/*      $NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $        */

/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jeremy Cooper.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* XXX These comments aren't quite accurate.  Need to change.
* The sun3x uses the MC68851 Memory Management Unit, which is built
* into the CPU.  The 68851 maps virtual to physical addresses using
* a multi-level table lookup, which is stored in the very memory that
* it maps.  The number of levels of lookup is configurable from one
* to four.  In this implementation, we use three, named 'A' through 'C'.
*
* The MMU translates virtual addresses into physical addresses by
* traversing these tables in a process called a 'table walk'.  The most
* significant 7 bits of the Virtual Address ('VA') being translated are
* used as an index into the level A table, whose base in physical memory
* is stored in a special MMU register, the 'CPU Root Pointer' or CRP.  The
* address found at that index in the A table is used as the base
* address for the next table, the B table.  The next six bits of the VA are
* used as an index into the B table, which in turn gives the base address
* of the third and final C table.
*
* The next six bits of the VA are used as an index into the C table to
* locate a Page Table Entry (PTE).  The PTE is a physical address in memory
* to which the remaining 13 bits of the VA are added, producing the
* mapped physical address.
*
* To map the entire memory space in this manner would require 2114296 bytes
* of page tables per process - quite expensive.  Instead we will
* allocate a fixed but considerably smaller space for the page tables at
* the time the VM system is initialized.  When the pmap code is asked by
* the kernel to map a VA to a PA, it allocates tables as needed from this
* pool.  When there are no more tables in the pool, tables are stolen
* from the oldest mapped entries in the tree.  This is only possible
* because all memory mappings are stored in the kernel memory map
* structures, independent of the pmap structures.  A VA which references
* one of these invalidated maps will cause a page fault.  The kernel
* will determine that the page fault was caused by a task using a valid
* VA, but for some reason (which does not concern it), that address was
* not mapped.  It will ask the pmap code to re-map the entry and then
* it will resume executing the faulting task.
*
* In this manner the most efficient use of the page table space is
* achieved.  Tasks which do not execute often will have their tables
* stolen and reused by tasks which execute more frequently.  The best
* size for the page table pool will probably be determined by
* experimentation.
*
* You read all of the comments so far.  Good for you.
* Now go play!
*/

/*** A Note About the 68851 Address Translation Cache
* The MC68851 has a 64 entry cache, called the Address Translation Cache
* or 'ATC'.  This cache stores the most recently used page descriptors
* accessed by the MMU when it does translations.  Using a marker called a
* 'task alias' the MMU can store the descriptors from 8 different table
* spaces concurrently.  The task alias is associated with the base
* address of the level A table of that address space.  When an address
* space is currently active (the CRP currently points to its A table)
* the only cached descriptors that will be obeyed are ones which have a
* matching task alias of the current space associated with them.
*
* Since the cache is always consulted before any table lookups are done,
* it is important that it accurately reflect the state of the MMU tables.
* Whenever a change has been made to a table that has been loaded into
* the MMU, the code must be sure to flush any cached entries that are
* affected by the change.  These instances are documented in the code at
* various points.
*/
/*** A Note About the Note About the 68851 Address Translation Cache
* 4 months into this code I discovered that the sun3x does not have
* a MC68851 chip. Instead, it has a version of this MMU that is part of the
* the 68030 CPU.
* All though it behaves very similarly to the 68851, it only has 1 task
* alias and a 22 entry cache.  So sadly (or happily), the first paragraph
* of the previous note does not apply to the sun3x pmap.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.123 2024/05/11 06:37:54 andvar Exp $");

#include "opt_ddb.h"
#include "opt_pmap_debug.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/pool.h>
#include <sys/queue.h>
#include <sys/kcore.h>
#include <sys/atomic.h>

#include <uvm/uvm.h>

#include <machine/cpu.h>
#include <machine/kcore.h>
#include <machine/mon.h>
#include <machine/pmap.h>
#include <machine/pte.h>
#include <machine/vmparam.h>
#include <m68k/cacheops.h>

#include <sun3/sun3/cache.h>
#include <sun3/sun3/machdep.h>

#include "pmap_pvt.h"

/* XXX - What headers declare these? */
extern struct pcb *curpcb;

/* Defined in locore.s */
extern char kernel_text[];

/* Defined by the linker */
extern char etext[], edata[], end[];
extern char *esym;      /* DDB */

/*************************** DEBUGGING DEFINITIONS ***********************
* Macros, preprocessor defines and variables used in debugging can make *
* code hard to read.  Anything used exclusively for debugging purposes  *
* is defined here to avoid having such mess scattered around the file.  *
*************************************************************************/
#ifdef  PMAP_DEBUG
/*
* To aid the debugging process, macros should be expanded into smaller steps
* that accomplish the same goal, yet provide convenient places for placing
* breakpoints.  When this code is compiled with PMAP_DEBUG mode defined, the
* 'INLINE' keyword is defined to an empty string.  This way, any function
* defined to be a 'static INLINE' will become 'outlined' and compiled as
* a separate function, which is much easier to debug.
*/
#define INLINE  /* nothing */

/*
* It is sometimes convenient to watch the activity of a particular table
* in the system.  The following variables are used for that purpose.
*/
a_tmgr_t *pmap_watch_atbl = 0;
b_tmgr_t *pmap_watch_btbl = 0;
c_tmgr_t *pmap_watch_ctbl = 0;

int pmap_debug = 0;
#define DPRINT(args) if (pmap_debug) printf args

#else   /********** Stuff below is defined if NOT debugging **************/

#define INLINE  inline
#define DPRINT(args)  /* nada */

#endif  /* PMAP_DEBUG */
/*********************** END OF DEBUGGING DEFINITIONS ********************/

/*** Management Structure - Memory Layout
* For every MMU table in the sun3x pmap system there must be a way to
* manage it; we must know which process is using it, what other tables
* depend on it, and whether or not it contains any locked pages.  This
* is solved by the creation of 'table management'  or 'tmgr'
* structures.  One for each MMU table in the system.
*
*                        MAP OF MEMORY USED BY THE PMAP SYSTEM
*
*      towards lower memory
* kernAbase -> +-------------------------------------------------------+
*              | Kernel     MMU A level table                          |
* kernBbase -> +-------------------------------------------------------+
*              | Kernel     MMU B level tables                         |
* kernCbase -> +-------------------------------------------------------+
*              |                                                       |
*              | Kernel     MMU C level tables                         |
*              |                                                       |
* mmuCbase  -> +-------------------------------------------------------+
*              | User       MMU C level tables                         |
* mmuAbase  -> +-------------------------------------------------------+
*              |                                                       |
*              | User       MMU A level tables                         |
*              |                                                       |
* mmuBbase  -> +-------------------------------------------------------+
*              | User       MMU B level tables                         |
* tmgrAbase -> +-------------------------------------------------------+
*              |  TMGR A level table structures                        |
* tmgrBbase -> +-------------------------------------------------------+
*              |  TMGR B level table structures                        |
* tmgrCbase -> +-------------------------------------------------------+
*              |  TMGR C level table structures                        |
* pvbase    -> +-------------------------------------------------------+
*              |  Physical to Virtual mapping table (list heads)       |
* pvebase   -> +-------------------------------------------------------+
*              |  Physical to Virtual mapping table (list elements)    |
*              |                                                       |
*              +-------------------------------------------------------+
*      towards higher memory
*
* For every A table in the MMU A area, there will be a corresponding
* a_tmgr structure in the TMGR A area.  The same will be true for
* the B and C tables.  This arrangement will make it easy to find the
* controlling tmgr structure for any table in the system by use of
* (relatively) simple macros.
*/

/*
* Global variables for storing the base addresses for the areas
* labeled above.
*/
static vaddr_t          kernAphys;
static mmu_long_dte_t   *kernAbase;
static mmu_short_dte_t  *kernBbase;
static mmu_short_pte_t  *kernCbase;
static mmu_short_pte_t  *mmuCbase;
static mmu_short_dte_t  *mmuBbase;
static mmu_long_dte_t   *mmuAbase;
static a_tmgr_t         *Atmgrbase;
static b_tmgr_t         *Btmgrbase;
static c_tmgr_t         *Ctmgrbase;
static pv_t             *pvbase;
static pv_elem_t        *pvebase;
static struct pmap      kernel_pmap;
struct pmap             *const kernel_pmap_ptr = &kernel_pmap;

/*
* This holds the CRP currently loaded into the MMU.
*/
struct mmu_rootptr kernel_crp;

/*
* Just all around global variables.
*/
static TAILQ_HEAD(a_pool_head_struct, a_tmgr_struct) a_pool;
static TAILQ_HEAD(b_pool_head_struct, b_tmgr_struct) b_pool;
static TAILQ_HEAD(c_pool_head_struct, c_tmgr_struct) c_pool;


/*
* Flags used to mark the safety/availability of certain operations or
* resources.
*/
/* Safe to use pmap_bootstrap_alloc(). */
static bool bootstrap_alloc_enabled = false;
/* Temporary virtual pages are in use */
int tmp_vpages_inuse;

/*
* XXX:  For now, retain the traditional variables that were
* used in the old pmap/vm interface (without NONCONTIG).
*/
/* Kernel virtual address space available: */
vaddr_t virtual_avail, virtual_end;
/* Physical address space available: */
paddr_t avail_start, avail_end;

/* This keep track of the end of the contiguously mapped range. */
vaddr_t virtual_contig_end;

/* Physical address used by pmap_next_page() */
paddr_t avail_next;

/* These are used by pmap_copy_page(), etc. */
vaddr_t tmp_vpages[2];

/* memory pool for pmap structures */
struct pool     pmap_pmap_pool;

/*
* The 3/80 is the only member of the sun3x family that has non-contiguous
* physical memory.  Memory is divided into 4 banks which are physically
* locatable on the system board.  Although the size of these banks varies
* with the size of memory they contain, their base addresses are
* permanently fixed.  The following structure, which describes these
* banks, is initialized by pmap_bootstrap() after it reads from a similar
* structure provided by the ROM Monitor.
*
* For the other machines in the sun3x architecture which do have contiguous
* RAM, this list will have only one entry, which will describe the entire
* range of available memory.
*/
struct pmap_physmem_struct avail_mem[SUN3X_NPHYS_RAM_SEGS];
u_int total_phys_mem;

/*************************************************************************/

/*
* XXX - Should "tune" these based on statistics.
*
* My first guess about the relative numbers of these needed is
* based on the fact that a "typical" process will have several
* pages mapped at low virtual addresses (text, data, bss), then
* some mapped shared libraries, and then some stack pages mapped
* near the high end of the VA space.  Each process can use only
* one A table, and most will use only two B tables (maybe three)
* and probably about four C tables.  Therefore, the first guess
* at the relative numbers of these needed is 1:2:4 -gwr
*
* The number of C tables needed is closely related to the amount
* of physical memory available plus a certain amount attributable
* to the use of double mappings.  With a few simulation statistics
* we can find a reasonably good estimation of this unknown value.
* Armed with that and the above ratios, we have a good idea of what
* is needed at each level. -j
*
* Note: It is not physical memory memory size, but the total mapped
* virtual space required by the combined working sets of all the
* currently _runnable_ processes.  (Sleeping ones don't count.)
* The amount of physical memory should be irrelevant. -gwr
*/
#ifdef  FIXED_NTABLES
#define NUM_A_TABLES    16
#define NUM_B_TABLES    32
#define NUM_C_TABLES    64
#else
unsigned int    NUM_A_TABLES, NUM_B_TABLES, NUM_C_TABLES;
#endif  /* FIXED_NTABLES */

/*
* This determines our total virtual mapping capacity.
* Yes, it is a FIXED value so we can pre-allocate.
*/
#define NUM_USER_PTES   (NUM_C_TABLES * MMU_C_TBL_SIZE)

/*
* The size of the Kernel Virtual Address Space (KVAS)
* for purposes of MMU table allocation is -KERNBASE
* (length from KERNBASE to 0xFFFFffff)
*/
#define KVAS_SIZE               (-KERNBASE3X)

/* Numbers of kernel MMU tables to support KVAS_SIZE. */
#define KERN_B_TABLES   (KVAS_SIZE >> MMU_TIA_SHIFT)
#define KERN_C_TABLES   (KVAS_SIZE >> MMU_TIB_SHIFT)
#define NUM_KERN_PTES   (KVAS_SIZE >> MMU_TIC_SHIFT)

/*************************** MISCELLANEOUS MACROS *************************/
void *pmap_bootstrap_alloc(int);

static INLINE void *mmu_ptov(paddr_t);
static INLINE paddr_t mmu_vtop(void *);

#if     0
static INLINE a_tmgr_t *mmuA2tmgr(mmu_long_dte_t *);
#endif /* 0 */
static INLINE b_tmgr_t *mmuB2tmgr(mmu_short_dte_t *);
static INLINE c_tmgr_t *mmuC2tmgr(mmu_short_pte_t *);

static INLINE pv_t *pa2pv(paddr_t);
static INLINE int   pteidx(mmu_short_pte_t *);
static INLINE pmap_t current_pmap(void);

/*
* We can always convert between virtual and physical addresses
* for anything in the range [KERNBASE ... avail_start] because
* that range is GUARANTEED to be mapped linearly.
* We rely heavily upon this feature!
*/
static INLINE void *
mmu_ptov(paddr_t pa)
{
       vaddr_t va;

       va = (pa + KERNBASE3X);
#ifdef  PMAP_DEBUG
       if ((va < KERNBASE3X) || (va >= virtual_contig_end))
               panic("mmu_ptov");
#endif
       return (void *)va;
}

static INLINE paddr_t
mmu_vtop(void *vva)
{
       vaddr_t va;

       va = (vaddr_t)vva;
#ifdef  PMAP_DEBUG
       if ((va < KERNBASE3X) || (va >= virtual_contig_end))
               panic("mmu_vtop");
#endif
       return va - KERNBASE3X;
}

/*
* These macros map MMU tables to their corresponding manager structures.
* They are needed quite often because many of the pointers in the pmap
* system reference MMU tables and not the structures that control them.
* There needs to be a way to find one when given the other and these
* macros do so by taking advantage of the memory layout described above.
* Here's a quick step through the first macro, mmuA2tmgr():
*
* 1) find the offset of the given MMU A table from the base of its table
*    pool (table - mmuAbase).
* 2) convert this offset into a table index by dividing it by the
*    size of one MMU 'A' table. (sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE)
* 3) use this index to select the corresponding 'A' table manager
*    structure from the 'A' table manager pool (Atmgrbase[index]).
*/
/*  This function is not currently used. */
#if     0
static INLINE a_tmgr_t *
mmuA2tmgr(mmu_long_dte_t *mmuAtbl)
{
       int idx;

       /* Which table is this in? */
       idx = (mmuAtbl - mmuAbase) / MMU_A_TBL_SIZE;
#ifdef  PMAP_DEBUG
       if ((idx < 0) || (idx >= NUM_A_TABLES))
               panic("mmuA2tmgr");
#endif
       return &Atmgrbase[idx];
}
#endif  /* 0 */

static INLINE b_tmgr_t *
mmuB2tmgr(mmu_short_dte_t *mmuBtbl)
{
       int idx;

       /* Which table is this in? */
       idx = (mmuBtbl - mmuBbase) / MMU_B_TBL_SIZE;
#ifdef  PMAP_DEBUG
       if ((idx < 0) || (idx >= NUM_B_TABLES))
               panic("mmuB2tmgr");
#endif
       return &Btmgrbase[idx];
}

/* mmuC2tmgr                    INTERNAL
**
* Given a pte known to belong to a C table, return the address of
* that table's management structure.
*/
static INLINE c_tmgr_t *
mmuC2tmgr(mmu_short_pte_t *mmuCtbl)
{
       int idx;

       /* Which table is this in? */
       idx = (mmuCtbl - mmuCbase) / MMU_C_TBL_SIZE;
#ifdef  PMAP_DEBUG
       if ((idx < 0) || (idx >= NUM_C_TABLES))
               panic("mmuC2tmgr");
#endif
       return &Ctmgrbase[idx];
}

/* This is now a function call below.
* #define pa2pv(pa) \
*      (&pvbase[(unsigned long)\
*              m68k_btop(pa)\
*      ])
*/

/* pa2pv                        INTERNAL
**
* Return the pv_list_head element which manages the given physical
* address.
*/
static INLINE pv_t *
pa2pv(paddr_t pa)
{
       struct pmap_physmem_struct *bank;
       int idx;

       bank = &avail_mem[0];
       while (pa >= bank->pmem_end)
               bank = bank->pmem_next;

       pa -= bank->pmem_start;
       idx = bank->pmem_pvbase + m68k_btop(pa);
#ifdef  PMAP_DEBUG
       if ((idx < 0) || (idx >= physmem))
               panic("pa2pv");
#endif
       return &pvbase[idx];
}

/* pteidx                       INTERNAL
**
* Return the index of the given PTE within the entire fixed table of
* PTEs.
*/
static INLINE int
pteidx(mmu_short_pte_t *pte)
{

       return pte - kernCbase;
}

/*
* This just offers a place to put some debugging checks,
* and reduces the number of places "curlwp" appears...
*/
static INLINE pmap_t
current_pmap(void)
{
       struct vmspace *vm;
       struct vm_map *map;
       pmap_t  pmap;

       vm = curproc->p_vmspace;
       map = &vm->vm_map;
       pmap = vm_map_pmap(map);

       return pmap;
}


/*************************** FUNCTION DEFINITIONS ************************
* These appear here merely for the compiler to enforce type checking on *
* all function calls.                                                   *
*************************************************************************/

/*
* Internal functions
*/
a_tmgr_t *get_a_table(void);
b_tmgr_t *get_b_table(void);
c_tmgr_t *get_c_table(void);
int free_a_table(a_tmgr_t *, bool);
int free_b_table(b_tmgr_t *, bool);
int free_c_table(c_tmgr_t *, bool);

void pmap_bootstrap_aalign(int);
void pmap_alloc_usermmu(void);
void pmap_alloc_usertmgr(void);
void pmap_alloc_pv(void);
void pmap_init_a_tables(void);
void pmap_init_b_tables(void);
void pmap_init_c_tables(void);
void pmap_init_pv(void);
void pmap_clear_pv(paddr_t, int);
static INLINE bool is_managed(paddr_t);

bool pmap_remove_a(a_tmgr_t *, vaddr_t, vaddr_t);
bool pmap_remove_b(b_tmgr_t *, vaddr_t, vaddr_t);
bool pmap_remove_c(c_tmgr_t *, vaddr_t, vaddr_t);
void pmap_remove_pte(mmu_short_pte_t *);

void pmap_enter_kernel(vaddr_t, paddr_t, vm_prot_t);
static INLINE void pmap_remove_kernel(vaddr_t, vaddr_t);
static INLINE void pmap_protect_kernel(vaddr_t, vaddr_t, vm_prot_t);
static INLINE bool pmap_extract_kernel(vaddr_t, paddr_t *);
vaddr_t pmap_get_pteinfo(u_int, pmap_t *, c_tmgr_t **);
static INLINE int pmap_dereference(pmap_t);

bool pmap_stroll(pmap_t, vaddr_t, a_tmgr_t **, b_tmgr_t **, c_tmgr_t **,
   mmu_short_pte_t **, int *, int *, int *);
void pmap_bootstrap_copyprom(void);
void pmap_takeover_mmu(void);
void pmap_bootstrap_setprom(void);
static void pmap_page_upload(void);

#ifdef PMAP_DEBUG
/* Debugging function definitions */
void  pv_list(paddr_t, int);
#endif /* PMAP_DEBUG */

/** Interface functions
** - functions required by the Mach VM Pmap interface, with MACHINE_CONTIG
**   defined.
**   The new UVM doesn't require them so now INTERNAL.
**/
static INLINE void pmap_pinit(pmap_t);
static INLINE void pmap_release(pmap_t);

/********************************** CODE ********************************
* Functions that are called from other parts of the kernel are labeled *
* as 'INTERFACE' functions.  Functions that are only called from       *
* within the pmap module are labeled as 'INTERNAL' functions.          *
* Functions that are internal, but are not (currently) used at all are *
* labeled 'INTERNAL_X'.                                                *
************************************************************************/

/* pmap_bootstrap                       INTERNAL
**
* Initializes the pmap system.  Called at boot time from
* locore2.c:_vm_init()
*
* Reminder: having a pmap_bootstrap_alloc() and also having the VM
*           system implement pmap_steal_memory() is redundant.
*           Don't release this code without removing one or the other!
*/
void
pmap_bootstrap(vaddr_t nextva)
{
       struct physmemory *membank;
       struct pmap_physmem_struct *pmap_membank;
       vaddr_t va, eva;
       paddr_t pa;
       int b, c, i, j; /* running table counts */
       int size, resvmem;

       /*
        * This function is called by __bootstrap after it has
        * determined the type of machine and made the appropriate
        * patches to the ROM vectors (XXX- I don't quite know what I meant
        * by that.)  It allocates and sets up enough of the pmap system
        * to manage the kernel's address space.
        */

       /*
        * Determine the range of kernel virtual and physical
        * space available. Note that we ABSOLUTELY DEPEND on
        * the fact that the first bank of memory (4MB) is
        * mapped linearly to KERNBASE (which we guaranteed in
        * the first instructions of locore.s).
        * That is plenty for our bootstrap work.
        */
       virtual_avail = m68k_round_page(nextva);
       virtual_contig_end = KERNBASE3X + 0x400000; /* +4MB */
       virtual_end = VM_MAX_KERNEL_ADDRESS;
       /* Don't need avail_start til later. */

       /* We may now call pmap_bootstrap_alloc(). */
       bootstrap_alloc_enabled = true;

       /*
        * This is a somewhat unwrapped loop to deal with
        * copying the PROM's 'phsymem' banks into the pmap's
        * banks.  The following is always assumed:
        * 1. There is always at least one bank of memory.
        * 2. There is always a last bank of memory, and its
        *    pmem_next member must be set to NULL.
        */
       membank = romVectorPtr->v_physmemory;
       pmap_membank = avail_mem;
       total_phys_mem = 0;

       for (;;) { /* break on !membank */
               pmap_membank->pmem_start = membank->address;
               pmap_membank->pmem_end = membank->address + membank->size;
               total_phys_mem += membank->size;
               membank = membank->next;
               if (!membank)
                       break;
               /* This silly syntax arises because pmap_membank
                * is really a pre-allocated array, but it is put into
                * use as a linked list.
                */
               pmap_membank->pmem_next = pmap_membank + 1;
               pmap_membank = pmap_membank->pmem_next;
       }
       /* This is the last element. */
       pmap_membank->pmem_next = NULL;

       /*
        * Note: total_phys_mem, physmem represent
        * actual physical memory, including that
        * reserved for the PROM monitor.
        */
       physmem = btoc(total_phys_mem);

       /*
        * Avail_end is set to the first byte of physical memory
        * after the end of the last bank.  We use this only to
        * determine if a physical address is "managed" memory.
        * This address range should be reduced to prevent the
        * physical pages needed by the PROM monitor from being used
        * in the VM system.
        */
       resvmem = total_phys_mem - *(romVectorPtr->memoryAvail);
       resvmem = m68k_round_page(resvmem);
       avail_end = pmap_membank->pmem_end - resvmem;

       /*
        * First allocate enough kernel MMU tables to map all
        * of kernel virtual space from KERNBASE to 0xFFFFFFFF.
        * Note: All must be aligned on 256 byte boundaries.
        * Start with the level-A table (one of those).
        */
       size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE;
       kernAbase = pmap_bootstrap_alloc(size);
       memset(kernAbase, 0, size);

       /* Now the level-B kernel tables... */
       size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * KERN_B_TABLES;
       kernBbase = pmap_bootstrap_alloc(size);
       memset(kernBbase, 0, size);

       /* Now the level-C kernel tables... */
       size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * KERN_C_TABLES;
       kernCbase = pmap_bootstrap_alloc(size);
       memset(kernCbase, 0, size);
       /*
        * Note: In order for the PV system to work correctly, the kernel
        * and user-level C tables must be allocated contiguously.
        * Nothing should be allocated between here and the allocation of
        * mmuCbase below.  XXX: Should do this as one allocation, and
        * then compute a pointer for mmuCbase instead of this...
        *
        * Allocate user MMU tables.
        * These must be contiguous with the preceding.
        */

#ifndef FIXED_NTABLES
       /*
        * The number of user-level C tables that should be allocated is
        * related to the size of physical memory.  In general, there should
        * be enough tables to map four times the amount of available RAM.
        * The extra amount is needed because some table space is wasted by
        * fragmentation.
        */
       NUM_C_TABLES = (total_phys_mem * 4) / (MMU_C_TBL_SIZE * MMU_PAGE_SIZE);
       NUM_B_TABLES = NUM_C_TABLES / 2;
       NUM_A_TABLES = NUM_B_TABLES / 2;
#endif  /* !FIXED_NTABLES */

       size = sizeof(mmu_short_pte_t) * MMU_C_TBL_SIZE * NUM_C_TABLES;
       mmuCbase = pmap_bootstrap_alloc(size);

       size = sizeof(mmu_short_dte_t) * MMU_B_TBL_SIZE * NUM_B_TABLES;
       mmuBbase = pmap_bootstrap_alloc(size);

       size = sizeof(mmu_long_dte_t) * MMU_A_TBL_SIZE * NUM_A_TABLES;
       mmuAbase = pmap_bootstrap_alloc(size);

       /*
        * Fill in the never-changing part of the kernel tables.
        * For simplicity, the kernel's mappings will be editable as a
        * flat array of page table entries at kernCbase.  The
        * higher level 'A' and 'B' tables must be initialized to point
        * to this lower one.
        */
       b = c = 0;

       /*
        * Invalidate all mappings below KERNBASE in the A table.
        * This area has already been zeroed out, but it is good
        * practice to explicitly show that we are interpreting
        * it as a list of A table descriptors.
        */
       for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
               kernAbase[i].addr.raw = 0;
       }

       /*
        * Set up the kernel A and B tables so that they will reference the
        * correct spots in the contiguous table of PTEs allocated for the
        * kernel's virtual memory space.
        */
       for (i = MMU_TIA(KERNBASE3X); i < MMU_A_TBL_SIZE; i++) {
               kernAbase[i].attr.raw =
                   MMU_LONG_DTE_LU | MMU_LONG_DTE_SUPV | MMU_DT_SHORT;
               kernAbase[i].addr.raw = mmu_vtop(&kernBbase[b]);

               for (j = 0; j < MMU_B_TBL_SIZE; j++) {
                       kernBbase[b + j].attr.raw =
                           mmu_vtop(&kernCbase[c]) | MMU_DT_SHORT;
                       c += MMU_C_TBL_SIZE;
               }
               b += MMU_B_TBL_SIZE;
       }

       pmap_alloc_usermmu();   /* Allocate user MMU tables.        */
       pmap_alloc_usertmgr();  /* Allocate user MMU table managers.*/
       pmap_alloc_pv();        /* Allocate physical->virtual map.  */

       /*
        * We are now done with pmap_bootstrap_alloc().  Round up
        * `virtual_avail' to the nearest page, and set the flag
        * to prevent use of pmap_bootstrap_alloc() hereafter.
        */
       pmap_bootstrap_aalign(PAGE_SIZE);
       bootstrap_alloc_enabled = false;

       /*
        * Now that we are done with pmap_bootstrap_alloc(), we
        * must save the virtual and physical addresses of the
        * end of the linearly mapped range, which are stored in
        * virtual_contig_end and avail_start, respectively.
        * These variables will never change after this point.
        */
       virtual_contig_end = virtual_avail;
       avail_start = virtual_avail - KERNBASE3X;

       /*
        * `avail_next' is a running pointer used by pmap_next_page() to
        * keep track of the next available physical page to be handed
        * to the VM system during its initialization, in which it
        * asks for physical pages, one at a time.
        */
       avail_next = avail_start;

       /*
        * Now allocate some virtual addresses, but not the physical pages
        * behind them.  Note that virtual_avail is already page-aligned.
        *
        * tmp_vpages[] is an array of two virtual pages used for temporary
        * kernel mappings in the pmap module to facilitate various physical
        * address-oritented operations.
        */
       tmp_vpages[0] = virtual_avail;
       virtual_avail += PAGE_SIZE;
       tmp_vpages[1] = virtual_avail;
       virtual_avail += PAGE_SIZE;

       /** Initialize the PV system **/
       pmap_init_pv();

       /*
        * Fill in the kernel_pmap structure and kernel_crp.
        */
       kernAphys = mmu_vtop(kernAbase);
       kernel_pmap.pm_a_tmgr = NULL;
       kernel_pmap.pm_a_phys = kernAphys;
       kernel_pmap.pm_refcount = 1; /* always in use */

       kernel_crp.rp_attr = MMU_LONG_DTE_LU | MMU_DT_LONG;
       kernel_crp.rp_addr = kernAphys;

       /*
        * Now pmap_enter_kernel() may be used safely and will be
        * the main interface used hereafter to modify the kernel's
        * virtual address space.  Note that since we are still running
        * under the PROM's address table, none of these table modifications
        * actually take effect until pmap_takeover_mmu() is called.
        *
        * Note: Our tables do NOT have the PROM linear mappings!
        * Only the mappings created here exist in our tables, so
        * remember to map anything we expect to use.
        */
       va = (vaddr_t)KERNBASE3X;
       pa = 0;

       /*
        * The first page of the kernel virtual address space is the msgbuf
        * page.  The page attributes (data, non-cached) are set here, while
        * the address is assigned to this global pointer in cpu_startup().
        * It is non-cached, mostly due to paranoia.
        */
       pmap_enter_kernel(va, pa|PMAP_NC, VM_PROT_ALL);
       va += PAGE_SIZE;
       pa += PAGE_SIZE;

       /* Next page is used as the temporary stack. */
       pmap_enter_kernel(va, pa, VM_PROT_ALL);
       va += PAGE_SIZE;
       pa += PAGE_SIZE;

       /*
        * Map all of the kernel's text segment as read-only and cacheable.
        * (Cacheable is implied by default).  Unfortunately, the last bytes
        * of kernel text and the first bytes of kernel data will often be
        * sharing the same page.  Therefore, the last page of kernel text
        * has to be mapped as read/write, to accommodate the data.
        */
       eva = m68k_trunc_page((vaddr_t)etext);
       for (; va < eva; va += PAGE_SIZE, pa += PAGE_SIZE)
               pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_EXECUTE);

       /*
        * Map all of the kernel's data as read/write and cacheable.
        * This includes: data, BSS, symbols, and everything in the
        * contiguous memory used by pmap_bootstrap_alloc()
        */
       for (; pa < avail_start; va += PAGE_SIZE, pa += PAGE_SIZE)
               pmap_enter_kernel(va, pa, VM_PROT_READ|VM_PROT_WRITE);

       /*
        * At this point we are almost ready to take over the MMU.  But first
        * we must save the PROM's address space in our map, as we call its
        * routines and make references to its data later in the kernel.
        */
       pmap_bootstrap_copyprom();
       pmap_takeover_mmu();
       pmap_bootstrap_setprom();

       /* Notify the VM system of our page size. */
       uvmexp.pagesize = PAGE_SIZE;
       uvm_md_init();

       pmap_page_upload();
}


/* pmap_alloc_usermmu                   INTERNAL
**
* Called from pmap_bootstrap() to allocate MMU tables that will
* eventually be used for user mappings.
*/
void
pmap_alloc_usermmu(void)
{

       /* XXX: Moved into caller. */
}

/* pmap_alloc_pv                        INTERNAL
**
* Called from pmap_bootstrap() to allocate the physical
* to virtual mapping list.  Each physical page of memory
* in the system has a corresponding element in this list.
*/
void
pmap_alloc_pv(void)
{
       int     i;
       unsigned int    total_mem;

       /*
        * Allocate a pv_head structure for every page of physical
        * memory that will be managed by the system.  Since memory on
        * the 3/80 is non-contiguous, we cannot arrive at a total page
        * count by subtraction of the lowest available address from the
        * highest, but rather we have to step through each memory
        * bank and add the number of pages in each to the total.
        *
        * At this time we also initialize the offset of each bank's
        * starting pv_head within the pv_head list so that the physical
        * memory state routines (pmap_is_referenced(),
        * pmap_is_modified(), et al.) can quickly find corresponding
        * pv_heads in spite of the non-contiguity.
        */
       total_mem = 0;
       for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
               avail_mem[i].pmem_pvbase = m68k_btop(total_mem);
               total_mem += avail_mem[i].pmem_end - avail_mem[i].pmem_start;
               if (avail_mem[i].pmem_next == NULL)
                       break;
       }
       pvbase = (pv_t *)pmap_bootstrap_alloc(sizeof(pv_t) *
           m68k_btop(total_phys_mem));
}

/* pmap_alloc_usertmgr                  INTERNAL
**
* Called from pmap_bootstrap() to allocate the structures which
* facilitate management of user MMU tables.  Each user MMU table
* in the system has one such structure associated with it.
*/
void
pmap_alloc_usertmgr(void)
{
       /* Allocate user MMU table managers */
       /* It would be a lot simpler to just make these BSS, but */
       /* we may want to change their size at boot time... -j */
       Atmgrbase =
           (a_tmgr_t *)pmap_bootstrap_alloc(sizeof(a_tmgr_t) * NUM_A_TABLES);
       Btmgrbase =
           (b_tmgr_t *)pmap_bootstrap_alloc(sizeof(b_tmgr_t) * NUM_B_TABLES);
       Ctmgrbase =
           (c_tmgr_t *)pmap_bootstrap_alloc(sizeof(c_tmgr_t) * NUM_C_TABLES);

       /*
        * Allocate PV list elements for the physical to virtual
        * mapping system.
        */
       pvebase = (pv_elem_t *)pmap_bootstrap_alloc(sizeof(pv_elem_t) *
           (NUM_USER_PTES + NUM_KERN_PTES));
}

/* pmap_bootstrap_copyprom()                    INTERNAL
**
* Copy the PROM mappings into our own tables.  Note, we
* can use physical addresses until __bootstrap returns.
*/
void
pmap_bootstrap_copyprom(void)
{
       struct sunromvec *romp;
       int *mon_ctbl;
       mmu_short_pte_t *kpte;
       int i, len;

       romp = romVectorPtr;

       /*
        * Copy the mappings in SUN3X_MON_KDB_BASE...SUN3X_MONEND
        * Note: mon_ctbl[0] maps SUN3X_MON_KDB_BASE
        */
       mon_ctbl = *romp->monptaddr;
       i = m68k_btop(SUN3X_MON_KDB_BASE - KERNBASE3X);
       kpte = &kernCbase[i];
       len = m68k_btop(SUN3X_MONEND - SUN3X_MON_KDB_BASE);

       for (i = 0; i < len; i++) {
               kpte[i].attr.raw = mon_ctbl[i];
       }

       /*
        * Copy the mappings at MON_DVMA_BASE (to the end).
        * Note, in here, mon_ctbl[0] maps MON_DVMA_BASE.
        * Actually, we only want the last page, which the
        * PROM has set up for use by the "ie" driver.
        * (The i82686 needs its SCP there.)
        * If we copy all the mappings, pmap_enter_kernel
        * may complain about finding valid PTEs that are
        * not recorded in our PV lists...
        */
       mon_ctbl = *romp->shadowpteaddr;
       i = m68k_btop(SUN3X_MON_DVMA_BASE - KERNBASE3X);
       kpte = &kernCbase[i];
       len = m68k_btop(SUN3X_MON_DVMA_SIZE);
       for (i = (len - 1); i < len; i++) {
               kpte[i].attr.raw = mon_ctbl[i];
       }
}

/* pmap_takeover_mmu                    INTERNAL
**
* Called from pmap_bootstrap() after it has copied enough of the
* PROM mappings into the kernel map so that we can use our own
* MMU table.
*/
void
pmap_takeover_mmu(void)
{

       loadcrp(&kernel_crp);
}

/* pmap_bootstrap_setprom()                     INTERNAL
**
* Set the PROM mappings so it can see kernel space.
* Note that physical addresses are used here, which
* we can get away with because this runs with the
* low 1GB set for transparent translation.
*/
void
pmap_bootstrap_setprom(void)
{
       mmu_long_dte_t *mon_dte;
       extern struct mmu_rootptr mon_crp;
       int i;

       mon_dte = (mmu_long_dte_t *)mon_crp.rp_addr;
       for (i = MMU_TIA(KERNBASE3X); i < MMU_TIA(KERN_END3X); i++) {
               mon_dte[i].attr.raw = kernAbase[i].attr.raw;
               mon_dte[i].addr.raw = kernAbase[i].addr.raw;
       }
}


/* pmap_init                    INTERFACE
**
* Called at the end of vm_init() to set up the pmap system to go
* into full time operation.  All initialization of kernel_pmap
* should be already done by now, so this should just do things
* needed for user-level pmaps to work.
*/
void
pmap_init(void)
{

       /** Initialize the manager pools **/
       TAILQ_INIT(&a_pool);
       TAILQ_INIT(&b_pool);
       TAILQ_INIT(&c_pool);

       /**************************************************************
        * Initialize all tmgr structures and MMU tables they manage. *
        **************************************************************/
       /** Initialize A tables **/
       pmap_init_a_tables();
       /** Initialize B tables **/
       pmap_init_b_tables();
       /** Initialize C tables **/
       pmap_init_c_tables();

       /** Initialize the pmap pools **/
       pool_init(&pmap_pmap_pool, sizeof(struct pmap), 0, 0, 0, "pmappl",
           &pool_allocator_nointr, IPL_NONE);
}

/* pmap_init_a_tables()                 INTERNAL
**
* Initializes all A managers, their MMU A tables, and inserts
* them into the A manager pool for use by the system.
*/
void
pmap_init_a_tables(void)
{
       int i;
       a_tmgr_t *a_tbl;

       for (i = 0; i < NUM_A_TABLES; i++) {
               /* Select the next available A manager from the pool */
               a_tbl = &Atmgrbase[i];

               /*
                * Clear its parent entry.  Set its wired and valid
                * entry count to zero.
                */
               a_tbl->at_parent = NULL;
               a_tbl->at_wcnt = a_tbl->at_ecnt = 0;

               /* Assign it the next available MMU A table from the pool */
               a_tbl->at_dtbl = &mmuAbase[i * MMU_A_TBL_SIZE];

               /*
                * Initialize the MMU A table with the table in the `lwp0',
                * or kernel, mapping.  This ensures that every process has
                * the kernel mapped in the top part of its address space.
                */
               memcpy(a_tbl->at_dtbl, kernAbase,
                   MMU_A_TBL_SIZE * sizeof(mmu_long_dte_t));

               /*
                * Finally, insert the manager into the A pool,
                * making it ready to be used by the system.
                */
               TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
       }
}

/* pmap_init_b_tables()                 INTERNAL
**
* Initializes all B table managers, their MMU B tables, and
* inserts them into the B manager pool for use by the system.
*/
void
pmap_init_b_tables(void)
{
       int i, j;
       b_tmgr_t *b_tbl;

       for (i = 0; i < NUM_B_TABLES; i++) {
               /* Select the next available B manager from the pool */
               b_tbl = &Btmgrbase[i];

               b_tbl->bt_parent = NULL;        /* clear its parent,  */
               b_tbl->bt_pidx = 0;             /* parent index,      */
               b_tbl->bt_wcnt = 0;             /* wired entry count, */
               b_tbl->bt_ecnt = 0;             /* valid entry count. */

               /* Assign it the next available MMU B table from the pool */
               b_tbl->bt_dtbl = &mmuBbase[i * MMU_B_TBL_SIZE];

               /* Invalidate every descriptor in the table */
               for (j = 0; j < MMU_B_TBL_SIZE; j++)
                       b_tbl->bt_dtbl[j].attr.raw = MMU_DT_INVALID;

               /* Insert the manager into the B pool */
               TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
       }
}

/* pmap_init_c_tables()                 INTERNAL
**
* Initializes all C table managers, their MMU C tables, and
* inserts them into the C manager pool for use by the system.
*/
void
pmap_init_c_tables(void)
{
       int i, j;
       c_tmgr_t *c_tbl;

       for (i = 0; i < NUM_C_TABLES; i++) {
               /* Select the next available C manager from the pool */
               c_tbl = &Ctmgrbase[i];

               c_tbl->ct_parent = NULL;        /* clear its parent,  */
               c_tbl->ct_pidx = 0;             /* parent index,      */
               c_tbl->ct_wcnt = 0;             /* wired entry count, */
               c_tbl->ct_ecnt = 0;             /* valid entry count, */
               c_tbl->ct_pmap = NULL;          /* parent pmap,       */
               c_tbl->ct_va = 0;               /* base of managed range */

               /* Assign it the next available MMU C table from the pool */
               c_tbl->ct_dtbl = &mmuCbase[i * MMU_C_TBL_SIZE];

               for (j = 0; j < MMU_C_TBL_SIZE; j++)
                       c_tbl->ct_dtbl[j].attr.raw = MMU_DT_INVALID;

               TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
       }
}

/* pmap_init_pv()                       INTERNAL
**
* Initializes the Physical to Virtual mapping system.
*/
void
pmap_init_pv(void)
{
       int i;

       /* Initialize every PV head. */
       for (i = 0; i < m68k_btop(total_phys_mem); i++) {
               pvbase[i].pv_idx = PVE_EOL;     /* Indicate no mappings */
               pvbase[i].pv_flags = 0;         /* Zero out page flags  */
       }
}

/* is_managed                           INTERNAL
**
* Determine if the given physical address is managed by the PV system.
* Note that this logic assumes that no one will ask for the status of
* addresses which lie in-between the memory banks on the 3/80.  If they
* do so, it will falsely report that it is managed.
*
* Note: A "managed" address is one that was reported to the VM system as
* a "usable page" during system startup.  As such, the VM system expects the
* pmap module to keep an accurate track of the usage of those pages.
* Any page not given to the VM system at startup does not exist (as far as
* the VM system is concerned) and is therefore "unmanaged."  Examples are
* those pages which belong to the ROM monitor and the memory allocated before
* the VM system was started.
*/
static INLINE bool
is_managed(paddr_t pa)
{
       if (pa >= avail_start && pa < avail_end)
               return true;
       else
               return false;
}

/* get_a_table                  INTERNAL
**
* Retrieve and return a level A table for use in a user map.
*/
a_tmgr_t *
get_a_table(void)
{
       a_tmgr_t *tbl;
       pmap_t pmap;

       /* Get the top A table in the pool */
       tbl = TAILQ_FIRST(&a_pool);
       if (tbl == NULL) {
               /*
                * XXX - Instead of panicking here and in other get_x_table
                * functions, we do have the option of sleeping on the head of
                * the table pool.  Any function which updates the table pool
                * would then issue a wakeup() on the head, thus waking up any
                * processes waiting for a table.
                *
                * Actually, the place to sleep would be when some process
                * asks for a "wired" mapping that would run us short of
                * mapping resources.  This design DEPENDS on always having
                * some mapping resources in the pool for stealing, so we
                * must make sure we NEVER let the pool become empty. -gwr
                */
               panic("get_a_table: out of A tables.");
       }

       TAILQ_REMOVE(&a_pool, tbl, at_link);
       /*
        * If the table has a non-null parent pointer then it is in use.
        * Forcibly abduct it from its parent and clear its entries.
        * No re-entrancy worries here.  This table would not be in the
        * table pool unless it was available for use.
        *
        * Note that the second argument to free_a_table() is false.  This
        * indicates that the table should not be relinked into the A table
        * pool.  That is a job for the function that called us.
        */
       if (tbl->at_parent) {
               KASSERT(tbl->at_wcnt == 0);
               pmap = tbl->at_parent;
               free_a_table(tbl, false);
               pmap->pm_a_tmgr = NULL;
               pmap->pm_a_phys = kernAphys;
       }
       return tbl;
}

/* get_b_table                  INTERNAL
**
* Return a level B table for use.
*/
b_tmgr_t *
get_b_table(void)
{
       b_tmgr_t *tbl;

       /* See 'get_a_table' for comments. */
       tbl = TAILQ_FIRST(&b_pool);
       if (tbl == NULL)
               panic("get_b_table: out of B tables.");
       TAILQ_REMOVE(&b_pool, tbl, bt_link);
       if (tbl->bt_parent) {
               KASSERT(tbl->bt_wcnt == 0);
               tbl->bt_parent->at_dtbl[tbl->bt_pidx].attr.raw = MMU_DT_INVALID;
               tbl->bt_parent->at_ecnt--;
               free_b_table(tbl, false);
       }
       return tbl;
}

/* get_c_table                  INTERNAL
**
* Return a level C table for use.
*/
c_tmgr_t *
get_c_table(void)
{
       c_tmgr_t *tbl;

       /* See 'get_a_table' for comments */
       tbl = TAILQ_FIRST(&c_pool);
       if (tbl == NULL)
               panic("get_c_table: out of C tables.");
       TAILQ_REMOVE(&c_pool, tbl, ct_link);
       if (tbl->ct_parent) {
               KASSERT(tbl->ct_wcnt == 0);
               tbl->ct_parent->bt_dtbl[tbl->ct_pidx].attr.raw = MMU_DT_INVALID;
               tbl->ct_parent->bt_ecnt--;
               free_c_table(tbl, false);
       }
       return tbl;
}

/*
* The following 'free_table' and 'steal_table' functions are called to
* detach tables from their current obligations (parents and children) and
* prepare them for reuse in another mapping.
*
* Free_table is used when the calling function will handle the fate
* of the parent table, such as returning it to the free pool when it has
* no valid entries.  Functions that do not want to handle this should
* call steal_table, in which the parent table's descriptors and entry
* count are automatically modified when this table is removed.
*/

/* free_a_table                 INTERNAL
**
* Unmaps the given A table and all child tables from their current
* mappings.  Returns the number of pages that were invalidated.
* If 'relink' is true, the function will return the table to the head
* of the available table pool.
*
* Cache note: The MC68851 will automatically flush all
* descriptors derived from a given A table from its
* Automatic Translation Cache (ATC) if we issue a
* 'PFLUSHR' instruction with the base address of the
* table.  This function should do, and does so.
* Note note: We are using an MC68030 - there is no
* PFLUSHR.
*/
int
free_a_table(a_tmgr_t *a_tbl, bool relink)
{
       int i, removed_cnt;
       mmu_long_dte_t  *dte;
       mmu_short_dte_t *dtbl;
       b_tmgr_t        *b_tbl;
       uint8_t at_wired, bt_wired;

       /*
        * Flush the ATC cache of all cached descriptors derived
        * from this table.
        * Sun3x does not use 68851's cached table feature
        * flush_atc_crp(mmu_vtop(a_tbl->dte));
        */

       /*
        * Remove any pending cache flushes that were designated
        * for the pmap this A table belongs to.
        * a_tbl->parent->atc_flushq[0] = 0;
        * Not implemented in sun3x.
        */

       /*
        * All A tables in the system should retain a map for the
        * kernel. If the table contains any valid descriptors
        * (other than those for the kernel area), invalidate them all,
        * stopping short of the kernel's entries.
        */
       removed_cnt = 0;
       at_wired = a_tbl->at_wcnt;
       if (a_tbl->at_ecnt) {
               dte = a_tbl->at_dtbl;
               for (i = 0; i < MMU_TIA(KERNBASE3X); i++) {
                       /*
                        * If a table entry points to a valid B table, free
                        * it and its children.
                        */
                       if (MMU_VALID_DT(dte[i])) {
                               /*
                                * The following block does several things,
                                * from innermost expression to the
                                * outermost:
                                * 1) It extracts the base (cc 1996)
                                *    address of the B table pointed
                                *    to in the A table entry dte[i].
                                * 2) It converts this base address into
                                *    the virtual address it can be
                                *    accessed with. (all MMU tables point
                                *    to physical addresses.)
                                * 3) It finds the corresponding manager
                                *    structure which manages this MMU table.
                                * 4) It frees the manager structure.
                                *    (This frees the MMU table and all
                                *    child tables. See 'free_b_table' for
                                *    details.)
                                */
                               dtbl = mmu_ptov(dte[i].addr.raw);
                               b_tbl = mmuB2tmgr(dtbl);
                               bt_wired = b_tbl->bt_wcnt;
                               removed_cnt += free_b_table(b_tbl, true);
                               if (bt_wired)
                                       a_tbl->at_wcnt--;
                               dte[i].attr.raw = MMU_DT_INVALID;
                       }
               }
               a_tbl->at_ecnt = 0;
       }
       KASSERT(a_tbl->at_wcnt == 0);

       if (relink) {
               a_tbl->at_parent = NULL;
               if (!at_wired)
                       TAILQ_REMOVE(&a_pool, a_tbl, at_link);
               TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
       }
       return removed_cnt;
}

/* free_b_table                 INTERNAL
**
* Unmaps the given B table and all its children from their current
* mappings.  Returns the number of pages that were invalidated.
* (For comments, see 'free_a_table()').
*/
int
free_b_table(b_tmgr_t *b_tbl, bool relink)
{
       int i, removed_cnt;
       mmu_short_dte_t *dte;
       mmu_short_pte_t *dtbl;
       c_tmgr_t        *c_tbl;
       uint8_t bt_wired, ct_wired;

       removed_cnt = 0;
       bt_wired = b_tbl->bt_wcnt;
       if (b_tbl->bt_ecnt) {
               dte = b_tbl->bt_dtbl;
               for (i = 0; i < MMU_B_TBL_SIZE; i++) {
                       if (MMU_VALID_DT(dte[i])) {
                               dtbl = mmu_ptov(MMU_DTE_PA(dte[i]));
                               c_tbl = mmuC2tmgr(dtbl);
                               ct_wired = c_tbl->ct_wcnt;
                               removed_cnt += free_c_table(c_tbl, true);
                               if (ct_wired)
                                       b_tbl->bt_wcnt--;
                               dte[i].attr.raw = MMU_DT_INVALID;
                       }
               }
               b_tbl->bt_ecnt = 0;
       }
       KASSERT(b_tbl->bt_wcnt == 0);

       if (relink) {
               b_tbl->bt_parent = NULL;
               if (!bt_wired)
                       TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
               TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
       }
       return removed_cnt;
}

/* free_c_table                 INTERNAL
**
* Unmaps the given C table from use and returns it to the pool for
* re-use.  Returns the number of pages that were invalidated.
*
* This function preserves any physical page modification information
* contained in the page descriptors within the C table by calling
* 'pmap_remove_pte().'
*/
int
free_c_table(c_tmgr_t *c_tbl, bool relink)
{
       mmu_short_pte_t *c_pte;
       int i, removed_cnt;
       uint8_t ct_wired;

       removed_cnt = 0;
       ct_wired = c_tbl->ct_wcnt;
       if (c_tbl->ct_ecnt) {
               for (i = 0; i < MMU_C_TBL_SIZE; i++) {
                       c_pte = &c_tbl->ct_dtbl[i];
                       if (MMU_VALID_DT(*c_pte)) {
                               if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
                                       c_tbl->ct_wcnt--;
                               pmap_remove_pte(c_pte);
                               removed_cnt++;
                       }
               }
               c_tbl->ct_ecnt = 0;
       }
       KASSERT(c_tbl->ct_wcnt == 0);

       if (relink) {
               c_tbl->ct_parent = NULL;
               if (!ct_wired)
                       TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
               TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
       }
       return removed_cnt;
}


/* pmap_remove_pte                      INTERNAL
**
* Unmap the given pte and preserve any page modification
* information by transferring it to the pv head of the
* physical page it maps to.  This function does not update
* any reference counts because it is assumed that the calling
* function will do so.
*/
void
pmap_remove_pte(mmu_short_pte_t *pte)
{
       u_short     pv_idx, targ_idx;
       paddr_t     pa;
       pv_t       *pv;

       pa = MMU_PTE_PA(*pte);
       if (is_managed(pa)) {
               pv = pa2pv(pa);
               targ_idx = pteidx(pte); /* Index of PTE being removed    */

               /*
                * If the PTE being removed is the first (or only) PTE in
                * the list of PTEs currently mapped to this page, remove the
                * PTE by changing the index found on the PV head.  Otherwise
                * a linear search through the list will have to be executed
                * in order to find the PVE which points to the PTE being
                * removed, so that it may be modified to point to its new
                * neighbor.
                */

               pv_idx = pv->pv_idx;    /* Index of first PTE in PV list */
               if (pv_idx == targ_idx) {
                       pv->pv_idx = pvebase[targ_idx].pve_next;
               } else {

                       /*
                        * Find the PV element pointing to the target
                        * element.  Note: may have pv_idx==PVE_EOL
                        */

                       for (;;) {
                               if (pv_idx == PVE_EOL) {
                                       goto pv_not_found;
                               }
                               if (pvebase[pv_idx].pve_next == targ_idx)
                                       break;
                               pv_idx = pvebase[pv_idx].pve_next;
                       }

                       /*
                        * At this point, pv_idx is the index of the PV
                        * element just before the target element in the list.
                        * Unlink the target.
                        */

                       pvebase[pv_idx].pve_next = pvebase[targ_idx].pve_next;
               }

               /*
                * Save the mod/ref bits of the pte by simply
                * ORing the entire pte onto the pv_flags member
                * of the pv structure.
                * There is no need to use a separate bit pattern
                * for usage information on the pv head than that
                * which is used on the MMU ptes.
                */

pv_not_found:
               pv->pv_flags |= (u_short) pte->attr.raw;
       }
       pte->attr.raw = MMU_DT_INVALID;
}

/* pmap_stroll                  INTERNAL
**
* Retrieve the addresses of all table managers involved in the mapping of
* the given virtual address.  If the table walk completed successfully,
* return true.  If it was only partially successful, return false.
* The table walk performed by this function is important to many other
* functions in this module.
*
* Note: This function ought to be easier to read.
*/
bool
pmap_stroll(pmap_t pmap, vaddr_t va, a_tmgr_t **a_tbl, b_tmgr_t **b_tbl,
   c_tmgr_t **c_tbl, mmu_short_pte_t **pte, int *a_idx, int *b_idx,
   int *pte_idx)
{
       mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
       mmu_short_dte_t *b_dte;  /* B: short descriptor table         */

       if (pmap == pmap_kernel())
               return false;

       /* Does the given pmap have its own A table? */
       *a_tbl = pmap->pm_a_tmgr;
       if (*a_tbl == NULL)
               return false; /* No.  Return unknown. */
       /* Does the A table have a valid B table
        * under the corresponding table entry?
        */
       *a_idx = MMU_TIA(va);
       a_dte = &((*a_tbl)->at_dtbl[*a_idx]);
       if (!MMU_VALID_DT(*a_dte))
               return false; /* No. Return unknown. */
       /* Yes. Extract B table from the A table. */
       *b_tbl = mmuB2tmgr(mmu_ptov(a_dte->addr.raw));
       /*
        * Does the B table have a valid C table
        * under the corresponding table entry?
        */
       *b_idx = MMU_TIB(va);
       b_dte = &((*b_tbl)->bt_dtbl[*b_idx]);
       if (!MMU_VALID_DT(*b_dte))
               return false; /* No. Return unknown. */
       /* Yes. Extract C table from the B table. */
       *c_tbl = mmuC2tmgr(mmu_ptov(MMU_DTE_PA(*b_dte)));
       *pte_idx = MMU_TIC(va);
       *pte = &((*c_tbl)->ct_dtbl[*pte_idx]);

       return true;
}

/* pmap_enter                   INTERFACE
**
* Called by the kernel to map a virtual address
* to a physical address in the given process map.
*
* Note: this function should apply an exclusive lock
* on the pmap system for its duration.  (it certainly
* would save my hair!!)
* This function ought to be easier to read.
*/
int
pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
       bool insert, managed; /* Marks the need for PV insertion.*/
       u_short nidx;            /* PV list index                     */
       int mapflags;            /* Flags for the mapping (see NOTE1) */
       u_int a_idx, b_idx, pte_idx; /* table indices                 */
       a_tmgr_t *a_tbl;         /* A: long descriptor table manager  */
       b_tmgr_t *b_tbl;         /* B: short descriptor table manager */
       c_tmgr_t *c_tbl;         /* C: short page table manager       */
       mmu_long_dte_t *a_dte;   /* A: long descriptor table          */
       mmu_short_dte_t *b_dte;  /* B: short descriptor table         */
       mmu_short_pte_t *c_pte;  /* C: short page descriptor table    */
       pv_t      *pv;           /* pv list head                      */
       bool wired;         /* is the mapping to be wired?       */
       enum {NONE, NEWA, NEWB, NEWC} llevel; /* used at end   */

       if (pmap == pmap_kernel()) {
               pmap_enter_kernel(va, pa, prot);
               return 0;
       }

       /*
        * Determine if the mapping should be wired.
        */
       wired = ((flags & PMAP_WIRED) != 0);

       /*
        * NOTE1:
        *
        * On November 13, 1999, someone changed the pmap_enter() API such
        * that it now accepts a 'flags' argument.  This new argument
        * contains bit-flags for the architecture-independent (UVM) system to
        * use in signalling certain mapping requirements to the architecture-
        * dependent (pmap) system.  The argument it replaces, 'wired', is now
        * one of the flags within it.
        *
        * In addition to flags signaled by the architecture-independent
        * system, parts of the architecture-dependent section of the sun3x
        * kernel pass their own flags in the lower, unused bits of the
        * physical address supplied to this function.  These flags are
        * extracted and stored in the temporary variable 'mapflags'.
        *
        * Extract sun3x specific flags from the physical address.
        */
       mapflags = (pa & ~MMU_PAGE_MASK);
       pa &= MMU_PAGE_MASK;

       /*
        * Determine if the physical address being mapped is on-board RAM.
        * Any other area of the address space is likely to belong to a
        * device and hence it would be disastrous to cache its contents.
        */
       if ((managed = is_managed(pa)) == false)
               mapflags |= PMAP_NC;

       /*
        * For user mappings we walk along the MMU tables of the given
        * pmap, reaching a PTE which describes the virtual page being
        * mapped or changed.  If any level of the walk ends in an invalid
        * entry, a table must be allocated and the entry must be updated
        * to point to it.
        * There is a bit of confusion as to whether this code must be
        * re-entrant.  For now we will assume it is.  To support
        * re-entrancy we must unlink tables from the table pool before
        * we assume we may use them.  Tables are re-linked into the pool
        * when we are finished with them at the end of the function.
        * But I don't feel like doing that until we have proof that this
        * needs to be re-entrant.
        * 'llevel' records which tables need to be relinked.
        */
       llevel = NONE;

       /*
        * Step 1 - Retrieve the A table from the pmap.  If it has no
        * A table, allocate a new one from the available pool.
        */

       a_tbl = pmap->pm_a_tmgr;
       if (a_tbl == NULL) {
               /*
                * This pmap does not currently have an A table.  Allocate
                * a new one.
                */
               a_tbl = get_a_table();
               a_tbl->at_parent = pmap;

               /*
                * Assign this new A table to the pmap, and calculate its
                * physical address so that loadcrp() can be used to make
                * the table active.
                */
               pmap->pm_a_tmgr = a_tbl;
               pmap->pm_a_phys = mmu_vtop(a_tbl->at_dtbl);

               /*
                * If the process receiving a new A table is the current
                * process, we are responsible for setting the MMU so that
                * it becomes the current address space.  This only adds
                * new mappings, so no need to flush anything.
                */
               if (pmap == current_pmap()) {
                       kernel_crp.rp_addr = pmap->pm_a_phys;
                       loadcrp(&kernel_crp);
               }

               if (!wired)
                       llevel = NEWA;
       } else {
               /*
                * Use the A table already allocated for this pmap.
                * Unlink it from the A table pool if necessary.
                */
               if (wired && !a_tbl->at_wcnt)
                       TAILQ_REMOVE(&a_pool, a_tbl, at_link);
       }

       /*
        * Step 2 - Walk into the B table.  If there is no valid B table,
        * allocate one.
        */

       a_idx = MMU_TIA(va);            /* Calculate the TIA of the VA. */
       a_dte = &a_tbl->at_dtbl[a_idx]; /* Retrieve descriptor from table */
       if (MMU_VALID_DT(*a_dte)) {     /* Is the descriptor valid? */
               /* The descriptor is valid.  Use the B table it points to. */
               /*************************************
                *               a_idx               *
                *                 v                 *
                * a_tbl -> +-+-+-+-+-+-+-+-+-+-+-+- *
                *          | | | | | | | | | | | |  *
                *          +-+-+-+-+-+-+-+-+-+-+-+- *
                *                 |                 *
                *                 \- b_tbl -> +-+-  *
                *                             | |   *
                *                             +-+-  *
                *************************************/
               b_dte = mmu_ptov(a_dte->addr.raw);
               b_tbl = mmuB2tmgr(b_dte);

               /*
                * If the requested mapping must be wired, but this table
                * being used to map it is not, the table must be removed
                * from the available pool and its wired entry count
                * incremented.
                */
               if (wired && !b_tbl->bt_wcnt) {
                       TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
                       a_tbl->at_wcnt++;
               }
       } else {
               /* The descriptor is invalid.  Allocate a new B table. */
               b_tbl = get_b_table();

               /* Point the parent A table descriptor to this new B table. */
               a_dte->addr.raw = mmu_vtop(b_tbl->bt_dtbl);
               a_dte->attr.raw = MMU_LONG_DTE_LU | MMU_DT_SHORT;
               a_tbl->at_ecnt++; /* Update parent's valid entry count */

               /* Create the necessary back references to the parent table */
               b_tbl->bt_parent = a_tbl;
               b_tbl->bt_pidx = a_idx;

               /*
                * If this table is to be wired, make sure the parent A table
                * wired count is updated to reflect that it has another wired
                * entry.
                */
               if (wired)
                       a_tbl->at_wcnt++;
               else if (llevel == NONE)
                       llevel = NEWB;
       }

       /*
        * Step 3 - Walk into the C table, if there is no valid C table,
        * allocate one.
        */

       b_idx = MMU_TIB(va);            /* Calculate the TIB of the VA */
       b_dte = &b_tbl->bt_dtbl[b_idx]; /* Retrieve descriptor from table */
       if (MMU_VALID_DT(*b_dte)) {     /* Is the descriptor valid? */
               /* The descriptor is valid.  Use the C table it points to. */
               /**************************************
                *               c_idx                *
                * |                v                 *
                * \- b_tbl -> +-+-+-+-+-+-+-+-+-+-+- *
                *             | | | | | | | | | | |  *
                *             +-+-+-+-+-+-+-+-+-+-+- *
                *                  |                 *
                *                  \- c_tbl -> +-+-- *
                *                              | | | *
                *                              +-+-- *
                **************************************/
               c_pte = mmu_ptov(MMU_PTE_PA(*b_dte));
               c_tbl = mmuC2tmgr(c_pte);

               /* If mapping is wired and table is not */
               if (wired && !c_tbl->ct_wcnt) {
                       TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
                       b_tbl->bt_wcnt++;
               }
       } else {
               /* The descriptor is invalid.  Allocate a new C table. */
               c_tbl = get_c_table();

               /* Point the parent B table descriptor to this new C table. */
               b_dte->attr.raw = mmu_vtop(c_tbl->ct_dtbl);
               b_dte->attr.raw |= MMU_DT_SHORT;
               b_tbl->bt_ecnt++; /* Update parent's valid entry count */

               /* Create the necessary back references to the parent table */
               c_tbl->ct_parent = b_tbl;
               c_tbl->ct_pidx = b_idx;
               /*
                * Store the pmap and base virtual managed address for faster
                * retrieval in the PV functions.
                */
               c_tbl->ct_pmap = pmap;
               c_tbl->ct_va = (va & (MMU_TIA_MASK|MMU_TIB_MASK));

               /*
                * If this table is to be wired, make sure the parent B table
                * wired count is updated to reflect that it has another wired
                * entry.
                */
               if (wired)
                       b_tbl->bt_wcnt++;
               else if (llevel == NONE)
                       llevel = NEWC;
       }

       /*
        * Step 4 - Deposit a page descriptor (PTE) into the appropriate
        * slot of the C table, describing the PA to which the VA is mapped.
        */

       pte_idx = MMU_TIC(va);
       c_pte = &c_tbl->ct_dtbl[pte_idx];
       if (MMU_VALID_DT(*c_pte)) { /* Is the entry currently valid? */
               /*
                * The PTE is currently valid.  This particular call
                * is just a synonym for one (or more) of the following
                * operations:
                *     change protection of a page
                *     change wiring status of a page
                *     remove the mapping of a page
                */

               /* First check if this is a wiring operation. */
               if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED) {
                       /*
                        * The existing mapping is wired, so adjust wired
                        * entry count here. If new mapping is still wired,
                        * wired entry count will be incremented again later.
                        */
                       c_tbl->ct_wcnt--;
                       if (!wired) {
                               /*
                                * The mapping of this PTE is being changed
                                * from wired to unwired.
                                * Adjust wired entry counts in each table and
                                * set llevel flag to put unwired tables back
                                * into the active pool.
                                */
                               if (c_tbl->ct_wcnt == 0) {
                                       llevel = NEWC;
                                       if (--b_tbl->bt_wcnt == 0) {
                                               llevel = NEWB;
                                               if (--a_tbl->at_wcnt == 0) {
                                                       llevel = NEWA;
                                               }
                                       }
                               }
                       }
               }

               /* Is the new address the same as the old? */
               if (MMU_PTE_PA(*c_pte) == pa) {
                       /*
                        * Yes, mark that it does not need to be reinserted
                        * into the PV list.
                        */
                       insert = false;

                       /*
                        * Clear all but the modified, referenced and wired
                        * bits on the PTE.
                        */
                       c_pte->attr.raw &= (MMU_SHORT_PTE_M
                           | MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED);
               } else {
                       /* No, remove the old entry */
                       pmap_remove_pte(c_pte);
                       insert = true;
               }

               /*
                * TLB flush is only necessary if modifying current map.
                * However, in pmap_enter(), the pmap almost always IS
                * the current pmap, so don't even bother to check.
                */
               TBIS(va);
       } else {
               /*
                * The PTE is invalid.  Increment the valid entry count in
                * the C table manager to reflect the addition of a new entry.
                */
               c_tbl->ct_ecnt++;

               /* XXX - temporarily make sure the PTE is cleared. */
               c_pte->attr.raw = 0;

               /* It will also need to be inserted into the PV list. */
               insert = true;
       }

       /*
        * If page is changing from unwired to wired status, set an unused bit
        * within the PTE to indicate that it is wired.  Also increment the
        * wired entry count in the C table manager.
        */
       if (wired) {
               c_pte->attr.raw |= MMU_SHORT_PTE_WIRED;
               c_tbl->ct_wcnt++;
       }

       /*
        * Map the page, being careful to preserve modify/reference/wired
        * bits.  At this point it is assumed that the PTE either has no bits
        * set, or if there are set bits, they are only modified, reference or
        * wired bits.  If not, the following statement will cause erratic
        * behavior.
        */
#ifdef  PMAP_DEBUG
       if (c_pte->attr.raw & ~(MMU_SHORT_PTE_M |
               MMU_SHORT_PTE_USED | MMU_SHORT_PTE_WIRED)) {
               printf("pmap_enter: junk left in PTE at %p\n", c_pte);
               Debugger();
       }
#endif
       c_pte->attr.raw |= ((u_long) pa | MMU_DT_PAGE);

       /*
        * If the mapping should be read-only, set the write protect
        * bit in the PTE.
        */
       if (!(prot & VM_PROT_WRITE))
               c_pte->attr.raw |= MMU_SHORT_PTE_WP;

       /*
        * Mark the PTE as used and/or modified as specified by the flags arg.
        */
       if (flags & VM_PROT_ALL) {
               c_pte->attr.raw |= MMU_SHORT_PTE_USED;
               if (flags & VM_PROT_WRITE) {
                       c_pte->attr.raw |= MMU_SHORT_PTE_M;
               }
       }

       /*
        * If the mapping should be cache inhibited (indicated by the flag
        * bits found on the lower order of the physical address.)
        * mark the PTE as a cache inhibited page.
        */
       if (mapflags & PMAP_NC)
               c_pte->attr.raw |= MMU_SHORT_PTE_CI;

       /*
        * If the physical address being mapped is managed by the PV
        * system then link the pte into the list of pages mapped to that
        * address.
        */
       if (insert && managed) {
               pv = pa2pv(pa);
               nidx = pteidx(c_pte);

               pvebase[nidx].pve_next = pv->pv_idx;
               pv->pv_idx = nidx;
       }

       /* Move any allocated or unwired tables back into the active pool. */

       switch (llevel) {
               case NEWA:
                       TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
                       /* FALLTHROUGH */
               case NEWB:
                       TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
                       /* FALLTHROUGH */
               case NEWC:
                       TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
                       /* FALLTHROUGH */
               default:
                       break;
       }

       return 0;
}

/* pmap_enter_kernel                    INTERNAL
**
* Map the given virtual address to the given physical address within the
* kernel address space.  This function exists because the kernel map does
* not do dynamic table allocation.  It consists of a contiguous array of ptes
* and can be edited directly without the need to walk through any tables.
*
* XXX: "Danger, Will Robinson!"
* Note that the kernel should never take a fault on any page
* between [ KERNBASE .. virtual_avail ] and this is checked in
* trap.c for kernel-mode MMU faults.  This means that mappings
* created in that range must be implicitly wired. -gwr
*/
void
pmap_enter_kernel(vaddr_t va, paddr_t pa, vm_prot_t prot)
{
       bool       was_valid, insert;
       u_short         pte_idx;
       int             flags;
       mmu_short_pte_t *pte;
       pv_t            *pv;
       paddr_t     old_pa;

       flags = (pa & ~MMU_PAGE_MASK);
       pa &= MMU_PAGE_MASK;

       if (is_managed(pa))
               insert = true;
       else
               insert = false;

       /*
        * Calculate the index of the PTE being modified.
        */
       pte_idx = (u_long)m68k_btop(va - KERNBASE3X);

       /* This array is traditionally named "Sysmap" */
       pte = &kernCbase[pte_idx];

       if (MMU_VALID_DT(*pte)) {
               was_valid = true;
               /*
                * If the PTE already maps a different
                * physical address, umap and pv_unlink.
                */
               old_pa = MMU_PTE_PA(*pte);
               if (pa != old_pa)
                       pmap_remove_pte(pte);
               else {
                   /*
                    * Old PA and new PA are the same.  No need to
                    * relink the mapping within the PV list.
                    */
                    insert = false;

                   /*
                    * Save any mod/ref bits on the PTE.
                    */
                   pte->attr.raw &= (MMU_SHORT_PTE_USED|MMU_SHORT_PTE_M);
               }
       } else {
               pte->attr.raw = MMU_DT_INVALID;
               was_valid = false;
       }

       /*
        * Map the page.  Being careful to preserve modified/referenced bits
        * on the PTE.
        */
       pte->attr.raw |= (pa | MMU_DT_PAGE);

       if (!(prot & VM_PROT_WRITE)) /* If access should be read-only */
               pte->attr.raw |= MMU_SHORT_PTE_WP;
       if (flags & PMAP_NC)
               pte->attr.raw |= MMU_SHORT_PTE_CI;
       if (was_valid)
               TBIS(va);

       /*
        * Insert the PTE into the PV system, if need be.
        */
       if (insert) {
               pv = pa2pv(pa);
               pvebase[pte_idx].pve_next = pv->pv_idx;
               pv->pv_idx = pte_idx;
       }
}

void
pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
{
       mmu_short_pte_t *pte;
       u_int mapflags;

       /* XXX: MD PMAP_NC should be replaced by MI PMAP_NOCACHE in flags. */
       mapflags = (pa & ~MMU_PAGE_MASK);
       if ((mapflags & PMAP_NC) != 0)
               flags |= PMAP_NOCACHE;

       /* This array is traditionally named "Sysmap" */
       pte = &kernCbase[(u_long)m68k_btop(va - KERNBASE3X)];

       KASSERT(!MMU_VALID_DT(*pte));
       pte->attr.raw = MMU_DT_INVALID | MMU_DT_PAGE | (pa & MMU_PAGE_MASK);
       if (!(prot & VM_PROT_WRITE))
               pte->attr.raw |= MMU_SHORT_PTE_WP;
       if ((flags & PMAP_NOCACHE) != 0)
               pte->attr.raw |= MMU_SHORT_PTE_CI;
}

void
pmap_kremove(vaddr_t va, vsize_t len)
{
       int idx, eidx;

#ifdef  PMAP_DEBUG
       if ((va & PGOFSET) || (len & PGOFSET))
               panic("pmap_kremove: alignment");
#endif

       idx  = m68k_btop(va - KERNBASE3X);
       eidx = m68k_btop(va + len - KERNBASE3X);

       while (idx < eidx) {
               kernCbase[idx++].attr.raw = MMU_DT_INVALID;
               TBIS(va);
               va += PAGE_SIZE;
       }
}

/* pmap_map                     INTERNAL
**
* Map a contiguous range of physical memory into a contiguous range of
* the kernel virtual address space.
*
* Used for device mappings and early mapping of the kernel text/data/bss.
* Returns the first virtual address beyond the end of the range.
*/
vaddr_t
pmap_map(vaddr_t va, paddr_t pa, paddr_t endpa, int prot)
{
       int sz;

       sz = endpa - pa;
       do {
               pmap_enter_kernel(va, pa, prot);
               va += PAGE_SIZE;
               pa += PAGE_SIZE;
               sz -= PAGE_SIZE;
       } while (sz > 0);
       pmap_update(pmap_kernel());
       return va;
}

/* pmap_protect_kernel                  INTERNAL
**
* Apply the given protection code to a kernel address range.
*/
static INLINE void
pmap_protect_kernel(vaddr_t startva, vaddr_t endva, vm_prot_t prot)
{
       vaddr_t va;
       mmu_short_pte_t *pte;

       pte = &kernCbase[(unsigned long) m68k_btop(startva - KERNBASE3X)];
       for (va = startva; va < endva; va += PAGE_SIZE, pte++) {
               if (MMU_VALID_DT(*pte)) {
                   switch (prot) {
                       case VM_PROT_ALL:
                           break;
                       case VM_PROT_EXECUTE:
                       case VM_PROT_READ:
                       case VM_PROT_READ|VM_PROT_EXECUTE:
                           pte->attr.raw |= MMU_SHORT_PTE_WP;
                           break;
                       case VM_PROT_NONE:
                           /* this is an alias for 'pmap_remove_kernel' */
                           pmap_remove_pte(pte);
                           break;
                       default:
                           break;
                   }
                   /*
                    * since this is the kernel, immediately flush any cached
                    * descriptors for this address.
                    */
                   TBIS(va);
               }
       }
}

/* pmap_protect                 INTERFACE
**
* Apply the given protection to the given virtual address range within
* the given map.
*
* It is ok for the protection applied to be stronger than what is
* specified.  We use this to our advantage when the given map has no
* mapping for the virtual address.  By skipping a page when this
* is discovered, we are effectively applying a protection of VM_PROT_NONE,
* and therefore do not need to map the page just to apply a protection
* code.  Only pmap_enter() needs to create new mappings if they do not exist.
*
* XXX - This function could be speeded up by using pmap_stroll() for initial
*       setup, and then manual scrolling in the for() loop.
*/
void
pmap_protect(pmap_t pmap, vaddr_t startva, vaddr_t endva, vm_prot_t prot)
{
       bool iscurpmap;
       int a_idx, b_idx, c_idx;
       a_tmgr_t *a_tbl;
       b_tmgr_t *b_tbl;
       c_tmgr_t *c_tbl;
       mmu_short_pte_t *pte;

       if (pmap == pmap_kernel()) {
               pmap_protect_kernel(startva, endva, prot);
               return;
       }

       /*
        * In this particular pmap implementation, there are only three
        * types of memory protection: 'all' (read/write/execute),
        * 'read-only' (read/execute) and 'none' (no mapping.)
        * It is not possible for us to treat 'executable' as a separate
        * protection type.  Therefore, protection requests that seek to
        * remove execute permission while retaining read or write, and those
        * that make little sense (write-only for example) are ignored.
        */
       switch (prot) {
               case VM_PROT_NONE:
                       /*
                        * A request to apply the protection code of
                        * 'VM_PROT_NONE' is a synonym for pmap_remove().
                        */
                       pmap_remove(pmap, startva, endva);
                       return;
               case    VM_PROT_EXECUTE:
               case    VM_PROT_READ:
               case    VM_PROT_READ|VM_PROT_EXECUTE:
                       /* continue */
                       break;
               case    VM_PROT_WRITE:
               case    VM_PROT_WRITE|VM_PROT_READ:
               case    VM_PROT_WRITE|VM_PROT_EXECUTE:
               case    VM_PROT_ALL:
                       /* None of these should happen in a sane system. */
                       return;
       }

       /*
        * If the pmap has no A table, it has no mappings and therefore
        * there is nothing to protect.
        */
       if ((a_tbl = pmap->pm_a_tmgr) == NULL)
               return;

       a_idx = MMU_TIA(startva);
       b_idx = MMU_TIB(startva);
       c_idx = MMU_TIC(startva);
       b_tbl = NULL;
       c_tbl = NULL;

       iscurpmap = (pmap == current_pmap());
       while (startva < endva) {
               if (b_tbl || MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
                 if (b_tbl == NULL) {
                   b_tbl = (b_tmgr_t *) a_tbl->at_dtbl[a_idx].addr.raw;
                   b_tbl = mmu_ptov((vaddr_t)b_tbl);
                   b_tbl = mmuB2tmgr((mmu_short_dte_t *)b_tbl);
                 }
                 if (c_tbl || MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
                   if (c_tbl == NULL) {
                     c_tbl = (c_tmgr_t *) MMU_DTE_PA(b_tbl->bt_dtbl[b_idx]);
                     c_tbl = mmu_ptov((vaddr_t)c_tbl);
                     c_tbl = mmuC2tmgr((mmu_short_pte_t *)c_tbl);
                   }
                   if (MMU_VALID_DT(c_tbl->ct_dtbl[c_idx])) {
                     pte = &c_tbl->ct_dtbl[c_idx];
                     /* make the mapping read-only */
                     pte->attr.raw |= MMU_SHORT_PTE_WP;
                     /*
                      * If we just modified the current address space,
                      * flush any translations for the modified page from
                      * the translation cache and any data from it in the
                      * data cache.
                      */
                     if (iscurpmap)
                         TBIS(startva);
                   }
                   startva += PAGE_SIZE;

                   if (++c_idx >= MMU_C_TBL_SIZE) { /* exceeded C table? */
                     c_tbl = NULL;
                     c_idx = 0;
                     if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
                       b_tbl = NULL;
                       b_idx = 0;
                     }
                   }
                 } else { /* C table wasn't valid */
                   c_tbl = NULL;
                   c_idx = 0;
                   startva += MMU_TIB_RANGE;
                   if (++b_idx >= MMU_B_TBL_SIZE) { /* exceeded B table? */
                     b_tbl = NULL;
                     b_idx = 0;
                   }
                 } /* C table */
               } else { /* B table wasn't valid */
                 b_tbl = NULL;
                 b_idx = 0;
                 startva += MMU_TIA_RANGE;
                 a_idx++;
               } /* B table */
       }
}

/* pmap_unwire                          INTERFACE
**
* Clear the wired attribute of the specified page.
*
* This function is called from vm_fault.c to unwire
* a mapping.
*/
void
pmap_unwire(pmap_t pmap, vaddr_t va)
{
       int a_idx, b_idx, c_idx;
       a_tmgr_t *a_tbl;
       b_tmgr_t *b_tbl;
       c_tmgr_t *c_tbl;
       mmu_short_pte_t *pte;

       /* Kernel mappings always remain wired. */
       if (pmap == pmap_kernel())
               return;

       /*
        * Walk through the tables.  If the walk terminates without
        * a valid PTE then the address wasn't wired in the first place.
        * Return immediately.
        */
       if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl, &pte, &a_idx,
               &b_idx, &c_idx) == false)
               return;


       /* Is the PTE wired?  If not, return. */
       if (!(pte->attr.raw & MMU_SHORT_PTE_WIRED))
               return;

       /* Remove the wiring bit. */
       pte->attr.raw &= ~(MMU_SHORT_PTE_WIRED);

       /*
        * Decrement the wired entry count in the C table.
        * If it reaches zero the following things happen:
        * 1. The table no longer has any wired entries and is considered
        *    unwired.
        * 2. It is placed on the available queue.
        * 3. The parent table's wired entry count is decremented.
        * 4. If it reaches zero, this process repeats at step 1 and
        *    stops at after reaching the A table.
        */
       if (--c_tbl->ct_wcnt == 0) {
               TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
               if (--b_tbl->bt_wcnt == 0) {
                       TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);
                       if (--a_tbl->at_wcnt == 0) {
                               TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
                       }
               }
       }
}

/* pmap_copy                            INTERFACE
**
* Copy the mappings of a range of addresses in one pmap, into
* the destination address of another.
*
* This routine is advisory.  Should we one day decide that MMU tables
* may be shared by more than one pmap, this function should be used to
* link them together.  Until that day however, we do nothing.
*/
void
pmap_copy(pmap_t pmap_a, pmap_t pmap_b, vaddr_t dst, vsize_t len, vaddr_t src)
{

       /* not implemented. */
}

/* pmap_copy_page                       INTERFACE
**
* Copy the contents of one physical page into another.
*
* This function makes use of two virtual pages allocated in pmap_bootstrap()
* to map the two specified physical pages into the kernel address space.
*
* Note: We could use the transparent translation registers to make the
* mappings.  If we do so, be sure to disable interrupts before using them.
*/
void
pmap_copy_page(paddr_t srcpa, paddr_t dstpa)
{
       vaddr_t srcva, dstva;
       int s;

       srcva = tmp_vpages[0];
       dstva = tmp_vpages[1];

       s = splvm();
#ifdef DIAGNOSTIC
       if (tmp_vpages_inuse++)
               panic("pmap_copy_page: temporary vpages are in use.");
#endif

       /* Map pages as non-cacheable to avoid cache polution? */
       pmap_kenter_pa(srcva, srcpa, VM_PROT_READ, 0);
       pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);

       /* Hand-optimized version of memcpy(dst, src, PAGE_SIZE) */
       copypage((char *)srcva, (char *)dstva);

       pmap_kremove(srcva, PAGE_SIZE);
       pmap_kremove(dstva, PAGE_SIZE);

#ifdef DIAGNOSTIC
       --tmp_vpages_inuse;
#endif
       splx(s);
}

/* pmap_zero_page                       INTERFACE
**
* Zero the contents of the specified physical page.
*
* Uses one of the virtual pages allocated in pmap_bootstrap()
* to map the specified page into the kernel address space.
*/
void
pmap_zero_page(paddr_t dstpa)
{
       vaddr_t dstva;
       int s;

       dstva = tmp_vpages[1];
       s = splvm();
#ifdef DIAGNOSTIC
       if (tmp_vpages_inuse++)
               panic("pmap_zero_page: temporary vpages are in use.");
#endif

       /* The comments in pmap_copy_page() above apply here also. */
       pmap_kenter_pa(dstva, dstpa, VM_PROT_READ | VM_PROT_WRITE, 0);

       /* Hand-optimized version of memset(ptr, 0, PAGE_SIZE) */
       zeropage((char *)dstva);

       pmap_kremove(dstva, PAGE_SIZE);
#ifdef DIAGNOSTIC
       --tmp_vpages_inuse;
#endif
       splx(s);
}

/* pmap_pinit                   INTERNAL
**
* Initialize a pmap structure.
*/
static INLINE void
pmap_pinit(pmap_t pmap)
{

       memset(pmap, 0, sizeof(struct pmap));
       pmap->pm_a_tmgr = NULL;
       pmap->pm_a_phys = kernAphys;
       pmap->pm_refcount = 1;
}

/* pmap_create                  INTERFACE
**
* Create and return a pmap structure.
*/
pmap_t
pmap_create(void)
{
       pmap_t  pmap;

       pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
       pmap_pinit(pmap);
       return pmap;
}

/* pmap_release                         INTERNAL
**
* Release any resources held by the given pmap.
*
* This is the reverse analog to pmap_pinit.  It does not
* necessarily mean for the pmap structure to be deallocated,
* as in pmap_destroy.
*/
static INLINE void
pmap_release(pmap_t pmap)
{

       /*
        * As long as the pmap contains no mappings,
        * which always should be the case whenever
        * this function is called, there really should
        * be nothing to do.
        */
#ifdef  PMAP_DEBUG
       if (pmap == pmap_kernel())
               panic("pmap_release: kernel pmap");
#endif
       /*
        * XXX - If this pmap has an A table, give it back.
        * The pmap SHOULD be empty by now, and pmap_remove
        * should have already given back the A table...
        * However, I see:  pmap->pm_a_tmgr->at_ecnt == 1
        * at this point, which means some mapping was not
        * removed when it should have been. -gwr
        */
       if (pmap->pm_a_tmgr != NULL) {
               /* First make sure we are not using it! */
               if (kernel_crp.rp_addr == pmap->pm_a_phys) {
                       kernel_crp.rp_addr = kernAphys;
                       loadcrp(&kernel_crp);
               }
#ifdef  PMAP_DEBUG /* XXX - todo! */
               /* XXX - Now complain... */
               printf("pmap_release: still have table\n");
               Debugger();
#endif
               free_a_table(pmap->pm_a_tmgr, true);
               pmap->pm_a_tmgr = NULL;
               pmap->pm_a_phys = kernAphys;
       }
}

/* pmap_reference                       INTERFACE
**
* Increment the reference count of a pmap.
*/
void
pmap_reference(pmap_t pmap)
{

       atomic_inc_uint(&pmap->pm_refcount);
}

/* pmap_dereference                     INTERNAL
**
* Decrease the reference count on the given pmap
* by one and return the current count.
*/
static INLINE int
pmap_dereference(pmap_t pmap)
{
       int rtn;

       rtn = atomic_dec_uint_nv(&pmap->pm_refcount);

       return rtn;
}

/* pmap_destroy                 INTERFACE
**
* Decrement a pmap's reference count and delete
* the pmap if it becomes zero.  Will be called
* only after all mappings have been removed.
*/
void
pmap_destroy(pmap_t pmap)
{

       if (pmap_dereference(pmap) == 0) {
               pmap_release(pmap);
               pool_put(&pmap_pmap_pool, pmap);
       }
}

/* pmap_is_referenced                   INTERFACE
**
* Determine if the given physical page has been
* referenced (read from [or written to.])
*/
bool
pmap_is_referenced(struct vm_page *pg)
{
       paddr_t   pa = VM_PAGE_TO_PHYS(pg);
       pv_t      *pv;
       int       idx;

       /*
        * Check the flags on the pv head.  If they are set,
        * return immediately.  Otherwise a search must be done.
        */

       pv = pa2pv(pa);
       if (pv->pv_flags & PV_FLAGS_USED)
               return true;

       /*
        * Search through all pv elements pointing
        * to this page and query their reference bits
        */

       for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
               if (MMU_PTE_USED(kernCbase[idx])) {
                       return true;
               }
       }
       return false;
}

/* pmap_is_modified                     INTERFACE
**
* Determine if the given physical page has been
* modified (written to.)
*/
bool
pmap_is_modified(struct vm_page *pg)
{
       paddr_t   pa = VM_PAGE_TO_PHYS(pg);
       pv_t      *pv;
       int       idx;

       /* see comments in pmap_is_referenced() */
       pv = pa2pv(pa);
       if (pv->pv_flags & PV_FLAGS_MDFY)
               return true;

       for (idx = pv->pv_idx;
                idx != PVE_EOL;
                idx = pvebase[idx].pve_next) {

               if (MMU_PTE_MODIFIED(kernCbase[idx])) {
                       return true;
               }
       }

       return false;
}

/* pmap_page_protect                    INTERFACE
**
* Applies the given protection to all mappings to the given
* physical page.
*/
void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
       paddr_t   pa = VM_PAGE_TO_PHYS(pg);
       pv_t      *pv;
       int       idx;
       vaddr_t va;
       struct mmu_short_pte_struct *pte;
       c_tmgr_t  *c_tbl;
       pmap_t    pmap, curpmap;

       curpmap = current_pmap();
       pv = pa2pv(pa);

       for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
               pte = &kernCbase[idx];
               switch (prot) {
                       case VM_PROT_ALL:
                               /* do nothing */
                               break;
                       case VM_PROT_EXECUTE:
                       case VM_PROT_READ:
                       case VM_PROT_READ|VM_PROT_EXECUTE:
                               /*
                                * Determine the virtual address mapped by
                                * the PTE and flush ATC entries if necessary.
                                */
                               va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
                               pte->attr.raw |= MMU_SHORT_PTE_WP;
                               if (pmap == curpmap || pmap == pmap_kernel())
                                       TBIS(va);
                               break;
                       case VM_PROT_NONE:
                               /* Save the mod/ref bits. */
                               pv->pv_flags |= pte->attr.raw;
                               /* Invalidate the PTE. */
                               pte->attr.raw = MMU_DT_INVALID;

                               /*
                                * Update table counts.  And flush ATC entries
                                * if necessary.
                                */
                               va = pmap_get_pteinfo(idx, &pmap, &c_tbl);

                               /*
                                * If the PTE belongs to the kernel map,
                                * be sure to flush the page it maps.
                                */
                               if (pmap == pmap_kernel()) {
                                       TBIS(va);
                               } else {
                                       /*
                                        * The PTE belongs to a user map.
                                        * update the entry count in the C
                                        * table to which it belongs and flush
                                        * the ATC if the mapping belongs to
                                        * the current pmap.
                                        */
                                       c_tbl->ct_ecnt--;
                                       if (pmap == curpmap)
                                               TBIS(va);
                               }
                               break;
                       default:
                               break;
               }
       }

       /*
        * If the protection code indicates that all mappings to the page
        * be removed, truncate the PV list to zero entries.
        */
       if (prot == VM_PROT_NONE)
               pv->pv_idx = PVE_EOL;
}

/* pmap_get_pteinfo             INTERNAL
**
* Called internally to find the pmap and virtual address within that
* map to which the pte at the given index maps.  Also includes the PTE's C
* table manager.
*
* Returns the pmap in the argument provided, and the virtual address
* by return value.
*/
vaddr_t
pmap_get_pteinfo(u_int idx, pmap_t *pmap, c_tmgr_t **tbl)
{
       vaddr_t     va = 0;

       /*
        * Determine if the PTE is a kernel PTE or a user PTE.
        */
       if (idx >= NUM_KERN_PTES) {
               /*
                * The PTE belongs to a user mapping.
                */
               /* XXX: Would like an inline for this to validate idx... */
               *tbl = &Ctmgrbase[(idx - NUM_KERN_PTES) / MMU_C_TBL_SIZE];

               *pmap = (*tbl)->ct_pmap;
               /*
                * To find the va to which the PTE maps, we first take
                * the table's base virtual address mapping which is stored
                * in ct_va.  We then increment this address by a page for
                * every slot skipped until we reach the PTE.
                */
               va = (*tbl)->ct_va;
               va += m68k_ptob(idx % MMU_C_TBL_SIZE);
       } else {
               /*
                * The PTE belongs to the kernel map.
                */
               *pmap = pmap_kernel();

               va = m68k_ptob(idx);
               va += KERNBASE3X;
       }

       return va;
}

/* pmap_clear_modify                    INTERFACE
**
* Clear the modification bit on the page at the specified
* physical address.
*
*/
bool
pmap_clear_modify(struct vm_page *pg)
{
       paddr_t pa = VM_PAGE_TO_PHYS(pg);
       bool rv;

       rv = pmap_is_modified(pg);
       pmap_clear_pv(pa, PV_FLAGS_MDFY);
       return rv;
}

/* pmap_clear_reference                 INTERFACE
**
* Clear the referenced bit on the page at the specified
* physical address.
*/
bool
pmap_clear_reference(struct vm_page *pg)
{
       paddr_t pa = VM_PAGE_TO_PHYS(pg);
       bool rv;

       rv = pmap_is_referenced(pg);
       pmap_clear_pv(pa, PV_FLAGS_USED);
       return rv;
}

/* pmap_clear_pv                        INTERNAL
**
* Clears the specified flag from the specified physical address.
* (Used by pmap_clear_modify() and pmap_clear_reference().)
*
* Flag is one of:
*   PV_FLAGS_MDFY - Page modified bit.
*   PV_FLAGS_USED - Page used (referenced) bit.
*
* This routine must not only clear the flag on the pv list
* head.  It must also clear the bit on every pte in the pv
* list associated with the address.
*/
void
pmap_clear_pv(paddr_t pa, int flag)
{
       pv_t      *pv;
       int       idx;
       vaddr_t   va;
       pmap_t          pmap;
       mmu_short_pte_t *pte;
       c_tmgr_t        *c_tbl;

       pv = pa2pv(pa);
       pv->pv_flags &= ~(flag);
       for (idx = pv->pv_idx; idx != PVE_EOL; idx = pvebase[idx].pve_next) {
               pte = &kernCbase[idx];
               pte->attr.raw &= ~(flag);

               /*
                * The MC68030 MMU will not set the modified or
                * referenced bits on any MMU tables for which it has
                * a cached descriptor with its modify bit set.  To insure
                * that it will modify these bits on the PTE during the next
                * time it is written to or read from, we must flush it from
                * the ATC.
                *
                * Ordinarily it is only necessary to flush the descriptor
                * if it is used in the current address space.  But since I
                * am not sure that there will always be a notion of
                * 'the current address space' when this function is called,
                * I will skip the test and always flush the address.  It
                * does no harm.
                */

               va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
               TBIS(va);
       }
}

/* pmap_extract_kernel          INTERNAL
**
* Extract a translation from the kernel address space.
*/
static INLINE bool
pmap_extract_kernel(vaddr_t va, paddr_t *pap)
{
       mmu_short_pte_t *pte;

       pte = &kernCbase[(u_int)m68k_btop(va - KERNBASE3X)];
       if (!MMU_VALID_DT(*pte))
               return false;
       if (pap != NULL)
               *pap = MMU_PTE_PA(*pte);
       return true;
}

/* pmap_extract                 INTERFACE
**
* Return the physical address mapped by the virtual address
* in the specified pmap.
*
* Note: this function should also apply an exclusive lock
* on the pmap system during its duration.
*/
bool
pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
{
       int a_idx, b_idx, pte_idx;
       a_tmgr_t        *a_tbl;
       b_tmgr_t        *b_tbl;
       c_tmgr_t        *c_tbl;
       mmu_short_pte_t *c_pte;

       if (pmap == pmap_kernel())
               return pmap_extract_kernel(va, pap);

       if (pmap_stroll(pmap, va, &a_tbl, &b_tbl, &c_tbl,
               &c_pte, &a_idx, &b_idx, &pte_idx) == false)
               return false;

       if (!MMU_VALID_DT(*c_pte))
               return false;

       if (pap != NULL)
               *pap = MMU_PTE_PA(*c_pte);
       return true;
}

/* pmap_remove_kernel           INTERNAL
**
* Remove the mapping of a range of virtual addresses from the kernel map.
* The arguments are already page-aligned.
*/
static INLINE void
pmap_remove_kernel(vaddr_t sva, vaddr_t eva)
{
       int idx, eidx;

#ifdef  PMAP_DEBUG
       if ((sva & PGOFSET) || (eva & PGOFSET))
               panic("pmap_remove_kernel: alignment");
#endif

       idx  = m68k_btop(sva - KERNBASE3X);
       eidx = m68k_btop(eva - KERNBASE3X);

       while (idx < eidx) {
               pmap_remove_pte(&kernCbase[idx++]);
               TBIS(sva);
               sva += PAGE_SIZE;
       }
}

/* pmap_remove                  INTERFACE
**
* Remove the mapping of a range of virtual addresses from the given pmap.
*
*/
void
pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
{

       if (pmap == pmap_kernel()) {
               pmap_remove_kernel(sva, eva);
               return;
       }

       /*
        * If the pmap doesn't have an A table of its own, it has no mappings
        * that can be removed.
        */
       if (pmap->pm_a_tmgr == NULL)
               return;

       /*
        * Remove the specified range from the pmap.  If the function
        * returns true, the operation removed all the valid mappings
        * in the pmap and freed its A table.  If this happened to the
        * currently loaded pmap, the MMU root pointer must be reloaded
        * with the default 'kernel' map.
        */
       if (pmap_remove_a(pmap->pm_a_tmgr, sva, eva)) {
               if (kernel_crp.rp_addr == pmap->pm_a_phys) {
                       kernel_crp.rp_addr = kernAphys;
                       loadcrp(&kernel_crp);
                       /* will do TLB flush below */
               }
               pmap->pm_a_tmgr = NULL;
               pmap->pm_a_phys = kernAphys;
       }

       /*
        * If we just modified the current address space,
        * make sure to flush the MMU cache.
        *
        * XXX - this could be an unnecessarily large flush.
        * XXX - Could decide, based on the size of the VA range
        * to be removed, whether to flush "by pages" or "all".
        */
       if (pmap == current_pmap())
               TBIAU();
}

/* pmap_remove_a                        INTERNAL
**
* This is function number one in a set of three that removes a range
* of memory in the most efficient manner by removing the highest possible
* tables from the memory space.  This particular function attempts to remove
* as many B tables as it can, delegating the remaining fragmented ranges to
* pmap_remove_b().
*
* If the removal operation results in an empty A table, the function returns
* true.
*
* It's ugly but will do for now.
*/
bool
pmap_remove_a(a_tmgr_t *a_tbl, vaddr_t sva, vaddr_t eva)
{
       bool empty;
       int idx;
       vaddr_t nstart, nend;
       b_tmgr_t *b_tbl;
       mmu_long_dte_t  *a_dte;
       mmu_short_dte_t *b_dte;
       uint8_t at_wired, bt_wired;

       /*
        * The following code works with what I call a 'granularity
        * reduction algorithm'.  A range of addresses will always have
        * the following properties, which are classified according to
        * how the range relates to the size of the current granularity
        * - an A table entry:
        *
        *            1 2       3 4
        * -+---+---+---+---+---+---+---+-
        * -+---+---+---+---+---+---+---+-
        *
        * A range will always start on a granularity boundary, illustrated
        * by '+' signs in the table above, or it will start at some point
        * in-between a granularity boundary, as illustrated by point 1.
        * The first step in removing a range of addresses is to remove the
        * range between 1 and 2, the nearest granularity boundary.  This
        * job is handled by the section of code governed by the
        * 'if (start < nstart)' statement.
        *
        * A range will always encompass zero or more integral granules,
        * illustrated by points 2 and 3.  Integral granules are easy to
        * remove.  The removal of these granules is the second step, and
        * is handled by the code block 'if (nstart < nend)'.
        *
        * Lastly, a range will always end on a granularity boundary,
        * ill. by point 3, or it will fall just beyond one, ill. by point
        * 4.  The last step involves removing this range and is handled by
        * the code block 'if (nend < end)'.
        */
       nstart = MMU_ROUND_UP_A(sva);
       nend = MMU_ROUND_A(eva);

       at_wired = a_tbl->at_wcnt;

       if (sva < nstart) {
               /*
                * This block is executed if the range starts between
                * a granularity boundary.
                *
                * First find the DTE which is responsible for mapping
                * the start of the range.
                */
               idx = MMU_TIA(sva);
               a_dte = &a_tbl->at_dtbl[idx];

               /*
                * If the DTE is valid then delegate the removal of the sub
                * range to pmap_remove_b(), which can remove addresses at
                * a finer granularity.
                */
               if (MMU_VALID_DT(*a_dte)) {
                       b_dte = mmu_ptov(a_dte->addr.raw);
                       b_tbl = mmuB2tmgr(b_dte);
                       bt_wired = b_tbl->bt_wcnt;

                       /*
                        * The sub range to be removed starts at the start
                        * of the full range we were asked to remove, and ends
                        * at the greater of:
                        * 1. The end of the full range, -or-
                        * 2. The end of the full range, rounded down to the
                        *    nearest granularity boundary.
                        */
                       if (eva < nstart)
                               empty = pmap_remove_b(b_tbl, sva, eva);
                       else
                               empty = pmap_remove_b(b_tbl, sva, nstart);

                       /*
                        * If the child table no longer has wired entries,
                        * decrement wired entry count.
                        */
                       if (bt_wired && b_tbl->bt_wcnt == 0)
                               a_tbl->at_wcnt--;

                       /*
                        * If the removal resulted in an empty B table,
                        * invalidate the DTE that points to it and decrement
                        * the valid entry count of the A table.
                        */
                       if (empty) {
                               a_dte->attr.raw = MMU_DT_INVALID;
                               a_tbl->at_ecnt--;
                       }
               }
               /*
                * If the DTE is invalid, the address range is already non-
                * existent and can simply be skipped.
                */
       }
       if (nstart < nend) {
               /*
                * This block is executed if the range spans a whole number
                * multiple of granules (A table entries.)
                *
                * First find the DTE which is responsible for mapping
                * the start of the first granule involved.
                */
               idx = MMU_TIA(nstart);
               a_dte = &a_tbl->at_dtbl[idx];

               /*
                * Remove entire sub-granules (B tables) one at a time,
                * until reaching the end of the range.
                */
               for (; nstart < nend; a_dte++, nstart += MMU_TIA_RANGE)
                       if (MMU_VALID_DT(*a_dte)) {
                               /*
                                * Find the B table manager for the
                                * entry and free it.
                                */
                               b_dte = mmu_ptov(a_dte->addr.raw);
                               b_tbl = mmuB2tmgr(b_dte);
                               bt_wired = b_tbl->bt_wcnt;

                               free_b_table(b_tbl, true);

                               /*
                                * All child entries has been removed.
                                * If there were any wired entries in it,
                                * decrement wired entry count.
                                */
                               if (bt_wired)
                                       a_tbl->at_wcnt--;

                               /*
                                * Invalidate the DTE that points to the
                                * B table and decrement the valid entry
                                * count of the A table.
                                */
                               a_dte->attr.raw = MMU_DT_INVALID;
                               a_tbl->at_ecnt--;
                       }
       }
       if (nend < eva) {
               /*
                * This block is executed if the range ends beyond a
                * granularity boundary.
                *
                * First find the DTE which is responsible for mapping
                * the start of the nearest (rounded down) granularity
                * boundary.
                */
               idx = MMU_TIA(nend);
               a_dte = &a_tbl->at_dtbl[idx];

               /*
                * If the DTE is valid then delegate the removal of the sub
                * range to pmap_remove_b(), which can remove addresses at
                * a finer granularity.
                */
               if (MMU_VALID_DT(*a_dte)) {
                       /*
                        * Find the B table manager for the entry
                        * and hand it to pmap_remove_b() along with
                        * the sub range.
                        */
                       b_dte = mmu_ptov(a_dte->addr.raw);
                       b_tbl = mmuB2tmgr(b_dte);
                       bt_wired = b_tbl->bt_wcnt;

                       empty = pmap_remove_b(b_tbl, nend, eva);

                       /*
                        * If the child table no longer has wired entries,
                        * decrement wired entry count.
                        */
                       if (bt_wired && b_tbl->bt_wcnt == 0)
                               a_tbl->at_wcnt--;
                       /*
                        * If the removal resulted in an empty B table,
                        * invalidate the DTE that points to it and decrement
                        * the valid entry count of the A table.
                        */
                       if (empty) {
                               a_dte->attr.raw = MMU_DT_INVALID;
                               a_tbl->at_ecnt--;
                       }
               }
       }

       /*
        * If there are no more entries in the A table, release it
        * back to the available pool and return true.
        */
       if (a_tbl->at_ecnt == 0) {
               KASSERT(a_tbl->at_wcnt == 0);
               a_tbl->at_parent = NULL;
               if (!at_wired)
                       TAILQ_REMOVE(&a_pool, a_tbl, at_link);
               TAILQ_INSERT_HEAD(&a_pool, a_tbl, at_link);
               empty = true;
       } else {
               /*
                * If the table doesn't have wired entries any longer
                * but still has unwired entries, put it back into
                * the available queue.
                */
               if (at_wired && a_tbl->at_wcnt == 0)
                       TAILQ_INSERT_TAIL(&a_pool, a_tbl, at_link);
               empty = false;
       }

       return empty;
}

/* pmap_remove_b                        INTERNAL
**
* Remove a range of addresses from an address space, trying to remove entire
* C tables if possible.
*
* If the operation results in an empty B table, the function returns true.
*/
bool
pmap_remove_b(b_tmgr_t *b_tbl, vaddr_t sva, vaddr_t eva)
{
       bool empty;
       int idx;
       vaddr_t nstart, nend, rstart;
       c_tmgr_t *c_tbl;
       mmu_short_dte_t  *b_dte;
       mmu_short_pte_t  *c_dte;
       uint8_t bt_wired, ct_wired;

       nstart = MMU_ROUND_UP_B(sva);
       nend = MMU_ROUND_B(eva);

       bt_wired = b_tbl->bt_wcnt;

       if (sva < nstart) {
               idx = MMU_TIB(sva);
               b_dte = &b_tbl->bt_dtbl[idx];
               if (MMU_VALID_DT(*b_dte)) {
                       c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
                       c_tbl = mmuC2tmgr(c_dte);
                       ct_wired = c_tbl->ct_wcnt;

                       if (eva < nstart)
                               empty = pmap_remove_c(c_tbl, sva, eva);
                       else
                               empty = pmap_remove_c(c_tbl, sva, nstart);

                       /*
                        * If the child table no longer has wired entries,
                        * decrement wired entry count.
                        */
                       if (ct_wired && c_tbl->ct_wcnt == 0)
                               b_tbl->bt_wcnt--;

                       if (empty) {
                               b_dte->attr.raw = MMU_DT_INVALID;
                               b_tbl->bt_ecnt--;
                       }
               }
       }
       if (nstart < nend) {
               idx = MMU_TIB(nstart);
               b_dte = &b_tbl->bt_dtbl[idx];
               rstart = nstart;
               while (rstart < nend) {
                       if (MMU_VALID_DT(*b_dte)) {
                               c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
                               c_tbl = mmuC2tmgr(c_dte);
                               ct_wired = c_tbl->ct_wcnt;

                               free_c_table(c_tbl, true);

                               /*
                                * All child entries has been removed.
                                * If there were any wired entries in it,
                                * decrement wired entry count.
                                */
                               if (ct_wired)
                                       b_tbl->bt_wcnt--;

                               b_dte->attr.raw = MMU_DT_INVALID;
                               b_tbl->bt_ecnt--;
                       }
                       b_dte++;
                       rstart += MMU_TIB_RANGE;
               }
       }
       if (nend < eva) {
               idx = MMU_TIB(nend);
               b_dte = &b_tbl->bt_dtbl[idx];
               if (MMU_VALID_DT(*b_dte)) {
                       c_dte = mmu_ptov(MMU_DTE_PA(*b_dte));
                       c_tbl = mmuC2tmgr(c_dte);
                       ct_wired = c_tbl->ct_wcnt;
                       empty = pmap_remove_c(c_tbl, nend, eva);

                       /*
                        * If the child table no longer has wired entries,
                        * decrement wired entry count.
                        */
                       if (ct_wired && c_tbl->ct_wcnt == 0)
                               b_tbl->bt_wcnt--;

                       if (empty) {
                               b_dte->attr.raw = MMU_DT_INVALID;
                               b_tbl->bt_ecnt--;
                       }
               }
       }

       if (b_tbl->bt_ecnt == 0) {
               KASSERT(b_tbl->bt_wcnt == 0);
               b_tbl->bt_parent = NULL;
               if (!bt_wired)
                       TAILQ_REMOVE(&b_pool, b_tbl, bt_link);
               TAILQ_INSERT_HEAD(&b_pool, b_tbl, bt_link);
               empty = true;
       } else {
               /*
                * If the table doesn't have wired entries any longer
                * but still has unwired entries, put it back into
                * the available queue.
                */
               if (bt_wired && b_tbl->bt_wcnt == 0)
                       TAILQ_INSERT_TAIL(&b_pool, b_tbl, bt_link);

               empty = false;
       }

       return empty;
}

/* pmap_remove_c                        INTERNAL
**
* Remove a range of addresses from the given C table.
*/
bool
pmap_remove_c(c_tmgr_t *c_tbl, vaddr_t sva, vaddr_t eva)
{
       bool empty;
       int idx;
       mmu_short_pte_t *c_pte;
       uint8_t ct_wired;

       ct_wired = c_tbl->ct_wcnt;

       idx = MMU_TIC(sva);
       c_pte = &c_tbl->ct_dtbl[idx];
       for (; sva < eva; sva += MMU_PAGE_SIZE, c_pte++) {
               if (MMU_VALID_DT(*c_pte)) {
                       if (c_pte->attr.raw & MMU_SHORT_PTE_WIRED)
                               c_tbl->ct_wcnt--;
                       pmap_remove_pte(c_pte);
                       c_tbl->ct_ecnt--;
               }
       }

       if (c_tbl->ct_ecnt == 0) {
               KASSERT(c_tbl->ct_wcnt == 0);
               c_tbl->ct_parent = NULL;
               if (!ct_wired)
                       TAILQ_REMOVE(&c_pool, c_tbl, ct_link);
               TAILQ_INSERT_HEAD(&c_pool, c_tbl, ct_link);
               empty = true;
       } else {
               /*
                * If the table doesn't have wired entries any longer
                * but still has unwired entries, put it back into
                * the available queue.
                */
               if (ct_wired && c_tbl->ct_wcnt == 0)
                       TAILQ_INSERT_TAIL(&c_pool, c_tbl, ct_link);
               empty = false;
       }

       return empty;
}

/* pmap_bootstrap_alloc                 INTERNAL
**
* Used internally for memory allocation at startup when malloc is not
* available.  This code will fail once it crosses the first memory
* bank boundary on the 3/80.  Hopefully by then however, the VM system
* will be in charge of allocation.
*/
void *
pmap_bootstrap_alloc(int size)
{
       void *rtn;

#ifdef  PMAP_DEBUG
       if (bootstrap_alloc_enabled == false) {
               mon_printf("pmap_bootstrap_alloc: disabled\n");
               sunmon_abort();
       }
#endif

       rtn = (void *) virtual_avail;
       virtual_avail += size;

#ifdef  PMAP_DEBUG
       if (virtual_avail > virtual_contig_end) {
               mon_printf("pmap_bootstrap_alloc: out of mem\n");
               sunmon_abort();
       }
#endif

       return rtn;
}

/* pmap_bootstrap_aalign                        INTERNAL
**
* Used to insure that the next call to pmap_bootstrap_alloc() will
* return a chunk of memory aligned to the specified size.
*
* Note: This function will only support alignment sizes that are powers
* of two.
*/
void
pmap_bootstrap_aalign(int size)
{
       int off;

       off = virtual_avail & (size - 1);
       if (off) {
               (void)pmap_bootstrap_alloc(size - off);
       }
}

/* pmap_pa_exists
**
* Used by the /dev/mem driver to see if a given PA is memory
* that can be mapped.  (The PA is not in a hole.)
*/
int
pmap_pa_exists(paddr_t pa)
{
       int i;

       for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
               if ((pa >= avail_mem[i].pmem_start) &&
                       (pa <  avail_mem[i].pmem_end))
                       return 1;
               if (avail_mem[i].pmem_next == NULL)
                       break;
       }
       return 0;
}

/* Called only from locore.s and pmap.c */
void    _pmap_switch(pmap_t pmap);

/*
* _pmap_switch                 INTERNAL
*
* This is called by locore.s:cpu_switch() when it is
* switching to a new process.  Load new translations.
* Note: done in-line by locore.s unless PMAP_DEBUG
*
* Note that we do NOT allocate a context here, but
* share the "kernel only" context until we really
* need our own context for user-space mappings in
* pmap_enter_user().  [ s/context/mmu A table/ ]
*/
void
_pmap_switch(pmap_t pmap)
{
       u_long rootpa;

       /*
        * Only do reload/flush if we have to.
        * Note that if the old and new process
        * were BOTH using the "null" context,
        * then this will NOT flush the TLB.
        */
       rootpa = pmap->pm_a_phys;
       if (kernel_crp.rp_addr != rootpa) {
               DPRINT(("pmap_activate(%p)\n", pmap));
               kernel_crp.rp_addr = rootpa;
               loadcrp(&kernel_crp);
               TBIAU();
       }
}

/*
* Exported version of pmap_activate().  This is called from the
* machine-independent VM code when a process is given a new pmap.
* If (p == curlwp) do like cpu_switch would do; otherwise just
* take this as notification that the process has a new pmap.
*/
void
pmap_activate(struct lwp *l)
{

       if (l->l_proc == curproc) {
               _pmap_switch(l->l_proc->p_vmspace->vm_map.pmap);
       }
}

/*
* pmap_deactivate                      INTERFACE
**
* This is called to deactivate the specified process's address space.
*/
void
pmap_deactivate(struct lwp *l)
{

       /* Nothing to do. */
}

/*
* Fill in the sun3x-specific part of the kernel core header
* for dumpsys().  (See machdep.c for the rest.)
*/
void
pmap_kcore_hdr(struct sun3x_kcore_hdr *sh)
{
       u_long spa, len;
       int i;

       sh->pg_frame = MMU_SHORT_PTE_BASEADDR;
       sh->pg_valid = MMU_DT_PAGE;
       sh->contig_end = virtual_contig_end;
       sh->kernCbase = (u_long)kernCbase;
       for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
               spa = avail_mem[i].pmem_start;
               spa = m68k_trunc_page(spa);
               len = avail_mem[i].pmem_end - spa;
               len = m68k_round_page(len);
               sh->ram_segs[i].start = spa;
               sh->ram_segs[i].size  = len;
       }
}


/* pmap_virtual_space                   INTERFACE
**
* Return the current available range of virtual addresses in the
* arguments provided.  Only really called once.
*/
void
pmap_virtual_space(vaddr_t *vstart, vaddr_t *vend)
{

       *vstart = virtual_avail;
       *vend = virtual_end;
}

/*
* Provide memory to the VM system.
*
* Assume avail_start is always in the
* first segment as pmap_bootstrap does.
*/
static void
pmap_page_upload(void)
{
       paddr_t a, b;   /* memory range */
       int i;

       /* Supply the memory in segments. */
       for (i = 0; i < SUN3X_NPHYS_RAM_SEGS; i++) {
               a = atop(avail_mem[i].pmem_start);
               b = atop(avail_mem[i].pmem_end);
               if (i == 0)
                       a = atop(avail_start);
               if (avail_mem[i].pmem_end > avail_end)
                       b = atop(avail_end);

               uvm_page_physload(a, b, a, b, VM_FREELIST_DEFAULT);

               if (avail_mem[i].pmem_next == NULL)
                       break;
       }
}

/* pmap_count                   INTERFACE
**
* Return the number of resident (valid) pages in the given pmap.
*
* Note:  If this function is handed the kernel map, it will report
* that it has no mappings.  Hopefully the VM system won't ask for kernel
* map statistics.
*/
segsz_t
pmap_count(pmap_t pmap, int type)
{
       u_int     count;
       int       a_idx, b_idx;
       a_tmgr_t *a_tbl;
       b_tmgr_t *b_tbl;
       c_tmgr_t *c_tbl;

       /*
        * If the pmap does not have its own A table manager, it has no
        * valid entries.
        */
       if (pmap->pm_a_tmgr == NULL)
               return 0;

       a_tbl = pmap->pm_a_tmgr;

       count = 0;
       for (a_idx = 0; a_idx < MMU_TIA(KERNBASE3X); a_idx++) {
           if (MMU_VALID_DT(a_tbl->at_dtbl[a_idx])) {
               b_tbl = mmuB2tmgr(mmu_ptov(a_tbl->at_dtbl[a_idx].addr.raw));
               for (b_idx = 0; b_idx < MMU_B_TBL_SIZE; b_idx++) {
                   if (MMU_VALID_DT(b_tbl->bt_dtbl[b_idx])) {
                       c_tbl = mmuC2tmgr(
                           mmu_ptov(MMU_DTE_PA(b_tbl->bt_dtbl[b_idx])));
                       if (type == 0)
                           /*
                            * A resident entry count has been requested.
                            */
                           count += c_tbl->ct_ecnt;
                       else
                           /*
                            * A wired entry count has been requested.
                            */
                           count += c_tbl->ct_wcnt;
                   }
               }
           }
       }

       return count;
}

/************************ SUN3 COMPATIBILITY ROUTINES ********************
* The following routines are only used by DDB for tricky kernel text    *
* text operations in db_memrw.c.  They are provided for sun3            *
* compatibility.                                                        *
*************************************************************************/
/* get_pte                      INTERNAL
**
* Return the page descriptor the describes the kernel mapping
* of the given virtual address.
*/
extern u_long ptest_addr(u_long);       /* XXX: locore.s */
u_int
get_pte(vaddr_t va)
{
       u_long pte_pa;
       mmu_short_pte_t *pte;

       /* Get the physical address of the PTE */
       pte_pa = ptest_addr(va & ~PGOFSET);

       /* Convert to a virtual address... */
       pte = (mmu_short_pte_t *) (KERNBASE3X + pte_pa);

       /* Make sure it is in our level-C tables... */
       if ((pte < kernCbase) ||
               (pte >= &mmuCbase[NUM_USER_PTES]))
               return 0;

       /* ... and just return its contents. */
       return (pte->attr.raw);
}


/* set_pte                      INTERNAL
**
* Set the page descriptor that describes the kernel mapping
* of the given virtual address.
*/
void
set_pte(vaddr_t va, u_int pte)
{
       u_long idx;

       if (va < KERNBASE3X)
               return;

       idx = (unsigned long) m68k_btop(va - KERNBASE3X);
       kernCbase[idx].attr.raw = pte;
       TBIS(va);
}

/*
*      Routine:        pmap_procwr
*
*      Function:
*              Synchronize caches corresponding to [addr, addr+len) in p.
*/
void
pmap_procwr(struct proc *p, vaddr_t va, size_t len)
{

       (void)cachectl1(0x80000004, va, len, p);
}


#ifdef  PMAP_DEBUG
/************************** DEBUGGING ROUTINES **************************
* The following routines are meant to be an aid to debugging the pmap  *
* system.  They are callable from the DDB command line and should be   *
* prepared to be handed unstable or incomplete states of the system.   *
************************************************************************/

/* pv_list
**
* List all pages found on the pv list for the given physical page.
* To avoid endless loops, the listing will stop at the end of the list
* or after 'n' entries - whichever comes first.
*/
void
pv_list(paddr_t pa, int n)
{
       int  idx;
       vaddr_t va;
       pv_t *pv;
       c_tmgr_t *c_tbl;
       pmap_t pmap;

       pv = pa2pv(pa);
       idx = pv->pv_idx;
       for (; idx != PVE_EOL && n > 0; idx = pvebase[idx].pve_next, n--) {
               va = pmap_get_pteinfo(idx, &pmap, &c_tbl);
               printf("idx %d, pmap 0x%x, va 0x%x, c_tbl %x\n",
                       idx, (u_int) pmap, (u_int) va, (u_int) c_tbl);
       }
}
#endif  /* PMAP_DEBUG */

#ifdef NOT_YET
/* and maybe not ever */
/************************** LOW-LEVEL ROUTINES **************************
* These routines will eventually be re-written into assembly and placed*
* in locore.s.  They are here now as stubs so that the pmap module can *
* be linked as a standalone user program for testing.                  *
************************************************************************/
/* flush_atc_crp                        INTERNAL
**
* Flush all page descriptors derived from the given CPU Root Pointer
* (CRP), or 'A' table as it is known here, from the 68851's automatic
* cache.
*/
void
flush_atc_crp(int a_tbl)
{
       mmu_long_rp_t rp;

       /* Create a temporary root table pointer that points to the
        * given A table.
        */
       rp.attr.raw = ~MMU_LONG_RP_LU;
       rp.addr.raw = (unsigned int) a_tbl;

       mmu_pflushr(&rp);
       /* mmu_pflushr:
        *      movel   sp(4)@,a0
        *      pflushr a0@
        *      rts
        */
}
#endif /* NOT_YET */