/*      $NetBSD: aes_ct_dec.c,v 1.2 2020/06/29 23:36:59 riastradh Exp $ */

/*
* Copyright (c) 2016 Thomas Pornin <[email protected]>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(1, "$NetBSD: aes_ct_dec.c,v 1.2 2020/06/29 23:36:59 riastradh Exp $");

#include <sys/types.h>

#include <crypto/aes/aes_bear.h>

/* see inner.h */
void
br_aes_ct_bitslice_invSbox(uint32_t *q)
{
       /*
        * AES S-box is:
        *   S(x) = A(I(x)) ^ 0x63
        * where I() is inversion in GF(256), and A() is a linear
        * transform (0 is formally defined to be its own inverse).
        * Since inversion is an involution, the inverse S-box can be
        * computed from the S-box as:
        *   iS(x) = B(S(B(x ^ 0x63)) ^ 0x63)
        * where B() is the inverse of A(). Indeed, for any y in GF(256):
        *   iS(S(y)) = B(A(I(B(A(I(y)) ^ 0x63 ^ 0x63))) ^ 0x63 ^ 0x63) = y
        *
        * Note: we reuse the implementation of the forward S-box,
        * instead of duplicating it here, so that total code size is
        * lower. By merging the B() transforms into the S-box circuit
        * we could make faster CBC decryption, but CBC decryption is
        * already quite faster than CBC encryption because we can
        * process two blocks in parallel.
        */
       uint32_t q0, q1, q2, q3, q4, q5, q6, q7;

       q0 = ~q[0];
       q1 = ~q[1];
       q2 = q[2];
       q3 = q[3];
       q4 = q[4];
       q5 = ~q[5];
       q6 = ~q[6];
       q7 = q[7];
       q[7] = q1 ^ q4 ^ q6;
       q[6] = q0 ^ q3 ^ q5;
       q[5] = q7 ^ q2 ^ q4;
       q[4] = q6 ^ q1 ^ q3;
       q[3] = q5 ^ q0 ^ q2;
       q[2] = q4 ^ q7 ^ q1;
       q[1] = q3 ^ q6 ^ q0;
       q[0] = q2 ^ q5 ^ q7;

       br_aes_ct_bitslice_Sbox(q);

       q0 = ~q[0];
       q1 = ~q[1];
       q2 = q[2];
       q3 = q[3];
       q4 = q[4];
       q5 = ~q[5];
       q6 = ~q[6];
       q7 = q[7];
       q[7] = q1 ^ q4 ^ q6;
       q[6] = q0 ^ q3 ^ q5;
       q[5] = q7 ^ q2 ^ q4;
       q[4] = q6 ^ q1 ^ q3;
       q[3] = q5 ^ q0 ^ q2;
       q[2] = q4 ^ q7 ^ q1;
       q[1] = q3 ^ q6 ^ q0;
       q[0] = q2 ^ q5 ^ q7;
}

static void
add_round_key(uint32_t *q, const uint32_t *sk)
{
       int i;

       for (i = 0; i < 8; i ++) {
               q[i] ^= sk[i];
       }
}

static void
inv_shift_rows(uint32_t *q)
{
       int i;

       for (i = 0; i < 8; i ++) {
               uint32_t x;

               x = q[i];
               q[i] = (x & 0x000000FF)
                       | ((x & 0x00003F00) << 2) | ((x & 0x0000C000) >> 6)
                       | ((x & 0x000F0000) << 4) | ((x & 0x00F00000) >> 4)
                       | ((x & 0x03000000) << 6) | ((x & 0xFC000000) >> 2);
       }
}

static inline uint32_t
rotr16(uint32_t x)
{
       return (x << 16) | (x >> 16);
}

static void
inv_mix_columns(uint32_t *q)
{
       uint32_t q0, q1, q2, q3, q4, q5, q6, q7;
       uint32_t r0, r1, r2, r3, r4, r5, r6, r7;

       q0 = q[0];
       q1 = q[1];
       q2 = q[2];
       q3 = q[3];
       q4 = q[4];
       q5 = q[5];
       q6 = q[6];
       q7 = q[7];
       r0 = (q0 >> 8) | (q0 << 24);
       r1 = (q1 >> 8) | (q1 << 24);
       r2 = (q2 >> 8) | (q2 << 24);
       r3 = (q3 >> 8) | (q3 << 24);
       r4 = (q4 >> 8) | (q4 << 24);
       r5 = (q5 >> 8) | (q5 << 24);
       r6 = (q6 >> 8) | (q6 << 24);
       r7 = (q7 >> 8) | (q7 << 24);

       q[0] = q5 ^ q6 ^ q7 ^ r0 ^ r5 ^ r7 ^ rotr16(q0 ^ q5 ^ q6 ^ r0 ^ r5);
       q[1] = q0 ^ q5 ^ r0 ^ r1 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q5 ^ q7 ^ r1 ^ r5 ^ r6);
       q[2] = q0 ^ q1 ^ q6 ^ r1 ^ r2 ^ r6 ^ r7 ^ rotr16(q0 ^ q2 ^ q6 ^ r2 ^ r6 ^ r7);
       q[3] = q0 ^ q1 ^ q2 ^ q5 ^ q6 ^ r0 ^ r2 ^ r3 ^ r5 ^ rotr16(q0 ^ q1 ^ q3 ^ q5 ^ q6 ^ q7 ^ r0 ^ r3 ^ r5 ^ r7);
       q[4] = q1 ^ q2 ^ q3 ^ q5 ^ r1 ^ r3 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q1 ^ q2 ^ q4 ^ q5 ^ q7 ^ r1 ^ r4 ^ r5 ^ r6);
       q[5] = q2 ^ q3 ^ q4 ^ q6 ^ r2 ^ r4 ^ r5 ^ r6 ^ r7 ^ rotr16(q2 ^ q3 ^ q5 ^ q6 ^ r2 ^ r5 ^ r6 ^ r7);
       q[6] = q3 ^ q4 ^ q5 ^ q7 ^ r3 ^ r5 ^ r6 ^ r7 ^ rotr16(q3 ^ q4 ^ q6 ^ q7 ^ r3 ^ r6 ^ r7);
       q[7] = q4 ^ q5 ^ q6 ^ r4 ^ r6 ^ r7 ^ rotr16(q4 ^ q5 ^ q7 ^ r4 ^ r7);
}

/* see inner.h */
void
br_aes_ct_bitslice_decrypt(unsigned num_rounds,
       const uint32_t *skey, uint32_t *q)
{
       unsigned u;

       add_round_key(q, skey + (num_rounds << 3));
       for (u = num_rounds - 1; u > 0; u --) {
               inv_shift_rows(q);
               br_aes_ct_bitslice_invSbox(q);
               add_round_key(q, skey + (u << 3));
               inv_mix_columns(q);
       }
       inv_shift_rows(q);
       br_aes_ct_bitslice_invSbox(q);
       add_round_key(q, skey);
}

/* NetBSD addition, for generating compatible decryption keys */
void
br_aes_ct_inv_mix_columns(uint32_t *q)
{

       inv_mix_columns(q);
}