/*      $NetBSD: cpu.c,v 1.145 2023/02/25 00:35:01 riastradh Exp $      */

/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by RedBack Networks Inc.
*
* Author: Bill Sommerfeld
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Copyright (c) 1999 Stefan Grefen
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed by the NetBSD
*      Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
*    contributors may be used to endorse or promote products derived
*    from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.145 2023/02/25 00:35:01 riastradh Exp $");

#include "opt_ddb.h"
#include "opt_multiprocessor.h"
#include "opt_mpbios.h"         /* for MPDEBUG */
#include "opt_mtrr.h"
#include "opt_xen.h"

#include "lapic.h"
#include "ioapic.h"

#include <sys/param.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/cpu.h>
#include <sys/cpufreq.h>
#include <sys/atomic.h>
#include <sys/reboot.h>
#include <sys/idle.h>

#include <uvm/uvm.h>

#include <machine/cpu.h>
#include <machine/cpufunc.h>
#include <machine/cpuvar.h>
#include <machine/pmap.h>
#include <machine/pmap_private.h>
#include <machine/vmparam.h>
#include <machine/mpbiosvar.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#include <machine/segments.h>
#include <machine/gdt.h>
#include <machine/mtrr.h>
#include <machine/pio.h>

#include <x86/fpu.h>

#include <xen/xen.h>
#include <xen/include/public/vcpu.h>
#include <xen/vcpuvar.h>

#if NLAPIC > 0
#include <machine/apicvar.h>
#include <machine/i82489reg.h>
#include <machine/i82489var.h>
#endif

#include <dev/ic/mc146818reg.h>
#include <dev/isa/isareg.h>

static int      cpu_match(device_t, cfdata_t, void *);
static void     cpu_attach(device_t, device_t, void *);
static void     cpu_defer(device_t);
static int      cpu_rescan(device_t, const char *, const int *);
static void     cpu_childdetached(device_t, device_t);
static int      vcpu_match(device_t, cfdata_t, void *);
static void     vcpu_attach(device_t, device_t, void *);
static void     cpu_attach_common(device_t, device_t, void *);
void            cpu_offline_md(void);

struct cpu_softc {
       device_t sc_dev;                /* device tree glue */
       struct cpu_info *sc_info;       /* pointer to CPU info */
       bool sc_wasonline;
};

int mp_cpu_start(struct cpu_info *, vaddr_t);
void mp_cpu_start_cleanup(struct cpu_info *);
const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
                                     mp_cpu_start_cleanup };

CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
   cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);

CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
   vcpu_match, vcpu_attach, NULL, NULL);

/*
* Statically-allocated CPU info for the primary CPU (or the only
* CPU, on uniprocessors).  The CPU info list is initialized to
* point at it.
*/
struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
       .ci_dev = 0,
       .ci_self = &cpu_info_primary,
       .ci_idepth = -1,
       .ci_curlwp = &lwp0,
       .ci_curldt = -1,
};
struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
       .ci_dev = 0,
       .ci_self = &phycpu_info_primary,
};

struct cpu_info *cpu_info_list = &cpu_info_primary;
struct cpu_info *phycpu_info_list = &phycpu_info_primary;

uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
                         *     [0] basic features %edx
                         *     [1] basic features %ecx
                         *     [2] extended features %edx
                         *     [3] extended features %ecx
                         *     [4] VIA padlock features
                         *     [5] structured extended features cpuid.7:%ebx
                         *     [6] structured extended features cpuid.7:%ecx
                         */

bool x86_mp_online;
paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;

#if defined(MULTIPROCESSOR)
void            cpu_hatch(void *);
static void     cpu_boot_secondary(struct cpu_info *ci);
static void     cpu_start_secondary(struct cpu_info *ci);
#endif  /* MULTIPROCESSOR */

static int
cpu_match(device_t parent, cfdata_t match, void *aux)
{

       return 1;
}

static void
cpu_attach(device_t parent, device_t self, void *aux)
{
       struct cpu_softc *sc = device_private(self);
       struct cpu_attach_args *caa = aux;
       struct cpu_info *ci;
       uintptr_t ptr;
       static int nphycpu = 0;

       sc->sc_dev = self;

       /*
        * If we're an Application Processor, allocate a cpu_info
        * If we're the first attached CPU use the primary cpu_info,
        * otherwise allocate a new one
        */
       aprint_naive("\n");
       aprint_normal("\n");
       if (nphycpu > 0) {
               struct cpu_info *tmp;
               ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
                   KM_SLEEP);
               ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
               ci->ci_curldt = -1;

               tmp = phycpu_info_list;
               while (tmp->ci_next)
                       tmp = tmp->ci_next;

               tmp->ci_next = ci;
       } else {
               ci = &phycpu_info_primary;
       }

       ci->ci_self = ci;
       sc->sc_info = ci;

       ci->ci_dev = self;
       ci->ci_acpiid = caa->cpu_id;
       ci->ci_cpuid = caa->cpu_number;
       ci->ci_vcpu = NULL;
       ci->ci_index = nphycpu++;
       ci->ci_kfpu_spl = -1;

       if (!pmf_device_register(self, NULL, NULL))
               aprint_error_dev(self, "couldn't establish power handler\n");

       (void)config_defer(self, cpu_defer);
}

static void
cpu_defer(device_t self)
{
       cpu_rescan(self, NULL, NULL);
}

static int
cpu_rescan(device_t self, const char *ifattr, const int *locators)
{
       struct cpu_softc *sc = device_private(self);
       struct cpufeature_attach_args cfaa;
       struct cpu_info *ci = sc->sc_info;

       memset(&cfaa, 0, sizeof(cfaa));
       cfaa.ci = ci;

       if (ifattr_match(ifattr, "cpufeaturebus")) {

               if (ci->ci_frequency == NULL) {
                       cfaa.name = "frequency";
                       ci->ci_frequency =
                           config_found(self, &cfaa, NULL,
                                        CFARGS(.iattr = "cpufeaturebus"));
               }
       }

       return 0;
}

static void
cpu_childdetached(device_t self, device_t child)
{
       struct cpu_softc *sc = device_private(self);
       struct cpu_info *ci = sc->sc_info;

       if (ci->ci_frequency == child)
               ci->ci_frequency = NULL;
}

static int
vcpu_match(device_t parent, cfdata_t match, void *aux)
{
       struct vcpu_attach_args *vcaa = aux;
       struct vcpu_runstate_info vcr;
       int error;

       if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
               error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
                   vcaa->vcaa_caa.cpu_number, &vcr);
               switch (error) {
               case 0:
                       return 1;
               case -ENOENT:
                       return 0;
               default:
                       panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
               }
       }

       return 0;
}

static void
vcpu_attach(device_t parent, device_t self, void *aux)
{
       struct vcpu_attach_args *vcaa = aux;

       KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
       vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
       cpu_attach_common(parent, self, &vcaa->vcaa_caa);

       if (!pmf_device_register(self, NULL, NULL))
               aprint_error_dev(self, "couldn't establish power handler\n");
}

static int
vcpu_is_up(struct cpu_info *ci)
{
       KASSERT(ci != NULL);
       return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
}

static void
cpu_vm_init(struct cpu_info *ci)
{
       int ncolors = 2, i;

       for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
               struct x86_cache_info *cai;
               int tcolors;

               cai = &ci->ci_cinfo[i];

               tcolors = atop(cai->cai_totalsize);
               switch (cai->cai_associativity) {
               case 0xff:
                       tcolors = 1; /* fully associative */
                       break;
               case 0:
               case 1:
                       break;
               default:
                       tcolors /= cai->cai_associativity;
               }
               ncolors = uimax(ncolors, tcolors);
       }

       /*
        * Knowing the size of the largest cache on this CPU, potentially
        * re-color our pages.
        */
       aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
       uvm_page_recolor(ncolors);
       pmap_tlb_cpu_init(ci);
#ifndef __HAVE_DIRECT_MAP
       pmap_vpage_cpu_init(ci);
#endif
}

static void
cpu_attach_common(device_t parent, device_t self, void *aux)
{
       struct cpu_softc *sc = device_private(self);
       struct cpu_attach_args *caa = aux;
       struct cpu_info *ci;
       uintptr_t ptr;
       int cpunum = caa->cpu_number;
       static bool again = false;

       sc->sc_dev = self;

       /*
        * If we're an Application Processor, allocate a cpu_info
        * structure, otherwise use the primary's.
        */
       if (caa->cpu_role == CPU_ROLE_AP) {
               aprint_naive(": Application Processor\n");
               ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
                   KM_SLEEP);
               ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
               memset(ci, 0, sizeof(*ci));
               cpu_init_tss(ci);
       } else {
               aprint_naive(": %s Processor\n",
                   caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
               ci = &cpu_info_primary;
       }

       ci->ci_self = ci;
       sc->sc_info = ci;
       ci->ci_dev = self;
       ci->ci_cpuid = cpunum;
       ci->ci_vcpuid = cpunum;
       ci->ci_kfpu_spl = -1;

       KASSERT(HYPERVISOR_shared_info != NULL);
       KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
       ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];

       KASSERT(ci->ci_func == 0);
       ci->ci_func = caa->cpu_func;
       aprint_normal("\n");

       /* Must be called before mi_cpu_attach(). */
       cpu_vm_init(ci);

       if (caa->cpu_role == CPU_ROLE_AP) {
               int error;

               error = mi_cpu_attach(ci);

               KASSERT(ci->ci_data.cpu_idlelwp != NULL);
               if (error != 0) {
                       aprint_error_dev(self,
                           "mi_cpu_attach failed with %d\n", error);
                       return;
               }

       } else {
               KASSERT(ci->ci_data.cpu_idlelwp != NULL);
       }

       KASSERT(ci->ci_cpuid == ci->ci_index);
#ifdef __x86_64__
       /* No user PGD mapped for this CPU yet */
       ci->ci_xen_current_user_pgd = 0;
#endif
       mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
       pmap_reference(pmap_kernel());
       ci->ci_pmap = pmap_kernel();
       ci->ci_tlbstate = TLBSTATE_STALE;

       /*
        * Boot processor may not be attached first, but the below
        * must be done to allow booting other processors.
        */
       if (!again) {
               atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
               /* Basic init. */
               cpu_intr_init(ci);
               cpu_get_tsc_freq(ci);
               cpu_init(ci);
               pmap_cpu_init_late(ci);

               /* Every processor needs to init its own ipi h/w (similar to lapic) */
               xen_ipi_init();

               /* Make sure DELAY() is initialized. */
               DELAY(1);
               again = true;
       }

       /* further PCB init done later. */

       switch (caa->cpu_role) {
       case CPU_ROLE_SP:
               atomic_or_32(&ci->ci_flags, CPUF_SP);
               cpu_identify(ci);
               x86_cpu_idle_init();
               break;

       case CPU_ROLE_BP:
               atomic_or_32(&ci->ci_flags, CPUF_BSP);
               cpu_identify(ci);
               x86_cpu_idle_init();
               break;

       case CPU_ROLE_AP:
               atomic_or_32(&ci->ci_flags, CPUF_AP);

               /*
                * report on an AP
                */

#if defined(MULTIPROCESSOR)
               /* interrupt handler stack */
               cpu_intr_init(ci);

               /* Setup per-cpu memory for idt */
               idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));

               /* Setup per-cpu memory for gdt */
               gdt_alloc_cpu(ci);

               pmap_cpu_init_late(ci);
               cpu_start_secondary(ci);

               if (ci->ci_flags & CPUF_PRESENT) {
                       struct cpu_info *tmp;

                       cpu_identify(ci);
                       tmp = cpu_info_list;
                       while (tmp->ci_next)
                               tmp = tmp->ci_next;

                       tmp->ci_next = ci;
               }
#else
               aprint_error_dev(ci->ci_dev, "not started\n");
#endif
               break;

       default:
               panic("unknown processor type??\n");
       }

#ifdef MPVERBOSE
       if (mp_verbose) {
               struct lwp *l = ci->ci_data.cpu_idlelwp;
               struct pcb *pcb = lwp_getpcb(l);

               aprint_verbose_dev(self,
                   "idle lwp at %p, idle sp at %p\n",
                   l,
#ifdef i386
                   (void *)pcb->pcb_esp
#else
                   (void *)pcb->pcb_rsp
#endif
               );

       }
#endif /* MPVERBOSE */
}

/*
* Initialize the processor appropriately.
*/

void
cpu_init(struct cpu_info *ci)
{
       uint32_t cr4 = 0;

       /*
        * If we have FXSAVE/FXRESTOR, use them.
        */
       if (cpu_feature[0] & CPUID_FXSR) {
               cr4 |= CR4_OSFXSR;

               /*
                * If we have SSE/SSE2, enable XMM exceptions.
                */
               if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
                       cr4 |= CR4_OSXMMEXCPT;
       }

       /* If xsave is supported, enable it */
       if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
               cr4 |= CR4_OSXSAVE;

       if (cr4) {
               cr4 |= rcr4();
               lcr4(cr4);
       }

       if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
               fpuinit_mxcsr_mask();
       }

       /*
        * Changing CR4 register may change cpuid values. For example, setting
        * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
        * ci_feat_val[1], so update it.
        * XXX Other than ci_feat_val[1] might be changed.
        */
       if (cpuid_level >= 1) {
               u_int descs[4];

               x86_cpuid(1, descs);
               ci->ci_feat_val[1] = descs[2];
       }

       /* If xsave is enabled, enable all fpu features */
       if (cr4 & CR4_OSXSAVE) {
               wrxcr(0, x86_xsave_features & XCR0_FPU);
       }

       atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
}


#ifdef MULTIPROCESSOR

void
cpu_boot_secondary_processors(void)
{
       struct cpu_info *ci;
       kcpuset_t *cpus;
       u_long i;

       kcpuset_create(&cpus, true);
       kcpuset_set(cpus, cpu_index(curcpu()));
       for (i = 0; i < maxcpus; i++) {
               ci = cpu_lookup(i);
               if (ci == NULL)
                       continue;
               if (ci->ci_data.cpu_idlelwp == NULL)
                       continue;
               if ((ci->ci_flags & CPUF_PRESENT) == 0)
                       continue;
               if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
                       continue;
               cpu_boot_secondary(ci);
               kcpuset_set(cpus, cpu_index(ci));
       }
       while (!kcpuset_match(cpus, kcpuset_running))
               ;
       kcpuset_destroy(cpus);

       x86_mp_online = true;
}

static void
cpu_init_idle_lwp(struct cpu_info *ci)
{
       struct lwp *l = ci->ci_data.cpu_idlelwp;
       struct pcb *pcb = lwp_getpcb(l);

       pcb->pcb_cr0 = rcr0();
}

void
cpu_init_idle_lwps(void)
{
       struct cpu_info *ci;
       u_long i;

       for (i = 0; i < maxcpus; i++) {
               ci = cpu_lookup(i);
               if (ci == NULL)
                       continue;
               if (ci->ci_data.cpu_idlelwp == NULL)
                       continue;
               if ((ci->ci_flags & CPUF_PRESENT) == 0)
                       continue;
               cpu_init_idle_lwp(ci);
       }
}

static void
cpu_start_secondary(struct cpu_info *ci)
{
       int i;

       aprint_debug_dev(ci->ci_dev, "starting\n");

       ci->ci_curlwp = ci->ci_data.cpu_idlelwp;

       if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
               return;
       }

       /*
        * wait for it to become ready
        */
       for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
               delay(10);
       }
       if ((ci->ci_flags & CPUF_PRESENT) == 0) {
               aprint_error_dev(ci->ci_dev, "failed to become ready\n");
#if defined(MPDEBUG) && defined(DDB)
               printf("dropping into debugger; continue from here to resume boot\n");
               Debugger();
#endif
       }

       CPU_START_CLEANUP(ci);
}

void
cpu_boot_secondary(struct cpu_info *ci)
{
       int i;
       atomic_or_32(&ci->ci_flags, CPUF_GO);
       for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
               delay(10);
       }
       if ((ci->ci_flags & CPUF_RUNNING) == 0) {
               aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
#if defined(MPDEBUG) && defined(DDB)
               printf("dropping into debugger; continue from here to resume boot\n");
               Debugger();
#endif
       }
}

/*
* APs end up here immediately after initialisation and VCPUOP_up in
* mp_cpu_start().
* At this point, we are running in the idle pcb/idle stack of the new
* CPU.  This function jumps to the idle loop and starts looking for
* work.
*/
extern void x86_64_tls_switch(struct lwp *);
void
cpu_hatch(void *v)
{
       struct cpu_info *ci = (struct cpu_info *)v;
       struct pcb *pcb;
       int s, i;

       /* Setup TLS and kernel GS/FS */
       cpu_init_msrs(ci, true);
       cpu_init_idt(ci);
       gdt_init_cpu(ci);

       cpu_probe(ci);

       atomic_or_32(&ci->ci_flags, CPUF_PRESENT);

       while ((ci->ci_flags & CPUF_GO) == 0) {
               /* Don't use delay, boot CPU may be patching the text. */
               for (i = 10000; i != 0; i--)
                       x86_pause();
       }

       /* Because the text may have been patched in x86_patch(). */
       x86_flush();
       tlbflushg();

       KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);

       KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
       KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
       pcb = lwp_getpcb(curlwp);
       pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);

       xen_ipi_init();

       xen_initclocks();

#ifdef __x86_64__
       fpuinit(ci);
#endif

       lldt(GSEL(GLDT_SEL, SEL_KPL));

       cpu_init(ci);
       cpu_get_tsc_freq(ci);

       s = splhigh();
       x86_enable_intr();
       splx(s);

       aprint_debug_dev(ci->ci_dev, "running\n");

       KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
       idle_loop(NULL);
       KASSERT(false);
}

#if defined(DDB)

#include <ddb/db_output.h>
#include <machine/db_machdep.h>

/*
* Dump CPU information from ddb.
*/
void
cpu_debug_dump(void)
{
       struct cpu_info *ci;
       CPU_INFO_ITERATOR cii;

       db_printf("addr         dev     id      flags   ipis    curlwp\n");
       for (CPU_INFO_FOREACH(cii, ci)) {
               db_printf("%p   %s      %ld     %x      %x      %10p\n",
                   ci,
                   ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
                   (long)ci->ci_vcpuid,
                   ci->ci_flags, ci->ci_ipis,
                   ci->ci_curlwp);
       }
}
#endif /* DDB */

#endif /* MULTIPROCESSOR */

extern void hypervisor_callback(void);
extern void failsafe_callback(void);
#ifdef __x86_64__
typedef void (vector)(void);
extern vector Xsyscall, Xsyscall32;
#endif

/*
* Setup the "trampoline". On Xen, we setup nearly all cpu context
* outside a trampoline, so we prototype and call targetip like so:
* void targetip(struct cpu_info *);
*/

static void
gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
{
       int i;
       for (i = 0; i < entries; i++) {
               frames[i] = ((paddr_t)xpmap_ptetomach(
                   (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;

               /* Mark Read-only */
               pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
                   PTE_W);
       }
}

#ifdef __x86_64__
extern char *ldtstore;

static void
xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
   void targetrip(struct cpu_info *))
{
       /* page frames to point at GDT */
       extern int gdt_size;
       paddr_t frames[16];
       psize_t gdt_ents;

       struct lwp *l;
       struct pcb *pcb;

       volatile struct vcpu_info *vci;

       KASSERT(ci != NULL);
       KASSERT(ci != &cpu_info_primary);
       KASSERT(initctx != NULL);
       KASSERT(targetrip != NULL);

       memset(initctx, 0, sizeof(*initctx));

       gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
       KASSERT(gdt_ents <= 16);

       gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);

       /* Initialise the vcpu context: We use idle_loop()'s pcb context. */

       l = ci->ci_data.cpu_idlelwp;

       KASSERT(l != NULL);
       pcb = lwp_getpcb(l);
       KASSERT(pcb != NULL);

       /* resume with interrupts off */
       vci = ci->ci_vcpu;
       vci->evtchn_upcall_mask = 1;
       __insn_barrier();

       /* resume in kernel-mode */
       initctx->flags = VGCF_in_kernel | VGCF_online;

       /* Stack and entry points:
        * We arrange for the stack frame for cpu_hatch() to
        * appear as a callee frame of lwp_trampoline(). Being a
        * leaf frame prevents trampling on any of the MD stack setup
        * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
        */

       initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
       initctx->user_regs.rip = (vaddr_t) targetrip;

       initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);

       initctx->user_regs.rflags = pcb->pcb_flags;
       initctx->user_regs.rsp = pcb->pcb_rsp;

       /* Data segments */
       initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
       initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
       initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);

       /* GDT */
       memcpy(initctx->gdt_frames, frames, sizeof(frames));
       initctx->gdt_ents = gdt_ents;

       /* LDT */
       initctx->ldt_base = (unsigned long)ldtstore;
       initctx->ldt_ents = LDT_SIZE >> 3;

       /* Kernel context state */
       initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
       initctx->kernel_sp = pcb->pcb_rsp0;
       initctx->ctrlreg[0] = pcb->pcb_cr0;
       initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
       initctx->ctrlreg[2] = (vaddr_t)targetrip;
       /*
        * Use pmap_kernel() L4 PD directly, until we setup the
        * per-cpu L4 PD in pmap_cpu_init_late()
        */
       initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
       initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;

       /* Xen callbacks */
       initctx->event_callback_eip = (unsigned long)hypervisor_callback;
       initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
       initctx->syscall_callback_eip = (unsigned long)Xsyscall;

       return;
}
#else /* i386 */
extern union descriptor *ldtstore;
extern void Xsyscall(void);

static void
xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
   void targeteip(struct cpu_info *))
{
       /* page frames to point at GDT */
       extern int gdt_size;
       paddr_t frames[16];
       psize_t gdt_ents;

       struct lwp *l;
       struct pcb *pcb;

       volatile struct vcpu_info *vci;

       KASSERT(ci != NULL);
       KASSERT(ci != &cpu_info_primary);
       KASSERT(initctx != NULL);
       KASSERT(targeteip != NULL);

       memset(initctx, 0, sizeof(*initctx));

       gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
       KASSERT(gdt_ents <= 16);

       gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);

       /*
        * Initialise the vcpu context:
        * We use this cpu's idle_loop() pcb context.
        */

       l = ci->ci_data.cpu_idlelwp;

       KASSERT(l != NULL);
       pcb = lwp_getpcb(l);
       KASSERT(pcb != NULL);

       /* resume with interrupts off */
       vci = ci->ci_vcpu;
       vci->evtchn_upcall_mask = 1;
       __insn_barrier();

       /* resume in kernel-mode */
       initctx->flags = VGCF_in_kernel | VGCF_online;

       /* Stack frame setup for cpu_hatch():
        * We arrange for the stack frame for cpu_hatch() to
        * appear as a callee frame of lwp_trampoline(). Being a
        * leaf frame prevents trampling on any of the MD stack setup
        * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
        */

       initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
                                                     arg1 */
       {
               /* targeteip(ci); */
               uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
               arg[1] = (uint32_t)ci; /* arg1 */
       }

       initctx->user_regs.eip = (vaddr_t)targeteip;
       initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
       initctx->user_regs.eflags |= pcb->pcb_iopl;

       /* Data segments */
       initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
       initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
       initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
       initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);

       /* GDT */
       memcpy(initctx->gdt_frames, frames, sizeof(frames));
       initctx->gdt_ents = gdt_ents;

       /* LDT */
       initctx->ldt_base = (unsigned long)ldtstore;
       initctx->ldt_ents = NLDT;

       /* Kernel context state */
       initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
       initctx->kernel_sp = pcb->pcb_esp0;
       initctx->ctrlreg[0] = pcb->pcb_cr0;
       initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
       initctx->ctrlreg[2] = (vaddr_t)targeteip;
       initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
       initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;

       /* Xen callbacks */
       initctx->event_callback_eip = (unsigned long)hypervisor_callback;
       initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
       initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
       initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);

       return;
}
#endif /* __x86_64__ */

int
mp_cpu_start(struct cpu_info *ci, vaddr_t target)
{
       int hyperror;
       struct vcpu_guest_context *vcpuctx;

       KASSERT(ci != NULL);
       KASSERT(ci != &cpu_info_primary);
       KASSERT(ci->ci_flags & CPUF_AP);

       vcpuctx = kmem_alloc(sizeof(*vcpuctx), KM_SLEEP);

#ifdef __x86_64__
       xen_init_amd64_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
#else
       xen_init_i386_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
#endif

       /* Initialise the given vcpu to execute cpu_hatch(ci); */
       if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, vcpuctx))) {
               aprint_error(": context initialisation failed. errno = %d\n", hyperror);
               goto out;
       }

       /* Start it up */

       /* First bring it down */
       if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
               aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
               goto out;
       }

       if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
               aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
               goto out;
       }

       if (!vcpu_is_up(ci)) {
               aprint_error(": did not come up\n");
               hyperror = -1;
               goto out;
       }

out:
       kmem_free(vcpuctx, sizeof(*vcpuctx));
       return hyperror;
}

void
mp_cpu_start_cleanup(struct cpu_info *ci)
{
       if (vcpu_is_up(ci)) {
               aprint_debug_dev(ci->ci_dev, "is started.\n");
       } else {
               aprint_error_dev(ci->ci_dev, "did not start up.\n");
       }
}

void
cpu_init_msrs(struct cpu_info *ci, bool full)
{
#ifdef __x86_64__
       if (full) {
               HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
               HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
               HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
       }
#endif

       if (cpu_feature[2] & CPUID_NOX)
               wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
}

void
cpu_offline_md(void)
{
       return;
}

void
cpu_get_tsc_freq(struct cpu_info *ci)
{
       uint32_t vcpu_tversion;
       const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;

       vcpu_tversion = tinfo->version;
       while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */

       uint64_t freq = 1000000000ULL << 32;
       freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
       if (tinfo->tsc_shift < 0)
               freq = freq << -tinfo->tsc_shift;
       else
               freq = freq >> tinfo->tsc_shift;
       ci->ci_data.cpu_cc_freq = freq;
}

/*
* Loads pmap for the current CPU.
*/
void
cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
{
       struct cpu_info *ci = curcpu();
       cpuid_t cid = cpu_index(ci);
       int i;

       KASSERT(kpreempt_disabled());
       KASSERT(pmap != pmap_kernel());

       mutex_enter(&ci->ci_kpm_mtx);
       /* make new pmap visible to xen_kpm_sync() */
       kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);

#ifdef __x86_64__
       pd_entry_t *new_pgd;
       paddr_t l4_pd_ma;

       l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);

       /*
        * Map user space address in kernel space and load
        * user cr3
        */
       new_pgd = pmap->pm_pdir;
       KASSERT(pmap == ci->ci_pmap);

       /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
       for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
               KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
               if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
                       xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
                           new_pgd[i]);
               }
       }

       xen_set_user_pgd(pmap_pdirpa(pmap, 0));
       ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
#else
       paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
       /* don't update the kernel L3 slot */
       for (i = 0; i < PDP_SIZE - 1; i++) {
               xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
                   xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
       }
#endif

       tlbflush();

       /* old pmap no longer visible to xen_kpm_sync() */
       if (oldpmap != pmap_kernel()) {
               kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
       }
       mutex_exit(&ci->ci_kpm_mtx);
}

/*
* pmap_cpu_init_late: perform late per-CPU initialization.
*
* Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
* have per-cpu PDIR tables, for two different reasons:
*  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
*    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
*    this way).
*  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
*    (see cpu_load_pmap()).
*
* What this means for us is that the PDIR of the pmap_kernel() is considered
* to be a canonical "SHADOW" PDIR with the following properties:
*  - its recursive mapping points to itself
*  - per-cpu recursive mappings point to themselves on __x86_64__
*  - per-cpu L4 pages' kernel entries are expected to be in sync with
*    the shadow
*/

void
pmap_cpu_init_late(struct cpu_info *ci)
{
       int i;

       /*
        * The BP has already its own PD page allocated during early
        * MD startup.
        */

#ifdef __x86_64__
       /* Setup per-cpu normal_pdes */
       extern pd_entry_t * const normal_pdes[];
       for (i = 0;i < PTP_LEVELS - 1;i++) {
               ci->ci_normal_pdes[i] = normal_pdes[i];
       }
#endif

       if (ci == &cpu_info_primary)
               return;

       KASSERT(ci != NULL);

#if defined(i386)
       cpu_alloc_l3_page(ci);
       KASSERT(ci->ci_pae_l3_pdirpa != 0);

       /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
       for (i = 0; i < PDP_SIZE - 1; i++) {
               ci->ci_pae_l3_pdir[i] =
                   xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
       }
#endif

       ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
           UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);

       if (ci->ci_kpm_pdir == NULL) {
               panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
                   __func__, cpu_index(ci));
       }
       ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
       KASSERT(ci->ci_kpm_pdirpa != 0);

#ifdef __x86_64__
       extern pt_entry_t xpmap_pg_nx;

       /* Copy over the pmap_kernel() shadow L4 entries */
       memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);

       /* Recursive kernel mapping */
       ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
           | PTE_P | xpmap_pg_nx;
#else
       /* Copy over the pmap_kernel() shadow L2 entries */
       memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
           nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
#endif

       /* Xen wants a RO pdir. */
       pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
           (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
       pmap_update(pmap_kernel());

#ifdef __x86_64__
       xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
#else
       /*
        * Initialize L3 entry 3. This mapping is shared across all pmaps and is
        * static, ie: loading a new pmap will not update this entry.
        */
       ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;

       /* Xen wants a RO L3. */
       pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
           (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
       pmap_update(pmap_kernel());

       xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
#endif
}

/*
* Notify all other cpus to halt.
*/

void
cpu_broadcast_halt(void)
{
       xen_broadcast_ipi(XEN_IPI_HALT);
}

/*
* Send a dummy ipi to a cpu, and raise an AST on the running LWP.
*/

void
cpu_kick(struct cpu_info *ci)
{
       (void)xen_send_ipi(ci, XEN_IPI_AST);
}