/*-
* Copyright (c) 1996, 1997, 1998, 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1996 Charles M. Hannum. All rights reserved.
* Copyright (c) 1996 Christopher G. Demetriou. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Christopher G. Demetriou
* for the NetBSD Project.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SUN68K_BUS_H_
#define _SUN68K_BUS_H_
#define SUN68K_BUS_SPACE 0
/*
* Bus address and size types
*/
typedef u_long bus_space_handle_t;
typedef u_long bus_type_t;
typedef u_long bus_addr_t;
typedef u_long bus_size_t;
#if 0
/*
* The following macro could be used to generate the bus_space*() functions
* but it uses a gcc extension and is ANSI-only.
#define PROTO_bus_space_xxx (bus_space_tag_t t, ...)
#define RETURNTYPE_bus_space_xxx void *
#define BUSFUN(name, returntype, t, args...) \
__inline RETURNTYPE_##name \
bus_##name PROTO_##name \
{ \
while (t->sun68k_##name == NULL) \
t = t->parent; \
return (*(t)->sun68k_##name)(t, args); \
}
*/
#endif
/* This macro finds the first "upstream" implementation of method `f' */
#define _BS_CALL(t,f) \
while (t->f == NULL) \
t = t->parent; \
return (*(t)->f)
static __inline int
bus_space_map(bus_space_tag_t t, bus_addr_t a, bus_size_t s, int f,
bus_space_handle_t *hp)
{
_BS_CALL(t, sun68k_bus_map)((t), 0, (a), (s), (f), 0, (hp));
}
static __inline int
bus_space_map2(bus_space_tag_t t, bus_type_t bt, bus_addr_t a, bus_size_t s,
int f, vaddr_t v, bus_space_handle_t *hp)
{
_BS_CALL(t, sun68k_bus_map)(t, bt, a, s, f, v, hp);
}
static __inline int
bus_space_subregion(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
bus_size_t s, bus_space_handle_t *hp)
{
_BS_CALL(t, sun68k_bus_subregion)(t, h, o, s, hp);
}
static __inline paddr_t
bus_space_mmap(bus_space_tag_t t, bus_addr_t a, off_t o, int p, int f)
{
_BS_CALL(t, sun68k_bus_mmap)(t, 0, a, o, p, f);
}
static __inline paddr_t
bus_space_mmap2(bus_space_tag_t t, bus_type_t bt, bus_addr_t a, off_t o, int p,
int f)
{
_BS_CALL(t, sun68k_bus_mmap)(t, bt, a, o, p, f);
}
static __inline void *
bus_intr_establish(bus_space_tag_t t, int p, int l, int f, int (*h)(void *),
void *a)
{
_BS_CALL(t, sun68k_intr_establish)(t, p, l, f, h, a);
}
static __inline void
bus_space_barrier(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
bus_size_t s, int f)
{
_BS_CALL(t, sun68k_bus_barrier)(t, h, o, s, f);
}
static __inline int
_bus_space_peek(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, size_t s,
void *vp)
{
_BS_CALL(t, sun68k_bus_peek)(t, h, o, s, vp);
}
static __inline int
_bus_space_poke(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o, size_t s,
uint32_t v)
{
_BS_CALL(t, sun68k_bus_poke)(t, h, o, s, v);
}
/*
* void *bus_space_vaddr(bus_space_tag_t, bus_space_handle_t);
*
* Get the kernel virtual address for the mapped bus space.
* Only allowed for regions mapped with BUS_SPACE_MAP_LINEAR.
* (XXX not enforced)
*/
#define bus_space_vaddr(t, h) ((void)(t), (void *)(h))
/* flags for bus space map functions */
#define BUS_SPACE_MAP_CACHEABLE 0x0001
#define BUS_SPACE_MAP_LINEAR 0x0002
#define BUS_SPACE_MAP_PREFETCHABLE 0x0004
#define BUS_SPACE_MAP_BUS1 0x0100 /* placeholders for bus functions... */
#define BUS_SPACE_MAP_BUS2 0x0200
#define BUS_SPACE_MAP_BUS3 0x0400
#define BUS_SPACE_MAP_BUS4 0x0800
/* Internal flag: try to find and use a PROM maping for the device. */
#define _SUN68K_BUS_MAP_USE_PROM BUS_SPACE_MAP_BUS1
/* flags for bus_space_barrier() */
#define BUS_SPACE_BARRIER_READ 0x01 /* force read barrier */
#define BUS_SPACE_BARRIER_WRITE 0x02 /* force write barrier */
/*
* int bus_space_peek_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, u_intN_t *valuep);
*
* Cautiously read 1, 2, 4 or 8 byte quantity from bus space described
* by tag/handle/offset.
* If no hardware responds to the read access, the function returns a
* non-zero value. Otherwise the value read is placed in `valuep'.
*/
#define bus_space_peek_1(t, h, o, vp) \
_bus_space_peek(t, h, o, sizeof(uint8_t), (void *)vp)
#define bus_space_peek_2(t, h, o, vp) \
_bus_space_peek(t, h, o, sizeof(uint16_t), (void *)vp)
#define bus_space_peek_4(t, h, o, vp) \
_bus_space_peek(t, h, o, sizeof(uint32_t), (void *)vp)
/*
* int bus_space_poke_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, uintN_t value);
*
* Cautiously write 1, 2, 4 or 8 byte quantity to bus space described
* by tag/handle/offset.
* If no hardware responds to the write access, the function returns a
* non-zero value.
*/
#define bus_space_poke_1(t, h, o, v) \
_bus_space_poke(t, h, o, sizeof(uint8_t), v)
#define bus_space_poke_2(t, h, o, v) \
_bus_space_poke(t, h, o, sizeof(uint16_t), v)
#define bus_space_poke_4(t, h, o, v) \
_bus_space_poke(t, h, o, sizeof(uint32_t), v)
/*
* uintN_t bus_space_read_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset);
*
* Read a 1, 2, 4, or 8 byte quantity from bus space
* described by tag/handle/offset.
*/
/*
* void bus_space_write_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* uintN_t value);
*
* Write the 1, 2, 4, or 8 byte value `value' to bus space
* described by tag/handle/offset.
*/
#define bus_space_write_1(t, h, o, v) do { \
((void)t, (void)(*(volatile uint8_t *)((h) + (o)) = (v))); \
} while (0)
#define bus_space_write_2(t, h, o, v) do { \
((void)t, (void)(*(volatile uint16_t *)((h) + (o)) = (v))); \
} while (0)
#define bus_space_write_4(t, h, o, v) do { \
((void)t, (void)(*(volatile uint32_t *)((h) + (o)) = (v))); \
} while (0)
#define bus_space_write_8(t, h, o, v) do { \
((void)t, (void)(*(volatile uint64_t *)((h) + (o)) = (v))); \
} while (0)
/*
* void bus_space_read_multi_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* uintN_t *addr, bus_size_t count);
*
* Read `count' 1, 2, 4, or 8 byte quantities from bus space
* described by tag/handle/offset and copy into buffer provided.
*/
static __inline void
bus_space_read_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint8_t *a, bus_size_t c)
{
volatile uint8_t *p;
p = (volatile uint8_t *)(h + o);
while (c-- > 0)
*a++ = *p;
}
static __inline void
bus_space_read_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint16_t *a, bus_size_t c)
{
volatile uint16_t *p;
p = (volatile uint16_t *)(h + o);
while (c-- > 0)
*a++ = *p;
}
static __inline void
bus_space_read_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint32_t *a, bus_size_t c)
{
volatile uint32_t *p;
p = (volatile uint32_t *)(h + o);
while (c-- > 0)
*a++ = *p;
}
static __inline void
bus_space_read_multi_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
uint64_t *a, bus_size_t c)
{
volatile uint64_t *p;
p = (volatile uint64_t *)(h + o);
while (c-- > 0)
*a++ = *p;
}
/*
* void bus_space_write_multi_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset,
* const u_intN_t *addr, bus_size_t count);
*
* Write `count' 1, 2, 4, or 8 byte quantities from the buffer
* provided to bus space described by tag/handle/offset.
*/
static __inline void
bus_space_write_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t *a, bus_size_t c)
{
volatile uint8_t *p;
p = (volatile uint8_t *)(h + o);
while (c-- > 0)
*p = *a++;
}
static __inline void
bus_space_write_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t *a, bus_size_t c)
{
volatile uint16_t *p;
p = (volatile uint16_t *)(h + o);
while (c-- > 0)
*p = *a++;
}
static __inline void
bus_space_write_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t *a, bus_size_t c)
{
volatile uint32_t *p;
p = (volatile uint32_t *)(h + o);
while (c-- > 0)
*p = *a++;
}
static __inline void
bus_space_write_multi_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t *a, bus_size_t c)
{
volatile uint64_t *p;
p = (volatile uint64_t *)(h + o);
while (c-- > 0)
*p = *a++;
}
/*
* void bus_space_set_multi_N(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t offset, uintN_t val,
* bus_size_t count);
*
* Write the 1, 2, 4, or 8 byte value `val' to bus space described
* by tag/handle/offset `count' times.
*/
static __inline void
bus_space_set_multi_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t v, bus_size_t c)
{
volatile uint8_t *p;
p = (volatile uint8_t *)(h + o);
while (c-- > 0)
*p = v;
}
static __inline void
bus_space_set_multi_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t v, bus_size_t c)
{
volatile uint16_t *p;
p = (volatile uint16_t *)(h + o);
while (c-- > 0)
*p = v;
}
static __inline void
bus_space_set_multi_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t v, bus_size_t c)
{
volatile uint32_t *p;
p = (volatile uint32_t *)(h + o);
while (c-- > 0)
*p = v;
}
static __inline void
bus_space_set_multi_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t v, bus_size_t c)
{
volatile uint64_t *p;
p = (volatile uint64_t *)(h + o);
while (c-- > 0)
*p = v;
}
static __inline void
bus_space_set_region_1(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint8_t v, bus_size_t c)
{
volatile uint8_t *p;
p = (volatile uint8_t *)(h + o);
while (c-- > 0)
*p++ = v;
}
static __inline void
bus_space_set_region_2(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint16_t v, bus_size_t c)
{
volatile uint16_t *p;
p = (volatile uint16_t *)(h + o);
while (c-- > 0)
*p++ = v;
}
static __inline void
bus_space_set_region_4(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint32_t v, bus_size_t c)
{
volatile uint32_t *p;
p = (volatile uint32_t *)(h + o);
while (c-- > 0)
*p++ = v;
}
static __inline void
bus_space_set_region_8(bus_space_tag_t t, bus_space_handle_t h, bus_size_t o,
const uint64_t v, bus_size_t c)
{
volatile uint64_t *p;
p = (volatile uint64_t *)(h + o);
while (c-- > 0)
*p++ = v;
}
/*
* void bus_space_copy_region_N(bus_space_tag_t tag,
* bus_space_handle_t bsh1, bus_size_t off1,
* bus_space_handle_t bsh2, bus_size_t off2,
* bus_size_t count);
*
* Copy `count' 1, 2, 4, or 8 byte values from bus space starting
* at tag/bsh1/off1 to bus space starting at tag/bsh2/off2.
*/
srcp = (volatile uint64_t *)(h1 + o1);
dstp = (volatile uint64_t *)(h2 + o2);
if (srcp >= dstp) {
/* src after dest; copy forward */
for (offset = 0; c > 0; c--, offset++)
dstp[offset] = srcp[offset];
} else {
/* dst after src; copy backward */
for (offset = c; c > 0; c--, offset--)
dstp[offset] = srcp[offset];
}
}
/*
* void bus_space_copyin(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* void *addr, bus_size_t count);
*
* Copy `count' bytes from bus space starting at tag/bsh/off
* to kernel memory at addr using the most optimized transfer
* possible for the bus.
*/
#define bus_space_copyin(t, h, o, a, c) \
((void)t, w16copy((uint8_t *)((h) + (o)), (a), (c)))
/*
* void bus_space_copyout(bus_space_tag_t tag,
* bus_space_handle_t bsh, bus_size_t off,
* const void *addr, bus_size_t count);
*
* Copy `count' bytes to bus space starting at tag/bsh/off
* from kernel memory at addr using the most optimized transfer
* possible for the bus.
*/
#define bus_space_copyout(t, h, o, a, c) \
((void)t, w16copy((a), (uint8_t *)((h) + (o)), (c)))
int find_prom_map(paddr_t, bus_type_t, int, vaddr_t *);
/*--------------------------------*/
/*
* Flags used in various bus DMA methods.
*/
#define BUS_DMA_WAITOK 0x000 /* safe to sleep (pseudo-flag) */
#define BUS_DMA_NOWAIT 0x001 /* not safe to sleep */
#define BUS_DMA_ALLOCNOW 0x002 /* perform resource allocation now */
#define BUS_DMA_COHERENT 0x004 /* hint: map memory DMA coherent */
#define BUS_DMA_BUS1 0x010 /* placeholders for bus functions... */
#define BUS_DMA_BUS2 0x020
#define BUS_DMA_BUS3 0x040
#define BUS_DMA_BUS4 0x080
#define BUS_DMA_READ 0x100 /* mapping is device -> memory only */
#define BUS_DMA_WRITE 0x200 /* mapping is memory -> device only */
#define BUS_DMA_NOCACHE 0x400 /* hint: map non-cached memory */
/* For devices that have a 24-bit address space */
#define BUS_DMA_24BIT BUS_DMA_BUS1
/* Internal flag: current DVMA address is equal to the KVA buffer address */
#define _BUS_DMA_DIRECTMAP BUS_DMA_BUS2
/*
* Internal flag: current DVMA address has been double-mapped by hand
* to the KVA buffer address (without the pmap's help).
*/
#define _BUS_DMA_NOPMAP BUS_DMA_BUS3
/*
* bus_dma_segment_t
*
* Describes a single contiguous DMA transaction. Values
* are suitable for programming into DMA registers.
*/
struct sun68k_bus_dma_segment {
bus_addr_t ds_addr; /* DVMA address */
bus_size_t ds_len; /* length of transfer */
bus_size_t _ds_sgsize; /* size of allocated DVMA segment */
void *_ds_mlist; /* page list when dmamem_alloc'ed */
vaddr_t _ds_va; /* VA when dmamem_map'ed */
};
typedef struct sun68k_bus_dma_segment bus_dma_segment_t;
/*
* bus_dma_tag_t
*
* A machine-dependent opaque type describing the implementation of
* DMA for a given bus.
*/
struct sun68k_bus_dma_tag {
void *_cookie; /* cookie used in the guts */
/*
* bus_dmamap_t
*
* Describes a DMA mapping.
*/
struct sun68k_bus_dmamap {
/*
* PRIVATE MEMBERS: not for use by machine-independent code.
*/
bus_size_t _dm_size; /* largest DMA transfer mappable */
int _dm_segcnt; /* number of segs this map can map */
bus_size_t _dm_maxmaxsegsz; /* fixed largest possible segment */
bus_size_t _dm_boundary; /* don't cross this */
int _dm_flags; /* misc. flags */
void *_dm_cookie; /* cookie for bus-specific functions */
u_long _dm_align; /* DVMA alignment; must be a
multiple of the page size */
u_long _dm_ex_start; /* constraints on DVMA map */
u_long _dm_ex_end; /* allocations; used by the VME bus
driver and by the IOMMU driver
when mapping 24-bit devices */
/*
* PUBLIC MEMBERS: these are used by machine-independent code.
*/
bus_size_t dm_maxsegsz; /* largest possible segment */
bus_size_t dm_mapsize; /* size of the mapping */
int dm_nsegs; /* # valid segments in mapping */
bus_dma_segment_t dm_segs[1]; /* segments; variable length */
};