/*      $NetBSD: acpi_bat.c,v 1.123 2024/04/27 00:40:06 christos Exp $  */

/*-
* Copyright (c) 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum of By Noon Software, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright 2001 Bill Sommerfeld.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* ACPI Battery Driver.
*
* ACPI defines two different battery device interfaces: "Control
* Method" batteries, in which AML methods are defined in order to get
* battery status and set battery alarm thresholds, and a "Smart
* Battery" device, which is an SMbus device accessed through the ACPI
* Embedded Controller device.
*
* This driver is for the "Control Method"-style battery only.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_bat.c,v 1.123 2024/04/27 00:40:06 christos Exp $");

#include <sys/param.h>
#include <sys/condvar.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/module.h>
#include <sys/mutex.h>
#include <sys/systm.h>

#include <dev/acpi/acpireg.h>
#include <dev/acpi/acpivar.h>

#define _COMPONENT               ACPI_BAT_COMPONENT
ACPI_MODULE_NAME                 ("acpi_bat")

#define ACPI_NOTIFY_BAT_STATUS   0x80
#define ACPI_NOTIFY_BAT_INFO     0x81

/*
* Sensor indexes.
*/
enum {
       ACPIBAT_PRESENT          = 0,
       ACPIBAT_DVOLTAGE         = 1,
       ACPIBAT_VOLTAGE          = 2,
       ACPIBAT_DCAPACITY        = 3,
       ACPIBAT_LFCCAPACITY      = 4,
       ACPIBAT_CAPACITY         = 5,
       ACPIBAT_CHARGERATE       = 6,
       ACPIBAT_DISCHARGERATE    = 7,
       ACPIBAT_CHARGING         = 8,
       ACPIBAT_CHARGE_STATE     = 9,
       ACPIBAT_COUNT            = 10
};

/*
* Battery Information, _BIF
* (ACPI 3.0, sec. 10.2.2.1).
*/
enum {
       ACPIBAT_BIF_UNIT         = 0,
       ACPIBAT_BIF_DCAPACITY    = 1,
       ACPIBAT_BIF_LFCCAPACITY  = 2,
       ACPIBAT_BIF_TECHNOLOGY   = 3,
       ACPIBAT_BIF_DVOLTAGE     = 4,
       ACPIBAT_BIF_WCAPACITY    = 5,
       ACPIBAT_BIF_LCAPACITY    = 6,
       ACPIBAT_BIF_GRANULARITY1 = 7,
       ACPIBAT_BIF_GRANULARITY2 = 8,
       ACPIBAT_BIF_MODEL        = 9,
       ACPIBAT_BIF_SERIAL       = 10,
       ACPIBAT_BIF_TYPE         = 11,
       ACPIBAT_BIF_OEM          = 12,
       ACPIBAT_BIF_COUNT        = 13
};

/*
* Battery Status, _BST
* (ACPI 3.0, sec. 10.2.2.3).
*/
enum {
       ACPIBAT_BST_STATE        = 0,
       ACPIBAT_BST_RATE         = 1,
       ACPIBAT_BST_CAPACITY     = 2,
       ACPIBAT_BST_VOLTAGE      = 3,
       ACPIBAT_BST_COUNT        = 4
};

struct acpibat_softc {
       struct acpi_devnode     *sc_node;
       struct sysmon_envsys    *sc_sme;
       struct timeval           sc_last;
       envsys_data_t           *sc_sensor;
       kmutex_t                 sc_mutex;
       kcondvar_t               sc_condvar;
       int32_t                  sc_dcapacity;
       int32_t                  sc_dvoltage;
       int32_t                  sc_lcapacity;
       int32_t                  sc_wcapacity;
       int                      sc_present;
       bool                     sc_dying;
};

static const struct device_compatible_entry compat_data[] = {
       { .compat = "PNP0C0A" },
       DEVICE_COMPAT_EOL
};

#define ACPIBAT_PWRUNIT_MA      0x00000001  /* mA not mW */
#define ACPIBAT_ST_DISCHARGING  0x00000001  /* battery is discharging */
#define ACPIBAT_ST_CHARGING     0x00000002  /* battery is charging */
#define ACPIBAT_ST_CRITICAL     0x00000004  /* battery is critical */

/*
* A value used when _BST or _BIF is temporarily unknown.
*/
#define ACPIBAT_VAL_UNKNOWN     0xFFFFFFFF

#define ACPIBAT_VAL_ISVALID(x)                                                \
       (((x) != ACPIBAT_VAL_UNKNOWN) ? ENVSYS_SVALID : ENVSYS_SINVALID)

static int          acpibat_match(device_t, cfdata_t, void *);
static void         acpibat_attach(device_t, device_t, void *);
static int          acpibat_detach(device_t, int);
static int          acpibat_get_sta(device_t);
static ACPI_OBJECT *acpibat_get_object(ACPI_HANDLE, const char *, uint32_t);
static void         acpibat_get_info(device_t);
static void         acpibat_print_info(device_t, ACPI_OBJECT *);
static void         acpibat_get_status(device_t);
static void         acpibat_update_info(void *);
static void         acpibat_update_status(void *);
static void         acpibat_init_envsys(device_t);
static void         acpibat_notify_handler(ACPI_HANDLE, uint32_t, void *);
static void         acpibat_refresh(struct sysmon_envsys *, envsys_data_t *);
static bool         acpibat_resume(device_t, const pmf_qual_t *);
static void         acpibat_get_limits(struct sysmon_envsys *, envsys_data_t *,
                                      sysmon_envsys_lim_t *, uint32_t *);

CFATTACH_DECL_NEW(acpibat, sizeof(struct acpibat_softc),
   acpibat_match, acpibat_attach, acpibat_detach, NULL);

/*
* acpibat_match:
*
*      Autoconfiguration `match' routine.
*/
static int
acpibat_match(device_t parent, cfdata_t match, void *aux)
{
       struct acpi_attach_args *aa = aux;

       return acpi_compatible_match(aa, compat_data);
}

/*
* acpibat_attach:
*
*      Autoconfiguration `attach' routine.
*/
static void
acpibat_attach(device_t parent, device_t self, void *aux)
{
       struct acpibat_softc *sc = device_private(self);
       struct acpi_attach_args *aa = aux;
       ACPI_HANDLE tmp;
       ACPI_STATUS rv;

       aprint_naive(": ACPI Battery\n");
       aprint_normal(": ACPI Battery\n");

       sc->sc_node = aa->aa_node;

       mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_NONE);
       cv_init(&sc->sc_condvar, device_xname(self));

       sc->sc_sensor = kmem_zalloc(ACPIBAT_COUNT *
           sizeof(*sc->sc_sensor), KM_SLEEP);

       config_interrupts(self, acpibat_init_envsys);

       /*
        * If this is ever seen, the driver should be extended.
        */
       rv = AcpiGetHandle(sc->sc_node->ad_handle, "_BIX", &tmp);
       if (ACPI_SUCCESS(rv))
               aprint_verbose_dev(self, "ACPI 4.0 functionality present\n");
}

/*
* acpibat_detach:
*
*      Autoconfiguration `detach' routine.
*/
static int
acpibat_detach(device_t self, int flags)
{
       struct acpibat_softc *sc = device_private(self);

       /* Prevent further use of sc->sc_sme in acpibat_update_info.  */
       mutex_enter(&sc->sc_mutex);
       sc->sc_dying = true;
       mutex_exit(&sc->sc_mutex);

       /* Prevent further calls to acpibat_resume.  */
       pmf_device_deregister(self);

       /* Prevent further calls to acpibat_notify_handler.  */
       acpi_deregister_notify(sc->sc_node);

       /* Detach sensors and prevent further calls to acpibat_refresh. */
       if (sc->sc_sme != NULL)
               sysmon_envsys_unregister(sc->sc_sme);

       /*
        * Wait for calls to acpibat_update_info/status in case sysmon
        * envsys refreshed the sensors and queued them but they didn't
        * run before sysmon_envsys_unregister.  After this point, no
        * asynchronous access to the softc is possible.
        */
       AcpiOsWaitEventsComplete();

       if (sc->sc_sensor != NULL)
               kmem_free(sc->sc_sensor, ACPIBAT_COUNT *
                   sizeof(*sc->sc_sensor));

       cv_destroy(&sc->sc_condvar);
       mutex_destroy(&sc->sc_mutex);

       return 0;
}

/*
* acpibat_get_sta:
*
*      Evaluate whether the battery is present or absent.
*
*      Returns: 0 for no battery, 1 for present, and -1 on error.
*/
static int
acpibat_get_sta(device_t dv)
{
       struct acpibat_softc *sc = device_private(dv);
       ACPI_INTEGER val;
       ACPI_STATUS rv;

       rv = acpi_eval_integer(sc->sc_node->ad_handle, "_STA", &val);
       if (ACPI_FAILURE(rv)) {
               aprint_error_dev(dv, "failed to evaluate _STA: %s\n",
                   AcpiFormatException(rv));
               return -1;
       }

       sc->sc_sensor[ACPIBAT_PRESENT].state = ENVSYS_SVALID;

       if ((val & ACPI_STA_BATTERY_PRESENT) == 0) {
               sc->sc_sensor[ACPIBAT_PRESENT].value_cur = 0;
               return 0;
       }

       sc->sc_sensor[ACPIBAT_PRESENT].value_cur = 1;

       return 1;
}

static ACPI_OBJECT *
acpibat_get_object(ACPI_HANDLE hdl, const char *pth, uint32_t count)
{
       ACPI_OBJECT *obj;
       ACPI_BUFFER buf;
       ACPI_STATUS rv;

       rv = acpi_eval_struct(hdl, pth, &buf);
       if (ACPI_FAILURE(rv))
               return NULL;

       obj = buf.Pointer;
       if (obj->Type != ACPI_TYPE_PACKAGE) {
               ACPI_FREE(buf.Pointer);
               return NULL;
       }
       if (obj->Package.Count != count) {
               ACPI_FREE(buf.Pointer);
               return NULL;
       }

       return obj;
}

/*
* acpibat_get_info:
*
*      Get the battery info.
*/
static void
acpibat_get_info(device_t dv)
{
       struct acpibat_softc *sc = device_private(dv);
       ACPI_HANDLE hdl = sc->sc_node->ad_handle;
       ACPI_OBJECT *elm, *obj;
       ACPI_STATUS rv = AE_OK;
       int capunit, i, rateunit;
       uint64_t val;

       obj = acpibat_get_object(hdl, "_BIF", ACPIBAT_BIF_COUNT);
       if (obj == NULL) {
               rv = AE_ERROR;
               goto out;
       }

       elm = obj->Package.Elements;
       for (i = ACPIBAT_BIF_UNIT; i < ACPIBAT_BIF_MODEL; i++) {
               if (elm[i].Type != ACPI_TYPE_INTEGER) {
                       rv = AE_TYPE;
                       goto out;
               }
               if (elm[i].Integer.Value != ACPIBAT_VAL_UNKNOWN &&
                   elm[i].Integer.Value >= INT_MAX) {
                       rv = AE_LIMIT;
                       goto out;
               }
       }

       switch (elm[ACPIBAT_BIF_UNIT].Integer.Value) {
       case ACPIBAT_PWRUNIT_MA:
               capunit = ENVSYS_SAMPHOUR;
               rateunit = ENVSYS_SAMPS;
               break;
       default:
               capunit = ENVSYS_SWATTHOUR;
               rateunit = ENVSYS_SWATTS;
               break;
       }

       sc->sc_sensor[ACPIBAT_DCAPACITY].units = capunit;
       sc->sc_sensor[ACPIBAT_LFCCAPACITY].units = capunit;
       sc->sc_sensor[ACPIBAT_CHARGERATE].units = rateunit;
       sc->sc_sensor[ACPIBAT_DISCHARGERATE].units = rateunit;
       sc->sc_sensor[ACPIBAT_CAPACITY].units = capunit;

       /* Design capacity. */
       val = elm[ACPIBAT_BIF_DCAPACITY].Integer.Value;
       sc->sc_sensor[ACPIBAT_DCAPACITY].value_cur = val * 1000;
       sc->sc_sensor[ACPIBAT_DCAPACITY].state = ACPIBAT_VAL_ISVALID(val);

       /* Last full charge capacity. */
       val = elm[ACPIBAT_BIF_LFCCAPACITY].Integer.Value;
       sc->sc_sensor[ACPIBAT_LFCCAPACITY].value_cur = val * 1000;
       sc->sc_sensor[ACPIBAT_LFCCAPACITY].state = ACPIBAT_VAL_ISVALID(val);

       /* Design voltage. */
       val = elm[ACPIBAT_BIF_DVOLTAGE].Integer.Value;
       sc->sc_sensor[ACPIBAT_DVOLTAGE].value_cur = val * 1000;
       sc->sc_sensor[ACPIBAT_DVOLTAGE].state = ACPIBAT_VAL_ISVALID(val);

       /* Design low and warning capacity. */
       sc->sc_lcapacity = elm[ACPIBAT_BIF_LCAPACITY].Integer.Value * 1000;
       sc->sc_wcapacity = elm[ACPIBAT_BIF_WCAPACITY].Integer.Value * 1000;

       /*
        * Initialize the maximum of current capacity
        * to the last known full charge capacity.
        */
       val = sc->sc_sensor[ACPIBAT_LFCCAPACITY].value_cur;
       sc->sc_sensor[ACPIBAT_CAPACITY].value_max = val;

       acpibat_print_info(dv, elm);

out:
       if (obj != NULL)
               ACPI_FREE(obj);

       if (ACPI_FAILURE(rv))
               aprint_error_dev(dv, "failed to evaluate _BIF: %s\n",
                   AcpiFormatException(rv));
}

/*
* acpibat_print_info:
*
*      Display the battery info.
*/
static void
acpibat_print_info(device_t dv, ACPI_OBJECT *elm)
{
       struct acpibat_softc *sc = device_private(dv);
       const char *tech, *unit;
       int32_t dcap, dvol;
       int i;

       for (i = ACPIBAT_BIF_OEM; i > ACPIBAT_BIF_GRANULARITY2; i--) {
               if (elm[i].Type != ACPI_TYPE_STRING)
                       return;
               if (elm[i].String.Pointer == NULL)
                       return;
               if (elm[i].String.Pointer[0] == '\0')
                       return;
       }

       dcap = elm[ACPIBAT_BIF_DCAPACITY].Integer.Value;
       dvol = elm[ACPIBAT_BIF_DVOLTAGE].Integer.Value;

       /*
        * Try to detect whether the battery was switched.
        */
       if (sc->sc_dcapacity == dcap && sc->sc_dvoltage == dvol)
               return;
       else {
               sc->sc_dcapacity = dcap;
               sc->sc_dvoltage = dvol;
       }

       tech = (elm[ACPIBAT_BIF_TECHNOLOGY].Integer.Value != 0) ?
           "rechargeable" : "non-rechargeable";

       aprint_normal_dev(dv, "%s %s %s battery\n",
           elm[ACPIBAT_BIF_OEM].String.Pointer,
           elm[ACPIBAT_BIF_TYPE].String.Pointer, tech);

       aprint_debug_dev(dv, "model number %s, serial number %s\n",
           elm[ACPIBAT_BIF_MODEL].String.Pointer,
           elm[ACPIBAT_BIF_SERIAL].String.Pointer);

#define SCALE(x) (((int)x) / 1000000), ((((int)x) % 1000000) / 1000)

       /*
        * These values are defined as follows (ACPI 4.0, p. 388):
        *
        * Granularity 1.       "Battery capacity granularity between low
        *                       and warning in [mAh] or [mWh]. That is,
        *                       this is the smallest increment in capacity
        *                       that the battery is capable of measuring."
        *
        * Granularity 2.       "Battery capacity granularity between warning
        *                       and full in [mAh] or [mWh]. [...]"
        */
       switch (elm[ACPIBAT_BIF_UNIT].Integer.Value) {
       case ACPIBAT_PWRUNIT_MA:
               unit = "Ah";
               break;
       default:
               unit = "Wh";
               break;
       }

       aprint_verbose_dev(dv, "granularity: "
           "low->warn %d.%03d %s, warn->full %d.%03d %s\n",
           SCALE(elm[ACPIBAT_BIF_GRANULARITY1].Integer.Value * 1000), unit,
           SCALE(elm[ACPIBAT_BIF_GRANULARITY2].Integer.Value * 1000), unit);
}

/*
* acpibat_get_status:
*
*      Get the current battery status.
*/
static void
acpibat_get_status(device_t dv)
{
       struct acpibat_softc *sc = device_private(dv);
       ACPI_HANDLE hdl = sc->sc_node->ad_handle;
       ACPI_OBJECT *elm, *obj;
       ACPI_STATUS rv = AE_OK;
       int i, rate, state;
       uint64_t val;

       obj = acpibat_get_object(hdl, "_BST", ACPIBAT_BST_COUNT);
       if (obj == NULL) {
               rv = AE_ERROR;
               goto out;
       }

       elm = obj->Package.Elements;
       for (i = ACPIBAT_BST_STATE; i < ACPIBAT_BST_COUNT; i++) {
               if (elm[i].Type != ACPI_TYPE_INTEGER) {
                       rv = AE_TYPE;
                       goto out;
               }
       }

       state = elm[ACPIBAT_BST_STATE].Integer.Value;
       if ((state & ACPIBAT_ST_CHARGING) != 0) {
               /* XXX rate can be invalid */
               rate = elm[ACPIBAT_BST_RATE].Integer.Value;
               sc->sc_sensor[ACPIBAT_CHARGERATE].state = ENVSYS_SVALID;
               sc->sc_sensor[ACPIBAT_CHARGERATE].value_cur = rate * 1000;
               sc->sc_sensor[ACPIBAT_DISCHARGERATE].state = ENVSYS_SINVALID;
               sc->sc_sensor[ACPIBAT_CHARGING].state = ENVSYS_SVALID;
               sc->sc_sensor[ACPIBAT_CHARGING].value_cur = 1;
       } else if ((state & ACPIBAT_ST_DISCHARGING) != 0) {
               rate = elm[ACPIBAT_BST_RATE].Integer.Value;
               sc->sc_sensor[ACPIBAT_DISCHARGERATE].state = ENVSYS_SVALID;
               sc->sc_sensor[ACPIBAT_DISCHARGERATE].value_cur = rate * 1000;
               sc->sc_sensor[ACPIBAT_CHARGERATE].state = ENVSYS_SINVALID;
               sc->sc_sensor[ACPIBAT_CHARGING].state = ENVSYS_SVALID;
               sc->sc_sensor[ACPIBAT_CHARGING].value_cur = 0;
       } else {
               sc->sc_sensor[ACPIBAT_CHARGING].state = ENVSYS_SVALID;
               sc->sc_sensor[ACPIBAT_CHARGING].value_cur = 0;
               sc->sc_sensor[ACPIBAT_CHARGERATE].state = ENVSYS_SINVALID;
               sc->sc_sensor[ACPIBAT_DISCHARGERATE].state = ENVSYS_SINVALID;
       }

       /* Remaining capacity. */
       val = elm[ACPIBAT_BST_CAPACITY].Integer.Value;
       sc->sc_sensor[ACPIBAT_CAPACITY].value_cur = val * 1000;
       sc->sc_sensor[ACPIBAT_CAPACITY].state = ACPIBAT_VAL_ISVALID(val);

       /* Battery voltage. */
       val = elm[ACPIBAT_BST_VOLTAGE].Integer.Value;
       sc->sc_sensor[ACPIBAT_VOLTAGE].value_cur = val * 1000;
       sc->sc_sensor[ACPIBAT_VOLTAGE].state = ACPIBAT_VAL_ISVALID(val);

       sc->sc_sensor[ACPIBAT_CHARGE_STATE].state = ENVSYS_SVALID;
       sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur =
           ENVSYS_BATTERY_CAPACITY_NORMAL;

       if (sc->sc_sensor[ACPIBAT_CAPACITY].value_cur < sc->sc_wcapacity) {
               sc->sc_sensor[ACPIBAT_CAPACITY].state = ENVSYS_SWARNUNDER;
               sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur =
                   ENVSYS_BATTERY_CAPACITY_WARNING;
       }

       if (sc->sc_sensor[ACPIBAT_CAPACITY].value_cur < sc->sc_lcapacity) {
               sc->sc_sensor[ACPIBAT_CAPACITY].state = ENVSYS_SCRITUNDER;
               sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur =
                   ENVSYS_BATTERY_CAPACITY_LOW;
       }

       if ((state & ACPIBAT_ST_CRITICAL) != 0) {
               sc->sc_sensor[ACPIBAT_CAPACITY].state = ENVSYS_SCRITICAL;
               sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur =
                   ENVSYS_BATTERY_CAPACITY_CRITICAL;
       }

out:
       if (obj != NULL)
               ACPI_FREE(obj);

       if (ACPI_FAILURE(rv))
               aprint_error_dev(dv, "failed to evaluate _BST: %s\n",
                   AcpiFormatException(rv));
}

static void
acpibat_update_info(void *arg)
{
       device_t dv = arg;
       struct acpibat_softc *sc = device_private(dv);
       int i, rv;

       mutex_enter(&sc->sc_mutex);

       /* Don't touch sc_sme if we're detaching.  */
       if (sc->sc_dying)
               goto out;

       rv = acpibat_get_sta(dv);
       if (rv > 0) {
               acpibat_get_info(dv);

               /*
                * If the status changed, update the limits.
                */
               if (sc->sc_present == 0 &&
                   sc->sc_sensor[ACPIBAT_CAPACITY].value_max > 0)
                       sysmon_envsys_update_limits(sc->sc_sme,
                           &sc->sc_sensor[ACPIBAT_CAPACITY]);
       } else {
               i = (rv < 0) ? 0 : ACPIBAT_DVOLTAGE;
               while (i < ACPIBAT_COUNT) {
                       sc->sc_sensor[i].state = ENVSYS_SINVALID;
                       i++;
               }
       }

       sc->sc_present = rv;
out:
       mutex_exit(&sc->sc_mutex);
}

static void
acpibat_update_status(void *arg)
{
       device_t dv = arg;
       struct acpibat_softc *sc = device_private(dv);
       int i, rv;

       mutex_enter(&sc->sc_mutex);

       rv = acpibat_get_sta(dv);
       if (rv > 0) {
               if (sc->sc_present == 0)
                       acpibat_get_info(dv);
               acpibat_get_status(dv);
       } else {
               i = (rv < 0) ? 0 : ACPIBAT_DVOLTAGE;
               while (i < ACPIBAT_COUNT) {
                       sc->sc_sensor[i].state = ENVSYS_SINVALID;
                       i++;
               }
       }

       sc->sc_present = rv;
       microtime(&sc->sc_last);

       cv_broadcast(&sc->sc_condvar);
       mutex_exit(&sc->sc_mutex);
}

/*
* acpibat_notify_handler:
*
*      Callback from ACPI interrupt handler to notify us of an event.
*/
static void
acpibat_notify_handler(ACPI_HANDLE handle, uint32_t notify, void *context)
{
       static const int handler = OSL_NOTIFY_HANDLER;
       device_t dv = context;

       switch (notify) {
       case ACPI_NOTIFY_BUS_CHECK:
               break;
       case ACPI_NOTIFY_BAT_INFO:
       case ACPI_NOTIFY_DEVICE_CHECK:
               (void)AcpiOsExecute(handler, acpibat_update_info, dv);
               break;
       case ACPI_NOTIFY_BAT_STATUS:
               (void)AcpiOsExecute(handler, acpibat_update_status, dv);
               break;
       default:
               aprint_error_dev(dv, "unknown notify: 0x%02X\n", notify);
       }
}

static void
acpibat_init_envsys(device_t dv)
{
       struct acpibat_softc *sc = device_private(dv);
       int i;

#define INITDATA(index, unit, string)                                   \
       do {                                                            \
               sc->sc_sensor[index].state = ENVSYS_SVALID;             \
               sc->sc_sensor[index].units = unit;                      \
               (void)strlcpy(sc->sc_sensor[index].desc, string,        \
                   sizeof(sc->sc_sensor[index].desc));                 \
       } while (/* CONSTCOND */ 0)

       INITDATA(ACPIBAT_PRESENT, ENVSYS_INDICATOR, "present");
       INITDATA(ACPIBAT_DCAPACITY, ENVSYS_SWATTHOUR, "design cap");
       INITDATA(ACPIBAT_LFCCAPACITY, ENVSYS_SWATTHOUR, "last full cap");
       INITDATA(ACPIBAT_DVOLTAGE, ENVSYS_SVOLTS_DC, "design voltage");
       INITDATA(ACPIBAT_VOLTAGE, ENVSYS_SVOLTS_DC, "voltage");
       INITDATA(ACPIBAT_CHARGERATE, ENVSYS_SWATTS, "charge rate");
       INITDATA(ACPIBAT_DISCHARGERATE, ENVSYS_SWATTS, "discharge rate");
       INITDATA(ACPIBAT_CAPACITY, ENVSYS_SWATTHOUR, "charge");
       INITDATA(ACPIBAT_CHARGING, ENVSYS_BATTERY_CHARGE, "charging");
       INITDATA(ACPIBAT_CHARGE_STATE, ENVSYS_BATTERY_CAPACITY, "charge state");

#undef INITDATA

       sc->sc_sensor[ACPIBAT_CHARGE_STATE].value_cur =
               ENVSYS_BATTERY_CAPACITY_NORMAL;

       sc->sc_sensor[ACPIBAT_CAPACITY].flags |=
           ENVSYS_FPERCENT | ENVSYS_FVALID_MAX | ENVSYS_FMONLIMITS;

       sc->sc_sensor[ACPIBAT_CHARGE_STATE].flags |= ENVSYS_FMONSTCHANGED;

       /* Disable userland monitoring on these sensors. */
       sc->sc_sensor[ACPIBAT_VOLTAGE].flags = ENVSYS_FMONNOTSUPP;
       sc->sc_sensor[ACPIBAT_CHARGERATE].flags = ENVSYS_FMONNOTSUPP;
       sc->sc_sensor[ACPIBAT_DISCHARGERATE].flags = ENVSYS_FMONNOTSUPP;
       sc->sc_sensor[ACPIBAT_DCAPACITY].flags = ENVSYS_FMONNOTSUPP;
       sc->sc_sensor[ACPIBAT_LFCCAPACITY].flags = ENVSYS_FMONNOTSUPP;
       sc->sc_sensor[ACPIBAT_DVOLTAGE].flags = ENVSYS_FMONNOTSUPP;

       /* Attach rnd(9) to the (dis)charge rates. */
       sc->sc_sensor[ACPIBAT_CHARGERATE].flags |= ENVSYS_FHAS_ENTROPY;
       sc->sc_sensor[ACPIBAT_DISCHARGERATE].flags |= ENVSYS_FHAS_ENTROPY;

       sc->sc_sme = sysmon_envsys_create();

       for (i = 0; i < ACPIBAT_COUNT; i++) {
               if (sysmon_envsys_sensor_attach(sc->sc_sme,
                       &sc->sc_sensor[i]))
                       goto fail;
       }

       sc->sc_sme->sme_name = device_xname(dv);
       sc->sc_sme->sme_cookie = dv;
       sc->sc_sme->sme_refresh = acpibat_refresh;
       sc->sc_sme->sme_class = SME_CLASS_BATTERY;
       sc->sc_sme->sme_flags = SME_POLL_ONLY;
       sc->sc_sme->sme_get_limits = acpibat_get_limits;

       if (sysmon_envsys_register(sc->sc_sme))
               goto fail;

       (void)acpi_register_notify(sc->sc_node, acpibat_notify_handler);
       acpibat_update_info(dv);
       acpibat_update_status(dv);

       (void)pmf_device_register(dv, NULL, acpibat_resume);

       return;
fail:
       aprint_error_dev(dv, "failed to initialize sysmon\n");

       sysmon_envsys_destroy(sc->sc_sme);
       kmem_free(sc->sc_sensor, ACPIBAT_COUNT * sizeof(*sc->sc_sensor));

       sc->sc_sme = NULL;
       sc->sc_sensor = NULL;
}

static void
acpibat_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
       device_t self = sme->sme_cookie;
       struct acpibat_softc *sc;
       struct timeval tv, tmp;
       ACPI_STATUS rv;

       sc = device_private(self);

       tmp.tv_sec = 10;
       tmp.tv_usec = 0;

       microtime(&tv);
       timersub(&tv, &tmp, &tv);
       if (timercmp(&tv, &sc->sc_last, <) != 0)
               return;

       if (mutex_tryenter(&sc->sc_mutex) == 0)
               return;

       rv = AcpiOsExecute(OSL_NOTIFY_HANDLER, acpibat_update_status, self);
       if (ACPI_SUCCESS(rv))
               cv_timedwait(&sc->sc_condvar, &sc->sc_mutex, hz);

       mutex_exit(&sc->sc_mutex);
}

static bool
acpibat_resume(device_t dv, const pmf_qual_t *qual)
{

       (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, acpibat_update_info, dv);
       (void)AcpiOsExecute(OSL_NOTIFY_HANDLER, acpibat_update_status, dv);

       return true;
}

static void
acpibat_get_limits(struct sysmon_envsys *sme, envsys_data_t *edata,
   sysmon_envsys_lim_t *limits, uint32_t *props)
{
       device_t dv = sme->sme_cookie;
       struct acpibat_softc *sc = device_private(dv);

       if (edata->sensor != ACPIBAT_CAPACITY)
               return;

       limits->sel_critmin = sc->sc_lcapacity;
       limits->sel_warnmin = sc->sc_wcapacity;

       *props |= PROP_BATTCAP | PROP_BATTWARN | PROP_DRIVER_LIMITS;
}

MODULE(MODULE_CLASS_DRIVER, acpibat, "sysmon_envsys");

#ifdef _MODULE
#include "ioconf.c"
#endif

static int
acpibat_modcmd(modcmd_t cmd, void *aux)
{
       int rv = 0;

       switch (cmd) {
       case MODULE_CMD_INIT:
#ifdef _MODULE
               rv = config_init_component(cfdriver_ioconf_acpibat,
                   cfattach_ioconf_acpibat, cfdata_ioconf_acpibat);
#endif
               break;
       case MODULE_CMD_FINI:
#ifdef _MODULE
               rv = config_fini_component(cfdriver_ioconf_acpibat,
                   cfattach_ioconf_acpibat, cfdata_ioconf_acpibat);
#endif
               break;
       default:
               rv = ENOTTY;
       }

       return rv;
}