpicpu_once_attach() != 0) {
               aprint_normal(": failed to initialize\n");
               return;
       }

       KASSERT(acpi_softc != NULL);
       KASSERT(acpicpu_sc != NULL);
       KASSERT(sc->sc_node != NULL);

       id = sc->sc_ci->ci_acpiid;

       if (acpicpu_sc[id] != NULL) {
               aprint_normal(": already attached\n");
               return;
       }

       aprint_naive("\n");
       aprint_normal(": ACPI CPU\n");

       rv = acpicpu_object(sc->sc_node->ad_handle, &sc->sc_object);

       if (ACPI_FAILURE(rv) && rv != AE_TYPE)
               aprint_verbose_dev(self, "failed to obtain CPU object\n");

       acpicpu_count++;
       acpicpu_sc[id] = sc;

       sc->sc_cap = acpicpu_cap(sc);
       sc->sc_ncpus = acpi_md_ncpus();
       sc->sc_flags = acpicpu_md_flags();

       KASSERT(acpicpu_count <= sc->sc_ncpus);
       KASSERT(sc->sc_node->ad_device == NULL);

       sc->sc_node->ad_device = self;
       mutex_init(&sc->sc_mtx, MUTEX_DEFAULT, IPL_NONE);

#if defined(__i386__) || defined(__x86_64__)
       acpicpu_cstate_attach(self);
#endif
       acpicpu_pstate_attach(self);
       acpicpu_tstate_attach(self);

       acpicpu_debug_print(self);
       acpicpu_evcnt_attach(self);

       (void)config_interrupts(self, acpicpu_start);
       (void)acpi_register_notify(sc->sc_node, acpicpu_notify);
       (void)pmf_device_register(self, acpicpu_suspend, acpicpu_resume);
}

static int
acpicpu_detach(device_t self, int flags)
{
       struct acpicpu_softc *sc = device_private(self);

       sc->sc_cold = true;

       acpicpu_evcnt_detach(self);
       acpi_deregister_notify(sc->sc_node);

       acpicpu_cstate_detach(self);
       acpicpu_pstate_detach(self);
       acpicpu_tstate_detach(self);

       mutex_destroy(&sc->sc_mtx);
       sc->sc_node->ad_device = NULL;

       acpicpu_count--;
       acpicpu_once_detach();

       return 0;
}

static int
acpicpu_once_attach(void)
{
       struct acpicpu_softc *sc;
       unsigned int i;

       if (acpicpu_count != 0)
               return 0;

       KASSERT(acpicpu_sc == NULL);

       acpicpu_sc = kmem_zalloc(maxcpus * sizeof(*sc), KM_SLEEP);

       for (i = 0; i < maxcpus; i++)
               acpicpu_sc[i] = NULL;

       return 0;
}

static int
acpicpu_once_detach(void)
{
       struct acpicpu_softc *sc;

       if (acpicpu_count != 0)
               return EDEADLK;

       cpufreq_deregister();

       if (acpicpu_sc != NULL)
               kmem_free(acpicpu_sc, maxcpus * sizeof(*sc));

       return 0;
}

static void
acpicpu_start(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);
       static uint32_t count = 0;
       struct cpufreq cf;
       uint32_t i;

       /*
        * Run the state-specific initialization routines. These
        * must run only once, after interrupts have been enabled,
        * all CPUs are running, and all ACPI CPUs have attached.
        */
       if (++count != acpicpu_count || acpicpu_count != sc->sc_ncpus) {
               sc->sc_cold = false;
               return;
       }

       /*
        * Set the last ACPI CPU as non-cold
        * only after C-states are enabled.
        */
       if ((sc->sc_flags & ACPICPU_FLAG_C) != 0)
               acpicpu_cstate_start(self);

       sc->sc_cold = false;

       if ((sc->sc_flags & ACPICPU_FLAG_P) != 0)
               acpicpu_pstate_start(self);

       if ((sc->sc_flags & ACPICPU_FLAG_T) != 0)
               acpicpu_tstate_start(self);

       aprint_debug_dev(self, "ACPI CPUs started\n");

       /*
        * Register with cpufreq(9).
        */
       if ((sc->sc_flags & ACPICPU_FLAG_P) != 0) {

               (void)memset(&cf, 0, sizeof(struct cpufreq));

               cf.cf_mp = false;
               cf.cf_cookie = NULL;
               cf.cf_get_freq = acpicpu_pstate_get;
               cf.cf_set_freq = acpicpu_pstate_set;
               cf.cf_state_count = sc->sc_pstate_count;

               (void)strlcpy(cf.cf_name, "acpicpu", sizeof(cf.cf_name));

               for (i = 0; i < sc->sc_pstate_count; i++) {

                       if (sc->sc_pstate[i].ps_freq == 0)
                               continue;

                       cf.cf_state[i].cfs_freq = sc->sc_pstate[i].ps_freq;
                       cf.cf_state[i].cfs_power = sc->sc_pstate[i].ps_power;
               }

               if (cpufreq_register(&cf) != 0)
                       aprint_error_dev(self, "failed to register cpufreq\n");
       }
}

SYSCTL_SETUP(acpicpu_sysctl, "acpi_cpu sysctls")
{
       const struct sysctlnode *node;
       int err;

       err = sysctl_createv(clog, 0, NULL, &node,
           CTLFLAG_PERMANENT, CTLTYPE_NODE, "acpi", NULL,
           NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);

       if (err != 0)
               goto fail;

       err = sysctl_createv(clog, 0, &node, &node,
           0, CTLTYPE_NODE, "cpu", SYSCTL_DESCR("ACPI CPU"),
           NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);

       if (err != 0)
               goto fail;

       err = sysctl_createv(clog, 0, &node, NULL,
           CTLFLAG_READWRITE, CTLTYPE_BOOL, "dynamic",
           SYSCTL_DESCR("Dynamic states"), NULL, 0,
           &acpicpu_dynamic, 0, CTL_CREATE, CTL_EOL);

       if (err != 0)
               goto fail;

       err = sysctl_createv(clog, 0, &node, NULL,
           CTLFLAG_READWRITE, CTLTYPE_BOOL, "passive",
           SYSCTL_DESCR("Passive cooling"), NULL, 0,
           &acpicpu_passive, 0, CTL_CREATE, CTL_EOL);

       if (err != 0)
               goto fail;

       return;

fail:
       aprint_error("%s: failed to init sysctl (err %d)\n", __func__, err);
}

static ACPI_STATUS
acpicpu_object(ACPI_HANDLE hdl, struct acpicpu_object *ao)
{
       ACPI_OBJECT_TYPE typ;
       ACPI_OBJECT *obj;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;

       rv = AcpiGetType(hdl, &typ);
       if (typ != ACPI_TYPE_PROCESSOR) {
               return AE_TYPE;
       }

       rv = acpi_eval_struct(hdl, NULL, &buf);

       if (ACPI_FAILURE(rv))
               goto out;

       obj = buf.Pointer;

       if (obj->Type != ACPI_TYPE_PROCESSOR) {
               rv = AE_TYPE;
               goto out;
       }

       if (obj->Processor.ProcId > (uint32_t)maxcpus) {
               rv = AE_LIMIT;
               goto out;
       }

       KDASSERT((uint64_t)obj->Processor.PblkAddress < UINT32_MAX);

       if (ao != NULL) {
               ao->ao_procid = obj->Processor.ProcId;
               ao->ao_pblklen = obj->Processor.PblkLength;
               ao->ao_pblkaddr = obj->Processor.PblkAddress;
       }

out:
       if (buf.Pointer != NULL)
               ACPI_FREE(buf.Pointer);

       return rv;
}

static uint32_t
acpicpu_cap(struct acpicpu_softc *sc)
{
       uint32_t flags, cap = 0;
       ACPI_STATUS rv;

       /*
        * Query and set machine-dependent capabilities.
        * Note that the Intel-specific _PDC method has
        * already been evaluated. It was furthermore
        * deprecated in the ACPI 3.0 in favor of _OSC.
        */
       flags = acpi_md_pdc();
       rv = acpicpu_cap_osc(sc, flags, &cap);

       if (ACPI_FAILURE(rv) && rv != AE_NOT_FOUND) {

               aprint_error_dev(sc->sc_dev, "failed to evaluate "
                   "_OSC: %s\n", AcpiFormatException(rv));
       }

       return (cap != 0) ? cap : flags;
}

static ACPI_STATUS
acpicpu_cap_osc(struct acpicpu_softc *sc, uint32_t flags, uint32_t *val)
{
       ACPI_OBJECT_LIST arg;
       ACPI_OBJECT obj[4];
       ACPI_OBJECT *osc;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;
       uint32_t cap[2];
       uint32_t *ptr;
       int i = 5;

       static uint8_t intel_uuid[16] = {
               0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29, 0xBE, 0x47,
               0x9E, 0xBD, 0xD8, 0x70, 0x58, 0x71, 0x39, 0x53
       };

       cap[0] = ACPI_OSC_QUERY;
       cap[1] = flags;

again:
       arg.Count = 4;
       arg.Pointer = obj;

       obj[0].Type = ACPI_TYPE_BUFFER;
       obj[0].Buffer.Length = sizeof(intel_uuid);
       obj[0].Buffer.Pointer = intel_uuid;

       obj[1].Type = ACPI_TYPE_INTEGER;
       obj[1].Integer.Value = ACPICPU_PDC_REVID;

       obj[2].Type = ACPI_TYPE_INTEGER;
       obj[2].Integer.Value = __arraycount(cap);

       obj[3].Type = ACPI_TYPE_BUFFER;
       obj[3].Buffer.Length = sizeof(cap);
       obj[3].Buffer.Pointer = (void *)cap;

       buf.Pointer = NULL;
       buf.Length = ACPI_ALLOCATE_LOCAL_BUFFER;

       rv = AcpiEvaluateObject(sc->sc_node->ad_handle, "_OSC", &arg, &buf);

       if (ACPI_FAILURE(rv))
               goto out;

       osc = buf.Pointer;

       if (osc->Type != ACPI_TYPE_BUFFER) {
               rv = AE_TYPE;
               goto out;
       }

       if (osc->Buffer.Length != sizeof(cap)) {
               rv = AE_BUFFER_OVERFLOW;
               goto out;
       }

       ptr = (uint32_t *)osc->Buffer.Pointer;

       if ((ptr[0] & ACPI_OSC_ERROR) != 0) {
               rv = AE_ERROR;
               goto out;
       }

       if ((ptr[0] & (ACPI_OSC_ERROR_REV | ACPI_OSC_ERROR_UUID)) != 0) {
               rv = AE_BAD_PARAMETER;
               goto out;
       }

       /*
        * "It is strongly recommended that the OS evaluate
        *  _OSC with the Query Support Flag set until _OSC
        *  returns the Capabilities Masked bit clear, to
        *  negotiate the set of features to be granted to
        *  the OS for native support (ACPI 4.0, 6.2.10)."
        */
       if ((ptr[0] & ACPI_OSC_ERROR_MASKED) != 0 && i >= 0) {

               ACPI_FREE(buf.Pointer);
               i--;

               goto again;
       }

       if ((cap[0] & ACPI_OSC_QUERY) != 0) {

               ACPI_FREE(buf.Pointer);
               cap[0] &= ~ACPI_OSC_QUERY;

               goto again;
       }

       /*
        * It is permitted for _OSC to return all
        * bits cleared, but this is specified to
        * vary on per-device basis. Assume that
        * everything rather than nothing will be
        * supported in this case; we do not need
        * the firmware to know the CPU features.
        */
       *val = (ptr[1] != 0) ? ptr[1] : cap[1];

out:
       if (buf.Pointer != NULL)
               ACPI_FREE(buf.Pointer);

       return rv;
}

static void
acpicpu_notify(ACPI_HANDLE hdl, uint32_t evt, void *aux)
{
       ACPI_OSD_EXEC_CALLBACK func;
       struct acpicpu_softc *sc;
       device_t self = aux;

       sc = device_private(self);

       if (sc->sc_cold != false)
               return;

       if (acpicpu_dynamic != true)
               return;

       switch (evt) {

       case ACPICPU_C_NOTIFY:

               if ((sc->sc_flags & ACPICPU_FLAG_C) == 0)
                       return;

               func = acpicpu_cstate_callback;
               break;

       case ACPICPU_P_NOTIFY:

               if ((sc->sc_flags & ACPICPU_FLAG_P) == 0)
                       return;

               func = acpicpu_pstate_callback;
               break;

       case ACPICPU_T_NOTIFY:

               if ((sc->sc_flags & ACPICPU_FLAG_T) == 0)
                       return;

               func = acpicpu_tstate_callback;
               break;

       default:
               aprint_error_dev(sc->sc_dev,  "unknown notify: 0x%02X\n", evt);
               return;
       }

       (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, func, sc->sc_dev);
}

static bool
acpicpu_suspend(device_t self, const pmf_qual_t *qual)
{
       struct acpicpu_softc *sc = device_private(self);

       if ((sc->sc_flags & ACPICPU_FLAG_C) != 0)
               (void)acpicpu_cstate_suspend(self);

       if ((sc->sc_flags & ACPICPU_FLAG_P) != 0)
               (void)acpicpu_pstate_suspend(self);

       if ((sc->sc_flags & ACPICPU_FLAG_T) != 0)
               (void)acpicpu_tstate_suspend(self);

       sc->sc_cold = true;

       return true;
}

static bool
acpicpu_resume(device_t self, const pmf_qual_t *qual)
{
       struct acpicpu_softc *sc = device_private(self);
       static const int handler = OSL_NOTIFY_HANDLER;

       sc->sc_cold = false;

       if ((sc->sc_flags & ACPICPU_FLAG_C) != 0)
               (void)AcpiOsExecute(handler, acpicpu_cstate_resume, self);

       if ((sc->sc_flags & ACPICPU_FLAG_P) != 0)
               (void)AcpiOsExecute(handler, acpicpu_pstate_resume, self);

       if ((sc->sc_flags & ACPICPU_FLAG_T) != 0)
               (void)AcpiOsExecute(handler, acpicpu_tstate_resume, self);

       return true;
}

static void
acpicpu_evcnt_attach(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);
       struct acpicpu_cstate *cs;
       struct acpicpu_pstate *ps;
       struct acpicpu_tstate *ts;
       const char *str;
       uint32_t i;

       for (i = 0; i < __arraycount(sc->sc_cstate); i++) {

               cs = &sc->sc_cstate[i];

               if (cs->cs_method == 0)
                       continue;

               str = "HALT";

               if (cs->cs_method == ACPICPU_C_STATE_FFH)
                       str = "MWAIT";

               if (cs->cs_method == ACPICPU_C_STATE_SYSIO)
                       str = "I/O";

               (void)snprintf(cs->cs_name, sizeof(cs->cs_name),
                   "C%d (%s)", i, str);

               evcnt_attach_dynamic(&cs->cs_evcnt, EVCNT_TYPE_MISC,
                   NULL, device_xname(sc->sc_dev), cs->cs_name);
       }

       for (i = 0; i < sc->sc_pstate_count; i++) {

               ps = &sc->sc_pstate[i];

               if (ps->ps_freq == 0)
                       continue;

               (void)snprintf(ps->ps_name, sizeof(ps->ps_name),
                   "P%u (%u MHz)", i, ps->ps_freq);

               evcnt_attach_dynamic(&ps->ps_evcnt, EVCNT_TYPE_MISC,
                   NULL, device_xname(sc->sc_dev), ps->ps_name);
       }

       for (i = 0; i < sc->sc_tstate_count; i++) {

               ts = &sc->sc_tstate[i];

               if (ts->ts_percent == 0)
                       continue;

               (void)snprintf(ts->ts_name, sizeof(ts->ts_name),
                   "T%u (%u %%)", i, ts->ts_percent);

               evcnt_attach_dynamic(&ts->ts_evcnt, EVCNT_TYPE_MISC,
                   NULL, device_xname(sc->sc_dev), ts->ts_name);
       }
}

static void
acpicpu_evcnt_detach(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);
       struct acpicpu_cstate *cs;
       struct acpicpu_pstate *ps;
       struct acpicpu_tstate *ts;
       uint32_t i;

       for (i = 0; i < __arraycount(sc->sc_cstate); i++) {

               cs = &sc->sc_cstate[i];

               if (cs->cs_method != 0)
                       evcnt_detach(&cs->cs_evcnt);
       }

       for (i = 0; i < sc->sc_pstate_count; i++) {

               ps = &sc->sc_pstate[i];

               if (ps->ps_freq != 0)
                       evcnt_detach(&ps->ps_evcnt);
       }

       for (i = 0; i < sc->sc_tstate_count; i++) {

               ts = &sc->sc_tstate[i];

               if (ts->ts_percent != 0)
                       evcnt_detach(&ts->ts_evcnt);
       }
}

static void
acpicpu_debug_print(device_t self)
{
       struct acpicpu_softc *sc = device_private(self);
       struct cpu_info *ci = sc->sc_ci;
       struct acpicpu_cstate *cs;
       struct acpicpu_pstate *ps;
       struct acpicpu_tstate *ts;
       static bool once = false;
       struct acpicpu_dep *dep;
       uint32_t i, method;

       if (once != true) {

               for (i = 0; i < __arraycount(sc->sc_cstate); i++) {

                       cs = &sc->sc_cstate[i];

                       if (cs->cs_method == 0)
                               continue;

                       aprint_verbose_dev(sc->sc_dev, "C%d: %3s, "
                           "lat %3u us, pow %5u mW%s\n", i,
                           acpicpu_debug_print_method_c(cs->cs_method),
                           cs->cs_latency, cs->cs_power,
                           (cs->cs_flags != 0) ? ", bus master check" : "");
               }

               method = sc->sc_pstate_control.reg_spaceid;

               for (i = 0; i < sc->sc_pstate_count; i++) {

                       ps = &sc->sc_pstate[i];

                       if (ps->ps_freq == 0)
                               continue;

                       aprint_verbose_dev(sc->sc_dev, "P%d: %3s, "
                           "lat %3u us, pow %5u mW, %4u MHz%s\n", i,
                           acpicpu_debug_print_method_pt(method),
                           ps->ps_latency, ps->ps_power, ps->ps_freq,
                           (ps->ps_flags & ACPICPU_FLAG_P_TURBO) != 0 ?
                           ", turbo boost" : "");
               }

               method = sc->sc_tstate_control.reg_spaceid;

               for (i = 0; i < sc->sc_tstate_count; i++) {

                       ts = &sc->sc_tstate[i];

                       if (ts->ts_percent == 0)
                               continue;

                       aprint_verbose_dev(sc->sc_dev, "T%u: %3s, "
                           "lat %3u us, pow %5u mW, %3u %%\n", i,
                           acpicpu_debug_print_method_pt(method),
                           ts->ts_latency, ts->ts_power, ts->ts_percent);
               }

               once = true;
       }

       aprint_debug_dev(sc->sc_dev, "id %u, lapic id %u, "
           "cap 0x%04x, flags 0x%08x\n", ci->ci_acpiid,
           (uint32_t)ci->ci_cpuid, sc->sc_cap, sc->sc_flags);

       if ((sc->sc_flags & ACPICPU_FLAG_C_DEP) != 0) {

               dep = &sc->sc_cstate_dep;

               aprint_debug_dev(sc->sc_dev, "C-state coordination: "
                   "%u CPUs, domain %u, type %s\n", dep->dep_ncpus,
                   dep->dep_domain, acpicpu_debug_print_dep(dep->dep_type));
       }

       if ((sc->sc_flags & ACPICPU_FLAG_P_DEP) != 0) {

               dep = &sc->sc_pstate_dep;

               aprint_debug_dev(sc->sc_dev, "P-state coordination: "
                   "%u CPUs, domain %u, type %s\n", dep->dep_ncpus,
                   dep->dep_domain, acpicpu_debug_print_dep(dep->dep_type));
       }

       if ((sc->sc_flags & ACPICPU_FLAG_T_DEP) != 0) {

               dep = &sc->sc_tstate_dep;

               aprint_debug_dev(sc->sc_dev, "T-state coordination: "
                   "%u CPUs, domain %u, type %s\n", dep->dep_ncpus,
                   dep->dep_domain, acpicpu_debug_print_dep(dep->dep_type));
       }
}

static const char *
acpicpu_debug_print_method_c(uint8_t val)
{

       if (val == ACPICPU_C_STATE_FFH)
               return "FFH";

       if (val == ACPICPU_C_STATE_HALT)
               return "HLT";

       if (val == ACPICPU_C_STATE_SYSIO)
               return "I/O";

       return "???";
}

static const char *
acpicpu_debug_print_method_pt(uint8_t val)
{
       if (val == ACPI_ADR_SPACE_SYSTEM_MEMORY)
               return "MMIO";

       if (val == ACPI_ADR_SPACE_SYSTEM_IO)
               return "I/O";

       if (val == ACPI_ADR_SPACE_FIXED_HARDWARE)
               return "FFH";

       return "???";
}

static const char *
acpicpu_debug_print_dep(uint32_t val)
{

       switch (val) {

       case ACPICPU_DEP_SW_ALL:
               return "SW_ALL";

       case ACPICPU_DEP_SW_ANY:
               return "SW_ANY";

       case ACPICPU_DEP_HW_ALL:
               return "HW_ALL";

       default:
               return "unknown";
       }
}

MODULE(MODULE_CLASS_DRIVER, acpicpu, NULL);

#ifdef _MODULE
#include "ioconf.c"
#endif

static int
acpicpu_modcmd(modcmd_t cmd, void *aux)
{
       int rv = 0;

       switch (cmd) {

       case MODULE_CMD_INIT:

#ifdef _MODULE
               rv = config_init_component(cfdriver_ioconf_acpicpu,
                   cfattach_ioconf_acpicpu, cfdata_ioconf_acpicpu);
#endif
               break;

       case MODULE_CMD_FINI:

#ifdef _MODULE
               rv = config_fini_component(cfdriver_ioconf_acpicpu,
                   cfattach_ioconf_acpicpu, cfdata_ioconf_acpicpu);
#endif
               break;

       default:
               rv = ENOTTY;
       }

       return rv;
}