/*      $NetBSD: hdc9224.c,v 1.62 2021/08/07 16:19:07 thorpej Exp $ */
/*
* Copyright (c) 1996 Ludd, University of Lule}, Sweden.
* All rights reserved.
*
* This code is derived from software contributed to Ludd by Bertram Barth.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

/*
* with much help from (in alphabetical order):
*      Jeremy
*      Roger Ivie
*      Rick Macklem
*      Mike Young
*
* Rewritten by Ragge 25 Jun 2000. New features:
*      - Uses interrupts instead of polling to signal ready.
*      - Can cooperate with the SCSI routines WRT. the DMA area.
*
* TODO:
*      - Floppy support missing.
*      - Bad block forwarding missing.
*      - Statistics collection.
*/
#undef  RDDEBUG

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: hdc9224.c,v 1.62 2021/08/07 16:19:07 thorpej Exp $");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bufq.h>
#include <sys/cpu.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/disk.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/proc.h>
#include <sys/stat.h>
#include <sys/syslog.h>

#include <uvm/uvm_extern.h>

#include <ufs/ufs/dinode.h> /* For BBSIZE */
#include <ufs/ffs/fs.h>

#include <machine/sid.h>
#include <machine/ka410.h>
#include <machine/vsbus.h>
#include <machine/rpb.h>
#include <machine/scb.h>

#include <dev/mscp/mscp.h> /* For DEC disk encoding */

#include <vax/vsa/hdc9224.h>

#include "ioconf.h"
#include "locators.h"


/*
* on-disk geometry block
*/
#define _aP     __attribute__ ((packed))        /* force byte-alignment */
struct rdgeom {
       char mbz[10];           /* 10 bytes of zero */
       long xbn_count _aP;     /* number of XBNs */
       long dbn_count _aP;     /* number of DBNs */
       long lbn_count _aP;     /* number of LBNs (Logical-Block-Numbers) */
       long rbn_count _aP;     /* number of RBNs (Replacement-Block-Numbers) */
       short nspt;             /* number of sectors per track */
       short ntracks;          /* number of tracks */
       short ncylinders;       /* number of cylinders */
       short precomp;          /* first cylinder for write precompensation */
       short reduced;          /* first cylinder for reduced write current */
       short seek_rate;        /* seek rate or zero for buffered seeks */
       short crc_eec;          /* 0 if CRC, 1 if ECC is being used */
       short rct;              /* "replacement control table" (RCT) */
       short rct_ncopies;      /* number of copies of the RCT */
       long    media_id _aP;   /* media identifier */
       short interleave;       /* sector-to-sector interleave */
       short headskew;         /* head-to-head skew */
       short cylskew;          /* cylinder-to-cylinder skew */
       short gap0_size;        /* size of GAP 0 in the MFM format */
       short gap1_size;        /* size of GAP 1 in the MFM format */
       short gap2_size;        /* size of GAP 2 in the MFM format */
       short gap3_size;        /* size of GAP 3 in the MFM format */
       short sync_value;       /* sync value used when formatting */
       char    reserved[32];   /* reserved for use by the RQDX formatter */
       short serial_number;    /* serial number */
#if 0   /* we don't need these 412 useless bytes ... */
       char    fill[412-2];    /* Filler bytes to the end of the block */
       short checksum; /* checksum over the XBN */
#endif
};

/*
* Software status
*/
struct  rdsoftc {
       device_t sc_dev;                /* must be here! (pseudo-OOP:) */
       struct hdcsoftc *sc_hdc;
       struct disk sc_disk;            /* disklabel etc. */
       struct rdgeom sc_xbn;           /* on-disk geometry information */
       int sc_drive;           /* physical unit number */
};

struct  hdcsoftc {
       device_t sc_dev;                /* must be here (pseudo-OOP:) */
       struct evcnt sc_intrcnt;
       struct vsbus_dma sc_vd;
       vaddr_t sc_regs;                /* register addresses */
       struct bufq_state *sc_q;
       struct buf *sc_active;
       struct hdc9224_UDCreg sc_creg;  /* (command) registers to be written */
       struct hdc9224_UDCreg sc_sreg;  /* (status) registers being read */
       void *  sc_dmabase;             /* */
       int     sc_dmasize;
       void *sc_bufaddr;               /* Current in-core address */
       int sc_diskblk;                 /* Current block on disk */
       int sc_bytecnt;                 /* How much left to transfer */
       int sc_xfer;                    /* Current transfer size */
       int sc_retries;
       volatile u_char sc_status;      /* last status from interrupt */
       char sc_intbit;
};

struct hdc_attach_args {
       int ha_drive;
};

/*
* prototypes for (almost) all the internal routines
*/
static  int hdcmatch(device_t, cfdata_t, void *);
static  void hdcattach(device_t, device_t, void *);
static  int hdcprint(void *, const char *);
static  int rdmatch(device_t, cfdata_t, void *);
static  void rdattach(device_t, device_t, void *);
static  void hdcintr(void *);
static  int hdc_command(struct hdcsoftc *, int);
static  void rd_readgeom(struct hdcsoftc *, struct rdsoftc *);
#ifdef RDDEBUG
static  void hdc_printgeom( struct rdgeom *);
#endif
static  void hdc_writeregs(struct hdcsoftc *);
static  void hdcstart(struct hdcsoftc *, struct buf *);
static  int hdc_rdselect(struct hdcsoftc *, int);
static  void rdmakelabel(struct disklabel *, struct rdgeom *);
static  void hdc_writeregs(struct hdcsoftc *);
static  void hdc_readregs(struct hdcsoftc *);
static  void hdc_qstart(void *);

CFATTACH_DECL_NEW(hdc, sizeof(struct hdcsoftc),
   hdcmatch, hdcattach, NULL, NULL);

CFATTACH_DECL_NEW(rd, sizeof(struct rdsoftc),
   rdmatch, rdattach, NULL, NULL);

static dev_type_open(rdopen);
static dev_type_close(rdclose);
static dev_type_read(rdread);
static dev_type_write(rdwrite);
static dev_type_ioctl(rdioctl);
static dev_type_strategy(rdstrategy);
static dev_type_size(rdpsize);

const struct bdevsw rd_bdevsw = {
       .d_open = rdopen,
       .d_close = rdclose,
       .d_strategy = rdstrategy,
       .d_ioctl = rdioctl,
       .d_dump = nulldump,
       .d_psize = rdpsize,
       .d_discard = nodiscard,
       .d_flag = D_DISK
};

const struct cdevsw rd_cdevsw = {
       .d_open = rdopen,
       .d_close = rdclose,
       .d_read = rdread,
       .d_write = rdwrite,
       .d_ioctl = rdioctl,
       .d_stop = nostop,
       .d_tty = notty,
       .d_poll = nopoll,
       .d_mmap = nommap,
       .d_kqfilter = nokqfilter,
       .d_discard = nodiscard,
       .d_flag = D_DISK
};

/* At least 0.7 uS between register accesses */
static int rd_dmasize, inq = 0;
static volatile int u;
#define WAIT    __asm("movl %0,%0;movl %0,%0;movl %0,%0; movl %0,%0" :: "m"(u))

#define HDC_WREG(x)     *(volatile char *)(sc->sc_regs) = (x)
#define HDC_RREG        *(volatile char *)(sc->sc_regs)
#define HDC_WCMD(x)     *(volatile char *)(sc->sc_regs + 4) = (x)
#define HDC_RSTAT       *(volatile char *)(sc->sc_regs + 4)

/*
* new-config's hdcmatch() is similar to old-config's hdcprobe(),
* thus we probe for the existence of the controller and reset it.
* NB: we can't initialize the controller yet, since space for hdcsoftc
*     is not yet allocated. Thus we do this in hdcattach()...
*/
int
hdcmatch(device_t parent, cfdata_t cf, void *aux)
{
       struct vsbus_attach_args * const va = aux;
       volatile char * const hdc_csr = (volatile char *)va->va_addr;
       int i;

       u = 8; /* !!! - GCC */

       if (vax_boardtype == VAX_BTYP_49 || vax_boardtype == VAX_BTYP_46
           || vax_boardtype == VAX_BTYP_48 || vax_boardtype == VAX_BTYP_53)
               return 0;

       hdc_csr[4] = DKC_CMD_RESET; /* reset chip */
       for (i = 0; i < 1000; i++) {
               DELAY(1000);
               if (hdc_csr[4] & DKC_ST_DONE)
                       break;
       }
       if (i == 100)
               return 0; /* No response to reset */

       hdc_csr[4] = DKC_CMD_SETREGPTR|UDC_TERM;
       WAIT;
       hdc_csr[0] = UDC_TC_CRCPRE|UDC_TC_INTDONE;
       WAIT;
       hdc_csr[4] = DKC_CMD_DRDESELECT; /* Should be harmless */
       DELAY(1000);
       return (1);
}

int
hdcprint(void *aux, const char *name)
{
       struct hdc_attach_args * const ha = aux;

       if (name)
               aprint_normal ("RD?? at %s drive %d", name, ha->ha_drive);
       return UNCONF;
}

/*
* hdc_attach() probes for all possible devices
*/
void
hdcattach(device_t parent, device_t self, void *aux)
{
       struct vsbus_attach_args * const va = aux;
       struct hdcsoftc * const sc = device_private(self);
       struct hdc_attach_args ha;
       int status, i;

       aprint_normal("\n");

       sc->sc_dev = self;

       /*
        * Get interrupt vector, enable instrumentation.
        */
       scb_vecalloc(va->va_cvec, hdcintr, sc, SCB_ISTACK, &sc->sc_intrcnt);
       evcnt_attach_dynamic(&sc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
           device_xname(self), "intr");

       sc->sc_regs = vax_map_physmem(va->va_paddr, 1);
       sc->sc_dmabase = (void *)va->va_dmaaddr;
       sc->sc_dmasize = va->va_dmasize;
       sc->sc_intbit = va->va_maskno;
       rd_dmasize = uimin(MAXPHYS, sc->sc_dmasize); /* Used in rd_minphys */

       sc->sc_vd.vd_go = hdc_qstart;
       sc->sc_vd.vd_arg = sc;
       /*
        * Reset controller.
        */
       HDC_WCMD(DKC_CMD_RESET);
       DELAY(1000);
       status = HDC_RSTAT;
       if (status != (DKC_ST_DONE|DKC_TC_SUCCESS)) {
               aprint_error_dev(self, "RESET failed,  status 0x%x\n", status);
               return;
       }
       bufq_alloc(&sc->sc_q, "disksort", BUFQ_SORT_CYLINDER);

       /*
        * now probe for all possible hard drives
        */
       for (i = 0; i < 4; i++) {
               if (i == 2) /* Floppy, needs special handling */
                       continue;
               HDC_WCMD(DKC_CMD_DRSELECT | i);
               DELAY(1000);
               status = HDC_RSTAT;
               ha.ha_drive = i;
               if ((status & DKC_ST_TERMCOD) == DKC_TC_SUCCESS)
                       config_found(self, (void *)&ha, hdcprint, CFARGS_NONE);
       }
}

/*
* rdmatch() probes for the existence of a RD-type disk/floppy
*/
int
rdmatch(device_t parent, cfdata_t cf, void *aux)
{
       struct hdc_attach_args * const ha = aux;

       if (cf->cf_loc[HDCCF_DRIVE] != HDCCF_DRIVE_DEFAULT &&
           cf->cf_loc[HDCCF_DRIVE] != ha->ha_drive)
               return 0;

       if (ha->ha_drive == 2) /* Always floppy, not supported */
               return 0;

       return 1;
}

void
rdattach(device_t parent, device_t self, void *aux)
{
       struct hdcsoftc * const sc = device_private(parent);
       struct rdsoftc * const rd = device_private(self);
       struct hdc_attach_args * const ha = aux;
       struct disklabel *dl;
       const char *msg;

       rd->sc_dev = self;
       rd->sc_drive = ha->ha_drive;
       rd->sc_hdc = sc;
       /*
        * Initialize and attach the disk structure.
        */
       disk_init(&rd->sc_disk, device_xname(rd->sc_dev), NULL);
       disk_attach(&rd->sc_disk);

       /*
        * if it's not a floppy then evaluate the on-disk geometry.
        * if necessary correct the label...
        */
       rd_readgeom(sc, rd);
       disk_printtype(rd->sc_drive, rd->sc_xbn.media_id);
       dl = rd->sc_disk.dk_label;
       rdmakelabel(dl, &rd->sc_xbn);
       msg = readdisklabel(MAKEDISKDEV(cdevsw_lookup_major(&rd_cdevsw),
                                       device_unit(rd->sc_dev), RAW_PART),
                           rdstrategy, dl, NULL);
       if (msg)
               aprint_normal_dev(self, "%s: size %u sectors",
                   msg, dl->d_secperunit);
       else
               aprint_normal_dev(self, "size %u sectors\n", dl->d_secperunit);
#ifdef RDDEBUG
       hdc_printgeom(&rd->sc_xbn);
#endif
}

void
hdcintr(void *arg)
{
       struct hdcsoftc * const sc = arg;
       struct buf *bp;

       sc->sc_status = HDC_RSTAT;
       if (sc->sc_active == 0)
               return; /* Complain? */

       if ((sc->sc_status & (DKC_ST_INTPEND|DKC_ST_DONE)) !=
           (DKC_ST_INTPEND|DKC_ST_DONE))
               return; /* Why spurious ints sometimes??? */

       bp = sc->sc_active;
       sc->sc_active = 0;
       if ((sc->sc_status & DKC_ST_TERMCOD) != DKC_TC_SUCCESS) {
               int i;
               u_char *g = (u_char *)&sc->sc_sreg;

               if (sc->sc_retries++ < 3) { /* Allow 3 retries */
                       hdcstart(sc, bp);
                       return;
               }
               aprint_error_dev(sc->sc_dev, "failed, status 0x%x\n",
                   sc->sc_status);
               hdc_readregs(sc);
               for (i = 0; i < 10; i++)
                       aprint_error("%i: %x\n", i, g[i]);
               bp->b_error = ENXIO;
               bp->b_resid = bp->b_bcount;
               biodone(bp);
               vsbus_dma_intr();
               return;
       }

       if (bp->b_flags & B_READ) {
               vsbus_copytoproc(bp->b_proc, sc->sc_dmabase, sc->sc_bufaddr,
                   sc->sc_xfer);
       }
       sc->sc_diskblk += (sc->sc_xfer/DEV_BSIZE);
       sc->sc_bytecnt -= sc->sc_xfer;
       sc->sc_bufaddr = (char *)sc->sc_bufaddr + sc->sc_xfer;

       if (sc->sc_bytecnt == 0) { /* Finished transfer */
               biodone(bp);
               vsbus_dma_intr();
       } else
               hdcstart(sc, bp);
}

/*
*
*/
void
rdstrategy(struct buf *bp)
{
       struct rdsoftc *rd;
       struct hdcsoftc *sc;
       struct disklabel *lp;
       int s;

       if ((rd = device_lookup_private(&rd_cd, DISKUNIT(bp->b_dev))) == NULL) {
               bp->b_error = ENXIO;
               goto done;
       }
       sc = rd->sc_hdc;

       lp = rd->sc_disk.dk_label;
       if ((bounds_check_with_label(&rd->sc_disk, bp, 1)) <= 0)
               goto done;

       if (bp->b_bcount == 0)
               goto done;

       bp->b_rawblkno =
           bp->b_blkno + lp->d_partitions[DISKPART(bp->b_dev)].p_offset;
       bp->b_cylinder = bp->b_rawblkno / lp->d_secpercyl;

       s = splbio();
       bufq_put(sc->sc_q, bp);
       if (inq == 0) {
               inq = 1;
               vsbus_dma_start(&sc->sc_vd);
       }
       splx(s);
       return;

done:   biodone(bp);
}

void
hdc_qstart(void *arg)
{
       struct hdcsoftc * const sc = arg;

       inq = 0;

       hdcstart(sc, 0);
       if (bufq_peek(sc->sc_q)) {
               vsbus_dma_start(&sc->sc_vd); /* More to go */
               inq = 1;
       }
}

void
hdcstart(struct hdcsoftc *sc, struct buf *ob)
{
       struct hdc9224_UDCreg * const p = &sc->sc_creg;
       struct disklabel *lp;
       struct rdsoftc *rd;
       struct buf *bp;
       int cn, sn, tn, bn, blks;

       if (sc->sc_active)
               return; /* Already doing something */

       if (ob == 0) {
               bp = bufq_get(sc->sc_q);
               if (bp == NULL)
                       return; /* Nothing to do */
               sc->sc_bufaddr = bp->b_data;
               sc->sc_diskblk = bp->b_rawblkno;
               sc->sc_bytecnt = bp->b_bcount;
               sc->sc_retries = 0;
               bp->b_resid = 0;
       } else
               bp = ob;

       rd = device_lookup_private(&rd_cd, DISKUNIT(bp->b_dev));
       hdc_rdselect(sc, rd->sc_drive);
       sc->sc_active = bp;

       bn = sc->sc_diskblk;
       lp = rd->sc_disk.dk_label;
       if (bn) {
               cn = bn / lp->d_secpercyl;
               sn = bn % lp->d_secpercyl;
               tn = sn / lp->d_nsectors;
               sn = sn % lp->d_nsectors;
       } else
               cn = sn = tn = 0;

       cn++; /* first cylinder is reserved */

       memset(p, 0, sizeof(struct hdc9224_UDCreg));

       /*
        * Tricky thing: the controller do itself only increase the sector
        * number, not the track or cylinder number. Therefore the driver
        * is not allowed to have transfers that crosses track boundaries.
        */
       blks = sc->sc_bytecnt/DEV_BSIZE;
       if ((sn + blks) > lp->d_nsectors)
               blks = lp->d_nsectors - sn;

       p->udc_dsect = sn;
       p->udc_dcyl = cn & 0xff;
       p->udc_dhead = ((cn >> 4) & 0x70) | tn;
       p->udc_scnt = blks;

       p->udc_rtcnt = UDC_RC_RTRYCNT;
       p->udc_mode = UDC_MD_HDD;
       p->udc_term = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWRFLT;
       hdc_writeregs(sc);

       /* Count up vars */
       sc->sc_xfer = blks * DEV_BSIZE;

       (void)HDC_RSTAT; /* Avoid pending interrupts */
       WAIT;
       vsbus_clrintr(sc->sc_intbit); /* Clear pending int's */

       if (bp->b_flags & B_READ) {
               HDC_WCMD(DKC_CMD_READ_HDD);
       } else {
               vsbus_copyfromproc(bp->b_proc, sc->sc_bufaddr, sc->sc_dmabase,
                   sc->sc_xfer);
               HDC_WCMD(DKC_CMD_WRITE_HDD);
       }
}

void
rd_readgeom(struct hdcsoftc *sc, struct rdsoftc *rd)
{
       struct hdc9224_UDCreg * const p = &sc->sc_creg;

       hdc_rdselect(sc, rd->sc_drive);         /* select drive right now */

       memset(p, 0, sizeof(*p));

       p->udc_scnt  = 1;
       p->udc_rtcnt = UDC_RC_RTRYCNT;
       p->udc_mode  = UDC_MD_HDD;
       p->udc_term  = UDC_TC_CRCPRE|UDC_TC_INTDONE|UDC_TC_TDELDAT|UDC_TC_TWPROT;
       hdc_writeregs(sc);
       sc->sc_status = 0;
       HDC_WCMD(DKC_CMD_READ_HDD|2);
       while ((sc->sc_status & DKC_ST_INTPEND) == 0)
               ;
       memcpy(&rd->sc_xbn, sc->sc_dmabase, sizeof(struct rdgeom));
}

#ifdef RDDEBUG
/*
* display the contents of the on-disk geometry structure
*/
void
hdc_printgeom(struct rdgeom *p)
{
       printf ("**DiskData**    XBNs: %ld, DBNs: %ld, LBNs: %ld, RBNs: %ld\n",
               p->xbn_count, p->dbn_count, p->lbn_count, p->rbn_count);
       printf ("sec/track: %d, tracks: %d, cyl: %d, precomp/reduced: %d/%d\n",
               p->nspt, p->ntracks, p->ncylinders, p->precomp, p->reduced);
       printf ("seek-rate: %d, crc/eec: %s, RCT: %d, RCT-copies: %d\n",
               p->seek_rate, p->crc_eec?"EEC":"CRC", p->rct, p->rct_ncopies);
       printf ("media-ID: %lx, interleave: %d, headskew: %d, cylskew: %d\n",
               p->media_id, p->interleave, p->headskew, p->cylskew);
       printf ("gap0: %d, gap1: %d, gap2: %d, gap3: %d, sync-value: %d\n",
               p->gap0_size, p->gap1_size, p->gap2_size, p->gap3_size,
               p->sync_value);
}
#endif

/*
* Return the size of a partition, if known, or -1 if not.
*/
int
rdpsize(dev_t dev)
{
       struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev));
       const int part = DISKPART(dev);

       if (rd == NULL || part >= rd->sc_disk.dk_label->d_npartitions)
               return -1;

       return rd->sc_disk.dk_label->d_partitions[part].p_size *
           (rd->sc_disk.dk_label->d_secsize / DEV_BSIZE);
}

/*
*
*/
int
rdopen(dev_t dev, int flag, int fmt, struct lwp *l)
{
       struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev));
       const int part = DISKPART(dev);

       if (rd == NULL || part >= rd->sc_disk.dk_label->d_npartitions)
               return ENXIO;

       switch (fmt) {
       case S_IFCHR:
               rd->sc_disk.dk_copenmask |= (1 << part);
               break;
       case S_IFBLK:
               rd->sc_disk.dk_bopenmask |= (1 << part);
               break;
       }
       rd->sc_disk.dk_openmask =
           rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask;

       return 0;
}

/*
*
*/
int
rdclose(dev_t dev, int flag, int fmt, struct lwp *l)
{
       struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev));
       const int part = DISKPART(dev);

       switch (fmt) {
       case S_IFCHR:
               rd->sc_disk.dk_copenmask &= ~(1 << part);
               break;
       case S_IFBLK:
               rd->sc_disk.dk_bopenmask &= ~(1 << part);
               break;
       }
       rd->sc_disk.dk_openmask =
           rd->sc_disk.dk_copenmask | rd->sc_disk.dk_bopenmask;

       return (0);
}

/*
*
*/
int
rdioctl(dev_t dev, u_long cmd, void *addr, int flag, struct lwp *l)
{
       struct rdsoftc * const rd = device_lookup_private(&rd_cd, DISKUNIT(dev));
       struct disklabel * const lp = rd->sc_disk.dk_label;
       int error;

       error = disk_ioctl(&rd->sc_disk, dev, cmd, addr, flag, l);
       if (error != EPASSTHROUGH)
               return error;
       else
               error = 0;

       switch (cmd) {
       case DIOCWDINFO:
       case DIOCSDINFO:
               if ((flag & FWRITE) == 0)
                       return EBADF;
               error = (cmd == DIOCSDINFO ?
                   setdisklabel(lp, (struct disklabel *)addr, 0, 0) :
                   writedisklabel(dev, rdstrategy, lp, 0));
               break;

       case DIOCGDEFLABEL:
               memset(lp, 0, sizeof(*lp));
               rdmakelabel(lp, &rd->sc_xbn);
               break;

       case DIOCWLABEL:
               if ((flag & FWRITE) == 0)
                       error = EBADF;
               break;

       default:
               error = ENOTTY;
       }
       return error;
}

/*
*
*/
int
rdread(dev_t dev, struct uio *uio, int flag)
{
       return (physio (rdstrategy, NULL, dev, B_READ, minphys, uio));
}

/*
*
*/
int
rdwrite(dev_t dev, struct uio *uio, int flag)
{
       return (physio (rdstrategy, NULL, dev, B_WRITE, minphys, uio));
}

/*
* we have to wait 0.7 usec between two accesses to any of the
* dkc-registers, on a VS2000 with 1 MIPS, this is roughly one
* instruction. Thus the loop-overhead will be enough...
*/
static void
hdc_readregs(struct hdcsoftc *sc)
{
       int i;
       char *p;

       HDC_WCMD(DKC_CMD_SETREGPTR);
       WAIT;
       p = (void*)&sc->sc_sreg;
       for (i=0; i<10; i++) {
               *p++ = HDC_RREG;        /* dkc_reg auto-increments */
               WAIT;
       }
}

static void
hdc_writeregs(struct hdcsoftc *sc)
{
       int i;
       char *p;

       HDC_WCMD(DKC_CMD_SETREGPTR);
       p = (void*)&sc->sc_creg;
       for (i=0; i<10; i++) {
               HDC_WREG(*p++); /* dkc_reg auto-increments */
               WAIT;
       }
}

/*
* hdc_command() issues a command and polls the intreq-register
* to find when command has completed
*/
int
hdc_command(struct hdcsoftc *sc, int cmd)
{
       hdc_writeregs(sc);              /* write the prepared registers */
       HDC_WCMD(cmd);
       WAIT;
       return (0);
}

int
hdc_rdselect(struct hdcsoftc *sc, int unit)
{
       struct hdc9224_UDCreg * const p = &sc->sc_creg;
       int error;

       /*
        * bring "creg" in some known-to-work state and
        * select the drive with the DRIVE SELECT command.
        */
       memset(p, 0, sizeof(*p));

       p->udc_rtcnt = UDC_RC_HDD_READ;
       p->udc_mode  = UDC_MD_HDD;
       p->udc_term  = UDC_TC_HDD;

       error = hdc_command(sc, DKC_CMD_DRSEL_HDD | unit);

       return error;
}

void
rdmakelabel(struct disklabel *dl, struct rdgeom *g)
{
       int n, p = 0;

       dl->d_bbsize = BBSIZE;
       dl->d_sbsize = SBLOCKSIZE;
       dl->d_typename[p++] = MSCP_MID_CHAR(2, g->media_id);
       dl->d_typename[p++] = MSCP_MID_CHAR(1, g->media_id);
       if (MSCP_MID_ECH(0, g->media_id))
               dl->d_typename[p++] = MSCP_MID_CHAR(0, g->media_id);
       n = MSCP_MID_NUM(g->media_id);
       if (n > 99) {
               dl->d_typename[p++] = '1';
               n -= 100;
       }
       if (n > 9) {
               dl->d_typename[p++] = (n / 10) + '0';
               n %= 10;
       }
       dl->d_typename[p++] = n + '0';
       dl->d_typename[p] = 0;
       dl->d_type = DKTYPE_MSCP; /* XXX - what to use here??? */
       dl->d_rpm = 3600;
       dl->d_secsize = DEV_BSIZE;

       dl->d_secperunit = g->lbn_count;
       dl->d_nsectors = g->nspt;
       dl->d_ntracks = g->ntracks;
       dl->d_secpercyl = dl->d_nsectors * dl->d_ntracks;
       dl->d_ncylinders = dl->d_secperunit / dl->d_secpercyl;

       dl->d_npartitions = MAXPARTITIONS;
       dl->d_partitions[0].p_size = dl->d_partitions[2].p_size =
           dl->d_secperunit;
       dl->d_partitions[0].p_offset = dl->d_partitions[2].p_offset = 0;
       dl->d_interleave = dl->d_headswitch = 1;
       dl->d_magic = dl->d_magic2 = DISKMAGIC;
       dl->d_checksum = dkcksum(dl);
}