/*      $NetBSD: ms.c,v 1.42 2024/05/24 20:06:55 andvar Exp $ */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)ms.c        8.1 (Berkeley) 6/11/93
*/

/*
* X68k mouse driver.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ms.c,v 1.42 2024/05/24 20:06:55 andvar Exp $");

#include <sys/param.h>
#include <sys/conf.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/syslog.h>
#include <sys/systm.h>
#include <sys/tty.h>
#include <sys/device.h>
#include <sys/signalvar.h>
#include <sys/mutex.h>

#include <dev/ic/z8530reg.h>
#include <machine/z8530var.h>

#include <arch/x68k/dev/event_var.h>
#include <machine/vuid_event.h>
#include <arch/x68k/dev/mfp.h>

#include "ioconf.h"
#include "locators.h"

/*
* How many input characters we can buffer.
* The port-specific var.h may override this.
* Note: must be a power of two!
*/
#define MS_RX_RING_SIZE 256
#define MS_RX_RING_MASK (MS_RX_RING_SIZE-1)
/*
* Output buffer.  Only need a few chars.
*/
#define MS_TX_RING_SIZE 16
#define MS_TX_RING_MASK (MS_TX_RING_SIZE-1)
/*
* Mouse serial line is fixed at 4800 bps.
*/
#define MS_BPS 4800

/*
* Send mouse commands per MS_TICK.
*/
#ifndef HZ
#define HZ              100
#endif
#define MS_TICK         2
#define MS_TIMEOUT_SEC  5
#define MS_TIMEOUT      ((MS_TIMEOUT_SEC * HZ) / MS_TICK)

/*
* Mouse state.  A SHARP X1/X680x0 mouse is a fairly simple device,
* producing three-byte blobs of the form:
*
*      b dx dy
*
* where b is the button state, encoded as 0x80|(buttons)---there are
* two buttons (1=left, 2=right)---and dx,dy are X and Y delta values.
*
* It needs a trigger for the transmission.  When zs RTS negated, the
* mouse begins the sequence.  RTS assertion has no effect.
*/
struct ms_softc {
       device_t ms_dev;                /* required first: base device */
       struct  zs_chanstate *ms_cs;

       struct callout ms_modem_ch;

       /* Flags to communicate with ms_softintr() */
       volatile int ms_intr_flags;
#define INTR_RX_OVERRUN 1
#define INTR_TX_EMPTY   2
#define INTR_ST_CHECK   4

       /*
        * The receive ring buffer.
        */
       u_int   ms_rbget;       /* ring buffer `get' index */
       volatile u_int  ms_rbput;       /* ring buffer `put' index */
       u_short ms_rbuf[MS_RX_RING_SIZE]; /* rr1, data pairs */

       /*
        * State of input translator
        */
       short   ms_byteno;              /* input byte number, for decode */
       char    ms_mb;                  /* mouse button state */
       char    ms_ub;                  /* user button state */
       int     ms_dx;                  /* delta-x */
       int     ms_dy;                  /* delta-y */
       int     ms_rts;                 /* MSCTRL */
       int     ms_nodata;

       /*
        * State of upper interface.
        */
       volatile int ms_ready;          /* event queue is ready */
       struct  evvar ms_events;        /* event queue state */
       kmutex_t ms_lock;
};

static int ms_match(device_t, cfdata_t, void *);
static void ms_attach(device_t, device_t, void *);
static void ms_trigger(struct zs_chanstate *, int);
static void ms_modem(void *);

CFATTACH_DECL_NEW(ms, sizeof(struct ms_softc),
   ms_match, ms_attach, NULL, NULL);

static void ms_rxint(struct zs_chanstate *);
static void ms_stint(struct zs_chanstate *, int);
static void ms_txint(struct zs_chanstate *);
static void ms_softint(struct zs_chanstate *);
static void ms_input(struct ms_softc *, int);

static struct zsops zsops_ms = {
       ms_rxint,       /* receive char available */
       ms_stint,       /* external/status */
       ms_txint,       /* xmit buffer empty */
       ms_softint,     /* process software interrupt */
};

static dev_type_open(msopen);
static dev_type_close(msclose);
static dev_type_read(msread);
static dev_type_ioctl(msioctl);
static dev_type_poll(mspoll);
static dev_type_kqfilter(mskqfilter);

const struct cdevsw ms_cdevsw ={
       .d_open = msopen,
       .d_close = msclose,
       .d_read = msread,
       .d_write = nowrite,
       .d_ioctl = msioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = mspoll,
       .d_mmap = nommap,
       .d_kqfilter = mskqfilter,
       .d_discard = nodiscard,
       .d_flag = 0
};

/*
* ms_match: how is this zs channel configured?
*/
static int
ms_match(device_t parent, cfdata_t cf, void *aux)
{
       struct zsc_attach_args *args = aux;
       struct zsc_softc *zsc = device_private(parent);

       /* Exact match required for the mouse. */
       if (cf->cf_loc[ZSCCF_CHANNEL] != args->channel)
               return 0;
       if (args->channel != 1)
               return 0;
       if (&zsc->zsc_addr->zs_chan_b != (struct zschan *)ZSMS_PHYSADDR)
               return 0;

       return 2;
}

static void
ms_attach(device_t parent, device_t self, void *aux)
{
       struct ms_softc *ms = device_private(self);
       struct zsc_softc *zsc = device_private(parent);
       struct zs_chanstate *cs;
       int reset;

       ms->ms_dev = self;
       callout_init(&ms->ms_modem_ch, 0);
       mutex_init(&ms->ms_lock, MUTEX_DEFAULT, IPL_SERIAL);

       cs = zsc->zsc_cs[1];
       cs->cs_private = ms;
       cs->cs_ops = &zsops_ms;
       ms->ms_cs = cs;

       /* Initialize the speed, etc. */
       /* May need reset... */
       reset = ZSWR9_B_RESET;
       zs_write_reg(cs, 9, reset);
       /* We don't care about status or tx interrupts. */
       cs->cs_preg[1] = ZSWR1_RIE;
       cs->cs_preg[4] = ZSWR4_CLK_X16 | ZSWR4_TWOSB;
       (void)zs_set_speed(cs, MS_BPS);
       zs_loadchannelregs(cs);

       /* Initialize translator. */
       ms->ms_ready = 0;

       aprint_normal("\n");
}

/****************************************************************
*  Entry points for /dev/mouse
*  (open,close,read,write,...)
****************************************************************/

static int
msopen(dev_t dev, int flags, int mode, struct lwp *l)
{
       struct ms_softc *ms;

       ms = device_lookup_private(&ms_cd, minor(dev));
       if (ms == NULL)
               return ENXIO;

       /* This is an exclusive open device. */
       if (ms->ms_events.ev_io)
               return EBUSY;
       ms->ms_events.ev_io = l->l_proc;
       ev_init(&ms->ms_events, device_xname(ms->ms_dev), &ms->ms_lock);

       ms->ms_ready = 1;               /* start accepting events */
       ms->ms_rts = 1;
       ms->ms_byteno = -1;
       ms->ms_nodata = 0;

       /* start sequencer */
       callout_reset(&ms->ms_modem_ch, MS_TICK, ms_modem, ms);

       return 0;
}

static int
msclose(dev_t dev, int flags, int mode, struct lwp *l)
{
       struct ms_softc *ms;

       ms = device_lookup_private(&ms_cd, minor(dev));
       ms->ms_ready = 0;               /* stop accepting events */
       callout_stop(&ms->ms_modem_ch);
       ev_fini(&ms->ms_events);

       ms->ms_events.ev_io = NULL;
       return 0;
}

static int
msread(dev_t dev, struct uio *uio, int flags)
{
       struct ms_softc *ms;

       ms = device_lookup_private(&ms_cd, minor(dev));
       return ev_read(&ms->ms_events, uio, flags);
}

static int
msioctl(dev_t dev, u_long cmd, void *data, int flag, struct lwp *l)
{
       struct ms_softc *ms;

       ms = device_lookup_private(&ms_cd, minor(dev));

       switch (cmd) {

       case FIONBIO:           /* we will remove this someday (soon???) */
               return 0;

       case FIOASYNC:
               ms->ms_events.ev_async = *(int *)data != 0;
               return 0;

       case FIOSETOWN:
               if (-*(int *)data != ms->ms_events.ev_io->p_pgid
                   && *(int *)data != ms->ms_events.ev_io->p_pid)
                       return EPERM;
               return 0;

       case TIOCSPGRP:
               if (*(int *)data != ms->ms_events.ev_io->p_pgid)
                       return EPERM;
               return 0;

       case VUIDGFORMAT:
               /* we only do firm_events */
               *(int *)data = VUID_FIRM_EVENT;
               return 0;

       case VUIDSFORMAT:
               if (*(int *)data != VUID_FIRM_EVENT)
                       return EINVAL;
               return 0;
       }
       return ENOTTY;
}

static int
mspoll(dev_t dev, int events, struct lwp *l)
{
       struct ms_softc *ms;

       ms = device_lookup_private(&ms_cd, minor(dev));
       return ev_poll(&ms->ms_events, events, l);
}

static int
mskqfilter(dev_t dev, struct knote *kn)
{
       struct ms_softc *ms;

       ms = device_lookup_private(&ms_cd, minor(dev));
       return ev_kqfilter(&ms->ms_events, kn);
}

/****************************************************************
* Middle layer (translator)
****************************************************************/

/*
* Called by our ms_softint() routine on input.
*/
static void
ms_input(struct ms_softc *ms, int c)
{
       struct firm_event *fe;
       int mb, ub, d, get, put, any;
       static const char to_one[] = { 1, 2, 2 };
       static const int to_id[] = { MS_LEFT, MS_RIGHT };

       /*
        * Discard input if not ready.  Drop sync on parity or framing
        * error; gain sync on button byte.
        */
       if (ms->ms_ready == 0)
               return;

       ms->ms_nodata = 0;
       /*
        * Run the decode loop, adding to the current information.
        * We add, rather than replace, deltas, so that if the event queue
        * fills, we accumulate data for when it opens up again.
        */
       switch (ms->ms_byteno) {

       case -1:
               return;

       case 0:
               /* buttons */
               ms->ms_byteno = 1;
               ms->ms_mb = c & 0x3;
               return;

       case 1:
               /* delta-x */
               ms->ms_byteno = 2;
               ms->ms_dx += (char)c;
               return;

       case 2:
               /* delta-y */
               ms->ms_byteno = -1;
               ms->ms_dy += (char)c;
               break;

       default:
               panic("ms_input");
               /* NOTREACHED */
       }

       /*
        * We have at least one event (mouse button, delta-X, or
        * delta-Y; possibly all three, and possibly two separate
        * button events).  Deliver these events until we are out
        * of changes or out of room.  As events get delivered,
        * mark them `unchanged'.
        */
       any = 0;
       get = ms->ms_events.ev_get;
       put = ms->ms_events.ev_put;
       fe = &ms->ms_events.ev_q[put];

       /* NEXT prepares to put the next event, backing off if necessary */
#define NEXT \
       if ((++put) % EV_QSIZE == get) { \
               put--; \
               goto out; \
       }
       /* ADVANCE completes the `put' of the event */
#define ADVANCE \
       fe++; \
       if (put >= EV_QSIZE) { \
               put = 0; \
               fe = &ms->ms_events.ev_q[0]; \
       } \

       mb = ms->ms_mb;
       ub = ms->ms_ub;
       while ((d = mb ^ ub) != 0) {
               /*
                * Mouse button change.  Convert up to two changes
                * to the `first' change, and drop it into the event queue.
                */
               NEXT;
               d = to_one[d - 1];              /* from 1..3 to {1,2} */
               fe->id = to_id[d - 1];          /* from {1,2} to ID */
               fe->value = mb & d ? VKEY_DOWN : VKEY_UP;
               firm_gettime(fe);
               ADVANCE;
               ub ^= d;
               any++;
       }
       if (ms->ms_dx) {
               NEXT;
               fe->id = LOC_X_DELTA;
               fe->value = ms->ms_dx;
               firm_gettime(fe);
               ADVANCE;
               ms->ms_dx = 0;
               any++;
       }
       if (ms->ms_dy) {
               NEXT;
               fe->id = LOC_Y_DELTA;
               /*
                * struct firm_events (derived from SunOS) defines
                * moving up (forward) is positive. (see vuid_event.h)
                * On the other hand, X680x0 mouse protocol reports
                * moving down (backward) is positive.
                *
                * Note wsmouse(9) also defines moving upward is positive,
                * but Xorg DIX layer requires moving down is positive.
                */
               fe->value = -ms->ms_dy;
               firm_gettime(fe);
               ADVANCE;
               ms->ms_dy = 0;
               any++;
       }
out:
       if (any) {
               ms->ms_ub = ub;
               ms->ms_events.ev_put = put;
               ev_wakeup(&ms->ms_events);
       }
}

/****************************************************************
* Interface to the lower layer (zscc)
****************************************************************/

static void
ms_rxint(struct zs_chanstate *cs)
{
       struct ms_softc *ms;
       int put, put_next;
       u_char c, rr1;

       ms = cs->cs_private;
       put = ms->ms_rbput;

       /*
        * First read the status, because reading the received char
        * destroys the status of this char.
        */
       rr1 = zs_read_reg(cs, 1);
       c = zs_read_data(cs);

       if (rr1 & (ZSRR1_FE | ZSRR1_DO | ZSRR1_PE)) {
               /* Clear the receive error. */
               zs_write_csr(cs, ZSWR0_RESET_ERRORS);
       }

       ms->ms_rbuf[put] = (c << 8) | rr1;
       put_next = (put + 1) & MS_RX_RING_MASK;

       /* Would overrun if increment makes (put==get). */
       if (put_next == ms->ms_rbget) {
               ms->ms_intr_flags |= INTR_RX_OVERRUN;
       } else {
               /* OK, really increment. */
               put = put_next;
       }

       /* Done reading. */
       ms->ms_rbput = put;

       /* Ask for softint() call. */
       cs->cs_softreq = 1;
}


static void
ms_txint(struct zs_chanstate *cs)
{
       struct ms_softc *ms;

       ms = cs->cs_private;
       zs_write_csr(cs, ZSWR0_RESET_TXINT);
       ms->ms_intr_flags |= INTR_TX_EMPTY;
       /* Ask for softint() call. */
       cs->cs_softreq = 1;
}


static void
ms_stint(struct zs_chanstate *cs, int force)
{
       struct ms_softc *ms;
       int rr0;

       ms = cs->cs_private;

       rr0 = zs_read_csr(cs);
       zs_write_csr(cs, ZSWR0_RESET_STATUS);

       /*
        * We have to accumulate status line changes here.
        * Otherwise, if we get multiple status interrupts
        * before the softint runs, we could fail to notice
        * some status line changes in the softint routine.
        * Fix from Bill Studenmund, October 1996.
        */
       cs->cs_rr0_delta |= (cs->cs_rr0 ^ rr0);
       cs->cs_rr0 = rr0;
       ms->ms_intr_flags |= INTR_ST_CHECK;

       /* Ask for softint() call. */
       cs->cs_softreq = 1;
}


static void
ms_softint(struct zs_chanstate *cs)
{
       struct ms_softc *ms;
       int get, c;
       int intr_flags;
       u_short ring_data;

       ms = cs->cs_private;

       mutex_enter(&ms->ms_lock);
       intr_flags = ms->ms_intr_flags;
       ms->ms_intr_flags = 0;

       /*
        * Copy data from the receive ring to the event layer.
        */
       get = ms->ms_rbget;
       while (get != ms->ms_rbput) {
               ring_data = ms->ms_rbuf[get];
               mutex_exit(&ms->ms_lock);
               get = (get + 1) & MS_RX_RING_MASK;

               /* low byte of ring_data is rr1 */
               c = (ring_data >> 8) & 0xff;

               if (ring_data & ZSRR1_DO)
                       intr_flags |= INTR_RX_OVERRUN;
               if (ring_data & (ZSRR1_FE | ZSRR1_PE)) {
                       log(LOG_ERR, "%s: input error (0x%x)\n",
                           device_xname(ms->ms_dev), ring_data);
                       c = -1; /* signal input error */
               }

               /* Pass this up to the "middle" layer. */
               ms_input(ms, c);
               mutex_enter(&ms->ms_lock);
       }
       mutex_exit(&ms->ms_lock);

       if (intr_flags & INTR_RX_OVERRUN) {
               log(LOG_ERR, "%s: input overrun\n",
                   device_xname(ms->ms_dev));
       }
       ms->ms_rbget = get;

       if (intr_flags & INTR_TX_EMPTY) {
               /*
                * Transmit done.  (Not expected.)
                */
               log(LOG_ERR, "%s: transmit interrupt?\n",
                   device_xname(ms->ms_dev));
       }

       if (intr_flags & INTR_ST_CHECK) {
               /*
                * Status line change.  (Not expected.)
                */
               log(LOG_ERR, "%s: status interrupt?\n",
                   device_xname(ms->ms_dev));
               mutex_enter(&ms->ms_lock);
               cs->cs_rr0_delta = 0;
               mutex_exit(&ms->ms_lock);
       }
}


static void
ms_trigger(struct zs_chanstate *cs, int onoff)
{
       /* for front connected one */
       if (onoff)
               cs->cs_preg[5] |= ZSWR5_RTS;
       else
               cs->cs_preg[5] &= ~ZSWR5_RTS;
       cs->cs_creg[5] = cs->cs_preg[5];
       zs_write_reg(cs, 5, cs->cs_preg[5]);

       /* for keyboard connected one */
       mfp_send_usart(onoff | 0x40);
}

/*
* mouse timer interrupt.
* called after system tick interrupt is done.
*/
static void
ms_modem(void *arg)
{
       struct ms_softc *ms = arg;

       if (!ms->ms_ready)
               return;

       mutex_enter(&ms->ms_lock);

       if (ms->ms_nodata++ > MS_TIMEOUT) {
               log(LOG_ERR, "%s: no data for %d secs. resetting.\n",
                   device_xname(ms->ms_dev), MS_TIMEOUT_SEC);
               ms->ms_byteno = -1;
               ms->ms_nodata = 0;
               ms->ms_rts = 0;
       }

       if (ms->ms_rts) {
               if (ms->ms_byteno == -1) {
                       /* start next sequence */
                       ms->ms_rts = 0;
                       ms_trigger(ms->ms_cs, ms->ms_rts);
                       ms->ms_byteno = 0;
               }
       } else {
               ms->ms_rts = 1;
               ms_trigger(ms->ms_cs, ms->ms_rts);
       }

       mutex_exit(&ms->ms_lock);
       callout_schedule(&ms->ms_modem_ch, MS_TICK);
}