/*      $NetBSD: acpi_apm.c,v 1.20 2010/10/24 07:53:04 jruoho Exp $     */

/*-
* Copyright (c) 2006 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Christos Zoulas and by Jared McNeill.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Autoconfiguration support for the Intel ACPI Component Architecture
* ACPI reference implementation.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_apm.c,v 1.20 2010/10/24 07:53:04 jruoho Exp $");

#include <sys/param.h>
#include <sys/device.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/queue.h>
#include <sys/envsys.h>

#include <dev/sysmon/sysmonvar.h>

#include <dev/acpi/acpivar.h>
#include <dev/apm/apmvar.h>

static void     acpiapm_disconnect(void *);
static void     acpiapm_enable(void *, int);
static int      acpiapm_set_powstate(void *, u_int, u_int);
static int      acpiapm_get_powstat(void *, u_int, struct apm_power_info *);
static bool     apm_per_sensor(const struct sysmon_envsys *,
                              const envsys_data_t *, void *);
static int      acpiapm_get_event(void *, u_int *, u_int *);
static void     acpiapm_cpu_busy(void *);
static void     acpiapm_cpu_idle(void *);
static void     acpiapm_get_capabilities(void *, u_int *, u_int *);

struct apm_accessops acpiapm_accessops = {
       acpiapm_disconnect,
       acpiapm_enable,
       acpiapm_set_powstate,
       acpiapm_get_powstat,
       acpiapm_get_event,
       acpiapm_cpu_busy,
       acpiapm_cpu_idle,
       acpiapm_get_capabilities,
};

#ifdef ACPI_APM_DEBUG
#define DPRINTF(a) uprintf a
#else
#define DPRINTF(a)
#endif

#ifndef ACPI_APM_DEFAULT_STANDBY_STATE
#define ACPI_APM_DEFAULT_STANDBY_STATE  (1)
#endif
#ifndef ACPI_APM_DEFAULT_SUSPEND_STATE
#define ACPI_APM_DEFAULT_SUSPEND_STATE  (3)
#endif
#define ACPI_APM_DEFAULT_CAP                                                  \
       ((ACPI_APM_DEFAULT_STANDBY_STATE!=0 ? APM_GLOBAL_STANDBY : 0) |       \
        (ACPI_APM_DEFAULT_SUSPEND_STATE!=0 ? APM_GLOBAL_SUSPEND : 0))
#define ACPI_APM_STATE_MIN              (0)
#define ACPI_APM_STATE_MAX              (4)

/* It is assumed that there is only acpiapm instance. */
static int resumed = 0, capability_changed = 0;
static int standby_state = ACPI_APM_DEFAULT_STANDBY_STATE;
static int suspend_state = ACPI_APM_DEFAULT_SUSPEND_STATE;
static int capabilities = ACPI_APM_DEFAULT_CAP;
static int acpiapm_node = CTL_EOL, standby_node = CTL_EOL;

struct acpi_softc;
extern void acpi_enter_sleep_state(int);
static int acpiapm_match(device_t, cfdata_t , void *);
static void acpiapm_attach(device_t, device_t, void *);
static int sysctl_state(SYSCTLFN_PROTO);

CFATTACH_DECL_NEW(acpiapm, sizeof(struct apm_softc),
   acpiapm_match, acpiapm_attach, NULL, NULL);

static int
/*ARGSUSED*/
acpiapm_match(device_t parent, cfdata_t match, void *aux)
{
       return apm_match();
}

static void
/*ARGSUSED*/
acpiapm_attach(device_t parent, device_t self, void *aux)
{
       struct apm_softc *sc = device_private(self);

       sc->sc_dev = self;
       sc->sc_ops = &acpiapm_accessops;
       sc->sc_cookie = parent;
       sc->sc_vers = 0x0102;
       sc->sc_detail = 0;
       sc->sc_hwflags = APM_F_DONT_RUN_HOOKS;
       apm_attach(sc);
}

static int
get_state_value(int id)
{
       const int states[] = {
               ACPI_STATE_S0,
               ACPI_STATE_S1,
               ACPI_STATE_S2,
               ACPI_STATE_S3,
               ACPI_STATE_S4
       };

       if (id < ACPI_APM_STATE_MIN || id > ACPI_APM_STATE_MAX)
               return ACPI_STATE_S0;

       return states[id];
}

static int
sysctl_state(SYSCTLFN_ARGS)
{
       int newstate, error, *ref, cap, oldcap;
       struct sysctlnode node;

       if (rnode->sysctl_num == standby_node) {
               ref = &standby_state;
               cap = APM_GLOBAL_STANDBY;
       } else {
               ref = &suspend_state;
               cap = APM_GLOBAL_SUSPEND;
       }

       newstate = *ref;
       node = *rnode;
       node.sysctl_data = &newstate;
       error = sysctl_lookup(SYSCTLFN_CALL(&node));
       if (error || newp == NULL)
               return error;

       if (newstate < ACPI_APM_STATE_MIN || newstate > ACPI_APM_STATE_MAX)
               return EINVAL;

       *ref = newstate;
       oldcap = capabilities;
       capabilities = newstate != 0 ? oldcap | cap : oldcap & ~cap;
       if ((capabilities ^ oldcap) != 0)
               capability_changed = 1;

       return 0;
}

SYSCTL_SETUP(sysctl_acpiapm_setup, "sysctl machdep.acpiapm subtree setup")
{
       const struct sysctlnode *node;

       if (sysctl_createv(clog, 0, NULL, NULL,
                          CTLFLAG_PERMANENT,
                          CTLTYPE_NODE, "machdep", NULL,
                          NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL))
               return;

       if (sysctl_createv(clog, 0, NULL, &node,
                          CTLFLAG_PERMANENT,
                          CTLTYPE_NODE, "acpiapm", NULL,
                          NULL, 0, NULL, 0,
                          CTL_MACHDEP, CTL_CREATE, CTL_EOL))
               return;
       acpiapm_node = node->sysctl_num;

       if (sysctl_createv(clog, 0, NULL, &node,
                          CTLFLAG_READWRITE,
                          CTLTYPE_INT, "standby", NULL,
                          &sysctl_state, 0, NULL, 0,
                          CTL_MACHDEP, acpiapm_node, CTL_CREATE, CTL_EOL))
               return;
       standby_node = node->sysctl_num;

       if (sysctl_createv(clog, 0, NULL, NULL,
                          CTLFLAG_READWRITE,
                          CTLTYPE_INT, "suspend", NULL,
                          &sysctl_state, 0, NULL, 0,
                          CTL_MACHDEP, acpiapm_node, CTL_CREATE, CTL_EOL))
               return;
}

/*****************************************************************************
* Minimalistic ACPI /dev/apm emulation support, for ACPI suspend
*****************************************************************************/

static void
/*ARGSUSED*/
acpiapm_disconnect(void *opaque)
{
       return;
}

static void
/*ARGSUSED*/
acpiapm_enable(void *opaque, int onoff)
{
       return;
}

static int
acpiapm_set_powstate(void *opaque, u_int devid, u_int powstat)
{

       if (devid != APM_DEV_ALLDEVS)
               return APM_ERR_UNRECOG_DEV;

       switch (powstat) {
       case APM_SYS_READY:
               break;
       case APM_SYS_STANDBY:
               acpi_enter_sleep_state(get_state_value(standby_state));
               resumed = 1;
               break;
       case APM_SYS_SUSPEND:
               acpi_enter_sleep_state(get_state_value(suspend_state));
               resumed = 1;
               break;
       case APM_SYS_OFF:
               break;
       case APM_LASTREQ_INPROG:
               break;
       case APM_LASTREQ_REJECTED:
               break;
       }

       return 0;
}

struct apm_sensor_info {
       struct apm_power_info *pinfo;
       int present;
       int lastcap, descap, cap, warncap, lowcap, discharge;
       int lastcap_valid, cap_valid, discharge_valid;
};

static bool
apm_per_sensor(const struct sysmon_envsys *sme, const envsys_data_t *edata,
              void *arg)
{
       struct apm_sensor_info *info = (struct apm_sensor_info *)arg;
       int data;

       if (sme->sme_class != SME_CLASS_ACADAPTER &&
           sme->sme_class != SME_CLASS_BATTERY)
               return false;

       if (edata->state == ENVSYS_SINVALID)
               return true;

       data = edata->value_cur;

       DPRINTF(("%s (%s) %d\n", sme->sme_name, edata->desc, data));

       if (strstr(edata->desc, "connected")) {
               info->pinfo->ac_state = data ? APM_AC_ON : APM_AC_OFF;
       }
       else if (strstr(edata->desc, "present") && data != 0)
               info->present++;
       else if (strstr(edata->desc, "charging")) {
               if (data)
                       info->pinfo->battery_flags |= APM_BATT_FLAG_CHARGING;
               else
                       info->pinfo->battery_flags &= ~APM_BATT_FLAG_CHARGING;
               }
       else if (strstr(edata->desc, "last full cap")) {
               info->lastcap += data / 1000;
               info->lastcap_valid = 1;
       }
       else if (strstr(edata->desc, "design cap"))
               info->descap = data / 1000;
       else if (strstr(edata->desc, "charge") &&
           strstr(edata->desc, "charge rate") == NULL &&
           strstr(edata->desc, "charge state") == NULL) {

               /* Update cumulative capacity */
               info->cap += data / 1000;

               /* get warning- & critical-capacity values */
               info->warncap = edata->limits.sel_warnmin / 1000;
               info->lowcap = edata->limits.sel_critmin / 1000;

               info->cap_valid = 1;
               info->pinfo->nbattery++;
       }
       else if (strstr(edata->desc, "discharge rate")) {
               info->discharge += data / 1000;
               info->discharge_valid = 1;
       }
       return true;
}

static int
/*ARGSUSED*/
acpiapm_get_powstat(void *opaque, u_int batteryid,
       struct apm_power_info *pinfo)
{
#define APM_BATT_FLAG_WATERMARK_MASK (APM_BATT_FLAG_CRITICAL |                \
                                     APM_BATT_FLAG_LOW |                     \
                                     APM_BATT_FLAG_HIGH)
       struct apm_sensor_info info;

       /* Denote most variables as uninitialized. */
       info.lowcap = info.warncap = info.descap = -1;

       /*
        * Prepare to aggregate capacity, charge, and discharge over all
        * batteries.
        */
       info.cap = info.lastcap = info.discharge = 0;
       info.cap_valid = info.lastcap_valid = info.discharge_valid = 0;
       info.present = 0;

       info.pinfo = pinfo;

       (void)memset(pinfo, 0, sizeof(*pinfo));
       pinfo->ac_state = APM_AC_UNKNOWN;
       pinfo->minutes_valid = 0;
       pinfo->minutes_left = 0;
       pinfo->batteryid = 0;
       pinfo->nbattery = 0;    /* to be incremented as batteries are found */
       pinfo->battery_flags = 0;
       pinfo->battery_state = APM_BATT_UNKNOWN; /* ignored */
       pinfo->battery_life = APM_BATT_LIFE_UNKNOWN;

       sysmon_envsys_foreach_sensor(apm_per_sensor, (void *)&info, true);

       if (info.present == 0)
               pinfo->battery_flags |= APM_BATT_FLAG_NO_SYSTEM_BATTERY;

       if (info.cap_valid > 0)  {
               if (info.warncap != -1 && info.cap < info.warncap)
                       pinfo->battery_flags |= APM_BATT_FLAG_CRITICAL;
               else if (info.lowcap != -1) {
                       if (info.cap < info.lowcap)
                               pinfo->battery_flags |= APM_BATT_FLAG_LOW;
                       else
                               pinfo->battery_flags |= APM_BATT_FLAG_HIGH;
               }
               if (info.lastcap_valid > 0 && info.lastcap != 0)
                       pinfo->battery_life = 100 * info.cap / info.lastcap;
               else if (info.descap != -1 && info.descap != 0)
                       pinfo->battery_life = 100 * info.cap / info.descap;
       }

       if ((pinfo->battery_flags & APM_BATT_FLAG_CHARGING) == 0) {
               /* discharging */
               if (info.discharge != -1 && info.discharge != 0 &&
                   info.cap != -1)
                       pinfo->minutes_left = 60 * info.cap / info.discharge;
       }
       if ((pinfo->battery_flags & APM_BATT_FLAG_WATERMARK_MASK) == 0 &&
           (pinfo->battery_flags & APM_BATT_FLAG_NO_SYSTEM_BATTERY) == 0) {
               if (pinfo->ac_state == APM_AC_ON)
                       pinfo->battery_flags |= APM_BATT_FLAG_HIGH;
               else
                       pinfo->battery_flags |= APM_BATT_FLAG_LOW;
       }

       DPRINTF(("%d %d %d %d %d %d\n", info.cap, info.warncap, info.lowcap,
           info.lastcap, info.descap, info.discharge));
       DPRINTF(("pinfo %d %d %d\n", pinfo->battery_flags,
           pinfo->battery_life, pinfo->battery_life));
       return 0;
}

static int
/*ARGSUSED*/
acpiapm_get_event(void *opaque, u_int *event_type, u_int *event_info)
{
       if (capability_changed) {
               capability_changed = 0;
               *event_type = APM_CAP_CHANGE;
               *event_info = 0;
               return 0;
       }
       if (resumed) {
               resumed = 0;
               *event_type = APM_NORMAL_RESUME;
               *event_info = 0;
               return 0;
       }

       return APM_ERR_NOEVENTS;
}

static void
/*ARGSUSED*/
acpiapm_cpu_busy(void *opaque)
{
       return;
}

static void
/*ARGSUSED*/
acpiapm_cpu_idle(void *opaque)
{
       return;
}

static void
/*ARGSUSED*/
acpiapm_get_capabilities(void *opaque, u_int *numbatts,
       u_int *capflags)
{
       *numbatts = 1;
       *capflags = capabilities;
       return;
}