/* $NetBSD: acpi_machdep.c,v 1.39 2025/04/30 05:15:07 imil Exp $ */

/*
* Copyright 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Machine-dependent routines for ACPICA.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: acpi_machdep.c,v 1.39 2025/04/30 05:15:07 imil Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/device.h>

#include <uvm/uvm_extern.h>

#include <machine/cpufunc.h>
#include <machine/bootinfo.h>
#include <machine/autoconf.h>

#include <dev/acpi/acpica.h>
#include <dev/acpi/acpivar.h>
#include <dev/acpi/acpi_mcfg.h>

#include <machine/acpi_machdep.h>
#include <machine/mpbiosvar.h>
#include <machine/mpacpi.h>
#include <machine/i82093reg.h>
#include <machine/i82093var.h>
#include <machine/pic.h>
#include <machine/pmap_private.h>

#include <x86/efi.h>

#include <dev/pci/pcivar.h>

#include <dev/isa/isareg.h>
#include <dev/isa/isavar.h>
#include <arch/x86/include/genfb_machdep.h>

#include "ioapic.h"

#include "acpica.h"
#include "opt_mpbios.h"
#include "opt_acpi.h"
#include "opt_vga.h"

#ifdef XEN
#include <xen/hypervisor.h>
#endif

/*
* Default VBIOS reset method for non-HW accelerated VGA drivers.
*/
#ifdef VGA_POST
# define VBIOS_RESET_DEFAULT    2
#else
# define VBIOS_RESET_DEFAULT    1
#endif

ACPI_STATUS
acpi_md_OsInitialize(void)
{
       return AE_OK;
}

ACPI_PHYSICAL_ADDRESS
acpi_md_OsGetRootPointer(void)
{
       ACPI_PHYSICAL_ADDRESS PhysicalAddress;
       ACPI_STATUS Status;

#ifdef XENPV
       /*
        * Obtain the ACPI RSDP from the hypervisor.
        * This is the only way to go if Xen booted from EFI: the
        * Extended BIOS Data Area (EBDA) is not mapped, and Xen
        * does not pass an EFI SystemTable to the kernel.
        */
       struct xen_platform_op op = {
               .cmd = XENPF_firmware_info,
               .u.firmware_info = {
                       .type = XEN_FW_EFI_INFO,
                       .index = XEN_FW_EFI_CONFIG_TABLE
               }
       };
       union xenpf_efi_info *info = &op.u.firmware_info.u.efi_info;

       if (HYPERVISOR_platform_op(&op) == 0) {
               struct efi_cfgtbl *ct;
               int i;

               ct = AcpiOsMapMemory(info->cfg.addr,
                   sizeof(*ct) * info->cfg.nent);

               for (i = 0; i < info->cfg.nent; i++) {
                       if (memcmp(&ct[i].ct_uuid,
                           &EFI_UUID_ACPI20, sizeof(EFI_UUID_ACPI20)) == 0) {
                               PhysicalAddress = (ACPI_PHYSICAL_ADDRESS)
                                   (uintptr_t)ct[i].ct_data;
                               if (PhysicalAddress)
                                       goto out;

                       }
               }

               for (i = 0; i < info->cfg.nent; i++) {
                       if (memcmp(&ct[i].ct_uuid,
                           &EFI_UUID_ACPI10, sizeof(EFI_UUID_ACPI10)) == 0) {
                               PhysicalAddress = (ACPI_PHYSICAL_ADDRESS)
                                   (uintptr_t)ct[i].ct_data;
                               if (PhysicalAddress)
                                       goto out;

                       }
               }
out:
               AcpiOsUnmapMemory(ct, sizeof(*ct) * info->cfg.nent);

               if (PhysicalAddress)
                       return PhysicalAddress;
       }
#else
#ifdef XEN
       if (pvh_boot) {
               PhysicalAddress = hvm_start_info->rsdp_paddr;
               if (PhysicalAddress)
                       return PhysicalAddress;
       }
#endif
       /*
        * Get the ACPI RSDP from EFI SystemTable. This works when the
        * kernel was loaded from EFI bootloader.
        */
       if (efi_probe()) {
               PhysicalAddress = efi_getcfgtblpa(&EFI_UUID_ACPI20);
               if (!PhysicalAddress)
                       PhysicalAddress = efi_getcfgtblpa(&EFI_UUID_ACPI10);
               if (PhysicalAddress)
                       return PhysicalAddress;
       }

#endif
       /*
        * Find ACPI RSDP from Extended BIOS Data Area (EBDA). This
        * works when the kernel was started from BIOS bootloader,
        * or for Xen PV when Xen was started from BIOS bootloader.
        */
       Status = AcpiFindRootPointer(&PhysicalAddress);
       if (ACPI_FAILURE(Status))
               PhysicalAddress = 0;

       return PhysicalAddress;
}

struct acpi_md_override {
       int irq;
       int pin;
       int flags;
};

#if NIOAPIC > 0
static ACPI_STATUS
acpi_md_findoverride(ACPI_SUBTABLE_HEADER *hdrp, void *aux)
{
       ACPI_MADT_INTERRUPT_OVERRIDE *iop;
       struct acpi_md_override *ovrp;

       if (hdrp->Type != ACPI_MADT_TYPE_INTERRUPT_OVERRIDE) {
               return AE_OK;
       }

       iop = (void *)hdrp;
       ovrp = aux;
       if (iop->SourceIrq == ovrp->irq) {
               ovrp->pin = iop->GlobalIrq;
               ovrp->flags = iop->IntiFlags;
       }
       return AE_OK;
}
#endif

ACPI_STATUS
acpi_md_OsInstallInterruptHandler(uint32_t InterruptNumber,
   ACPI_OSD_HANDLER ServiceRoutine, void *Context, void **cookiep,
   const char *xname)
{
       void *ih;

       ih = acpi_md_intr_establish(InterruptNumber, IPL_TTY, IST_LEVEL,
           (int (*)(void *))ServiceRoutine, Context, /*mpsafe*/true, xname);
       if (ih == NULL)
               return AE_NO_MEMORY;

       *cookiep = ih;

       return AE_OK;
}

void
acpi_md_OsRemoveInterruptHandler(void *cookie)
{
       intr_disestablish(cookie);
}

void *
acpi_md_intr_establish(uint32_t InterruptNumber, int ipl, int type,
   int (*handler)(void *), void *arg, bool mpsafe, const char *xname)
{
       void *ih;
       struct pic *pic;
       int irq = InterruptNumber, pin;
#if NIOAPIC > 0
       struct ioapic_softc *ioapic;
       struct acpi_md_override ovr;
       struct mp_intr_map tmpmap, *mip, **mipp = NULL;
       intr_handle_t mpih;
       int redir, mpflags;

       /*
        * ACPI interrupts default to level-triggered active-low.
        */

       mpflags = (MPS_INTTR_LEVEL << 2) | MPS_INTPO_ACTLO;
       redir = IOAPIC_REDLO_LEVEL | IOAPIC_REDLO_ACTLO;

       /*
        * Apply any MADT override setting.
        */

       ovr.irq = irq;
       ovr.pin = -1;
       if (acpi_madt_map() == AE_OK) {
               acpi_madt_walk(acpi_md_findoverride, &ovr);
               acpi_madt_unmap();
       } else {
               aprint_debug("acpi_madt_map() failed, can't check for MADT override\n");
       }

       if (ovr.pin != -1) {
               bool sci = irq == AcpiGbl_FADT.SciInterrupt;
               int polarity = ovr.flags & ACPI_MADT_POLARITY_MASK;
               int trigger = ovr.flags & ACPI_MADT_TRIGGER_MASK;

               irq = ovr.pin;
               if (polarity == ACPI_MADT_POLARITY_ACTIVE_HIGH ||
                   (!sci && polarity == ACPI_MADT_POLARITY_CONFORMS)) {
                       mpflags &= ~MPS_INTPO_ACTLO;
                       mpflags |= MPS_INTPO_ACTHI;
                       redir &= ~IOAPIC_REDLO_ACTLO;
               }
               if (trigger == ACPI_MADT_TRIGGER_EDGE ||
                   (!sci && trigger == ACPI_MADT_TRIGGER_CONFORMS)) {
                       type = IST_EDGE;
                       mpflags &= ~(MPS_INTTR_LEVEL << 2);
                       mpflags |= (MPS_INTTR_EDGE << 2);
                       redir &= ~IOAPIC_REDLO_LEVEL;
               }
       }

       pic = NULL;
       pin = irq;

       /*
        * If the interrupt is handled via IOAPIC, update the map.
        * If the map isn't set up yet, install a temporary one.
        * Identify ISA & EISA interrupts
        */
       if (mp_busses != NULL) {
               if (intr_find_mpmapping(mp_isa_bus, irq, &mpih) == 0 ||
                   intr_find_mpmapping(mp_eisa_bus, irq, &mpih) == 0) {
                       if (!APIC_IRQ_ISLEGACY(mpih)) {
                               pin = APIC_IRQ_PIN(mpih);
                               ioapic = ioapic_find(APIC_IRQ_APIC(mpih));
                               if (ioapic != NULL)
                                       pic = &ioapic->sc_pic;
                       }
               }
       }

       if (pic == NULL) {
               /*
                * If the interrupt is handled via IOAPIC, update the map.
                * If the map isn't set up yet, install a temporary one.
                */
               ioapic = ioapic_find_bybase(irq);
               if (ioapic != NULL) {
                       pic = &ioapic->sc_pic;

                       if (pic->pic_type == PIC_IOAPIC) {
                               pin = irq - pic->pic_vecbase;
                               irq = -1;
                       } else {
                               pin = irq;
                       }

                       mip = ioapic->sc_pins[pin].ip_map;
                       if (mip) {
                               mip->flags &= ~0xf;
                               mip->flags |= mpflags;
                               mip->redir &= ~(IOAPIC_REDLO_LEVEL |
                                               IOAPIC_REDLO_ACTLO);
                               mip->redir |= redir;
                       } else {
                               mipp = &ioapic->sc_pins[pin].ip_map;
                               *mipp = &tmpmap;
                               tmpmap.redir = redir;
                               tmpmap.flags = mpflags;
                       }
               }
       }

       if (pic == NULL)
#endif
       {
               pic = &i8259_pic;
               pin = irq;
       }

       ih = intr_establish_xname(irq, pic, pin, type, ipl,
           handler, arg, mpsafe, xname);

#if NIOAPIC > 0
       if (mipp) {
               *mipp = NULL;
       }
#endif

       return ih;
}

void
acpi_md_intr_mask(void *ih)
{
       intr_mask(ih);
}

void
acpi_md_intr_unmask(void *ih)
{
       intr_unmask(ih);
}

void
acpi_md_intr_disestablish(void *ih)
{
       intr_disestablish(ih);
}

ACPI_STATUS
acpi_md_OsMapMemory(ACPI_PHYSICAL_ADDRESS PhysicalAddress,
   uint32_t Length, void **LogicalAddress)
{
       int rv;

       rv = _x86_memio_map(x86_bus_space_mem, PhysicalAddress,
           Length, 0, (bus_space_handle_t *)LogicalAddress);

       return (rv != 0) ? AE_NO_MEMORY : AE_OK;
}

void
acpi_md_OsUnmapMemory(void *LogicalAddress, uint32_t Length)
{
       (void) _x86_memio_unmap(x86_bus_space_mem,
           (bus_space_handle_t)LogicalAddress, Length, NULL);
}

ACPI_STATUS
acpi_md_OsGetPhysicalAddress(void *LogicalAddress,
   ACPI_PHYSICAL_ADDRESS *PhysicalAddress)
{
       paddr_t pa;

       if (pmap_extract(pmap_kernel(), (vaddr_t) LogicalAddress, &pa)) {
               *PhysicalAddress = pa;
               return AE_OK;
       }

       return AE_ERROR;
}

BOOLEAN
acpi_md_OsReadable(void *Pointer, uint32_t Length)
{
       BOOLEAN rv = TRUE;
       vaddr_t sva, eva;
       pt_entry_t *pte;

       sva = trunc_page((vaddr_t) Pointer);
       eva = round_page((vaddr_t) Pointer + Length);

       if (sva < VM_MIN_KERNEL_ADDRESS)
               return FALSE;

       for (; sva < eva; sva += PAGE_SIZE) {
               pte = kvtopte(sva);
               if ((*pte & PTE_P) == 0) {
                       rv = FALSE;
                       break;
               }
       }

       return rv;
}

BOOLEAN
acpi_md_OsWritable(void *Pointer, uint32_t Length)
{
       BOOLEAN rv = TRUE;
       vaddr_t sva, eva;
       pt_entry_t *pte;

       sva = trunc_page((vaddr_t) Pointer);
       eva = round_page((vaddr_t) Pointer + Length);

       if (sva < VM_MIN_KERNEL_ADDRESS)
               return FALSE;

       for (; sva < eva; sva += PAGE_SIZE) {
               pte = kvtopte(sva);
               if ((*pte & (PTE_P|PTE_W)) != (PTE_P|PTE_W)) {
                       rv = FALSE;
                       break;
               }
       }

       return rv;
}

void
acpi_md_OsDisableInterrupt(void)
{
       x86_disable_intr();
}

void
acpi_md_OsEnableInterrupt(void)
{
       x86_enable_intr();
}

uint32_t
acpi_md_ncpus(void)
{
       return kcpuset_countset(kcpuset_attached);
}

static bool
acpi_md_mcfg_validate(uint64_t addr, int bus_start, int *bus_end)
{
       struct btinfo_memmap *bim;
       uint64_t size, mapaddr, mapsize;
       uint32_t type;
       int i, n;

#ifndef XENPV
       if (lookup_bootinfo(BTINFO_EFIMEMMAP) != NULL)
               bim = efi_get_e820memmap();
       else
#endif
               bim = lookup_bootinfo(BTINFO_MEMMAP);
       if (bim == NULL)
               return false;

       size = *bus_end - bus_start + 1;
       size *= ACPIMCFG_SIZE_PER_BUS;
       for (i = 0; i < bim->num; i++) {
               mapaddr = bim->entry[i].addr;
               mapsize = bim->entry[i].size;
               type = bim->entry[i].type;

               aprint_debug("MCFG: MEMMAP: 0x%016" PRIx64
                   "-0x%016" PRIx64 ", size=0x%016" PRIx64
                   ", type=%d(%s)\n",
                   mapaddr, mapaddr + mapsize - 1, mapsize, type,
                   (type == BIM_Memory) ?  "Memory" :
                   (type == BIM_Reserved) ?  "Reserved" :
                   (type == BIM_ACPI) ? "ACPI" :
                   (type == BIM_NVS) ? "NVS" :
                   (type == BIM_PMEM) ? "Persistent" :
                   (type == BIM_PRAM) ? "Persistent (Legacy)" :
                   "unknown");

               switch (type) {
               case BIM_ACPI:
               case BIM_Reserved:
                       if (addr < mapaddr || addr >= mapaddr + mapsize)
                               break;

                       /* full map */
                       if (addr + size <= mapaddr + mapsize)
                               return true;

                       /* partial map */
                       n = (mapsize - (addr - mapaddr)) /
                           ACPIMCFG_SIZE_PER_BUS;
                       /* bus_start == bus_end is not allowed. */
                       if (n > 1) {
                               *bus_end = bus_start + n - 1;
                               return true;
                       }
                       aprint_debug("MCFG: bus %d-%d, address 0x%016" PRIx64
                           ": invalid size: request 0x%016" PRIx64 ", "
                           "actual 0x%016" PRIx64 "\n",
                           bus_start, *bus_end, addr, size, mapsize);
                       break;
               }
       }
       aprint_debug("MCFG: bus %d-%d, address 0x%016" PRIx64 ": "
           "no valid region\n", bus_start, *bus_end, addr);
       return false;
}

static uint32_t
acpi_md_mcfg_read(bus_space_tag_t bst, bus_space_handle_t bsh, bus_addr_t addr)
{
       vaddr_t va = bsh + addr;
       uint32_t data = (uint32_t) -1;

       KASSERT(bst == x86_bus_space_mem);

       __asm("movl %1, %0" : "=a" (data) : "m" (*(volatile uint32_t *)va));

       return data;
}

static void
acpi_md_mcfg_write(bus_space_tag_t bst, bus_space_handle_t bsh, bus_addr_t addr,
   uint32_t data)
{
       vaddr_t va = bsh + addr;

       KASSERT(bst == x86_bus_space_mem);

       __asm("movl %1, %0" : "=m" (*(volatile uint32_t *)va) : "a" (data));
}

static const struct acpimcfg_ops acpi_md_mcfg_ops = {
       .ao_validate = acpi_md_mcfg_validate,

       .ao_read = acpi_md_mcfg_read,
       .ao_write = acpi_md_mcfg_write,
};

void
acpi_md_callback(struct acpi_softc *sc)
{
#ifdef MPBIOS
       if (!mpbios_scanned)
#endif
       mpacpi_find_interrupts(sc);

#ifndef XENPV
       acpi_md_sleep_init();
#endif

       acpimcfg_init(x86_bus_space_mem, &acpi_md_mcfg_ops);
}

#ifndef XENPV
int acpi_md_vbios_reset = 0;

void
device_acpi_register(device_t dev, void *aux)
{
       device_t parent;
       bool device_is_vga, device_is_pci, device_is_isa;

       parent = device_parent(dev);
       if (parent == NULL)
               return;

       device_is_vga = device_is_a(dev, "vga") || device_is_a(dev, "genfb");
       device_is_pci = device_is_a(parent, "pci");
       device_is_isa = device_is_a(parent, "isa");

       if (device_is_vga && (device_is_pci || device_is_isa)) {
               acpi_md_vbios_reset = VBIOS_RESET_DEFAULT;
       }
}
#endif