/*      $NetBSD: zsvar.h,v 1.7 2022/01/17 20:56:02 andvar Exp $ */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)zsvar.h     8.1 (Berkeley) 6/11/93
*/

/*
* Register layout is machine-dependent...
*/

struct zschan {
       volatile uint8_t zc_csr;        /* ctrl,status, and indirect access */
       uint8_t         zc_xxx0;
       volatile uint8_t zc_data;       /* data */
       uint8_t         zc_xxx1;
};

struct zsdevice {
       struct  zschan zs_chan[2];
};

/*
* Software state, per zs channel.
*
* The zs chip has insufficient buffering, so we provide a software
* buffer using a two-level interrupt scheme.  The hardware (high priority)
* interrupt simply grabs the `cause' of the interrupt and stuffs it into
* a ring buffer.  It then schedules a software interrupt; the latter
* empties the ring as fast as it can, hoping to avoid overflow.
*
* Interrupts can happen because of:
*      - received data;
*      - transmit pseudo-DMA done; and
*      - status change.
* These are all stored together in the (single) ring.  The size of the
* ring is a power of two, to make % operations fast.  Since we need two
* bits to distinguish the interrupt type, and up to 16 for the received
* data plus RR1 status, we use 32 bits per ring entry.
*
* When the value is a character + RR1 status, the character is in the
* upper 8 bits of the RR1 status.
*/

/* 0 is reserved (means "no interrupt") */
#define ZRING_RINT      1               /* receive data interrupt */
#define ZRING_XINT      2               /* transmit done interrupt */
#define ZRING_SINT      3               /* status change interrupt */

#define ZRING_TYPE(x)   ((x) & 3)
#define ZRING_VALUE(x)  ((x) >> 8)
#define ZRING_MAKE(t, v)        ((t) | (v) << 8)

/* forward decl */
struct zs_softc;

struct zs_chanstate {
       struct  zs_chanstate *cs_next;  /* linked list for zshard() */
       struct  zs_softc *cs_sc;        /* pointer to softc */
       volatile struct zschan *cs_zc;  /* points to hardware regs */
       struct  tty *cs_ttyp;           /* ### */
       int     cs_unit;                /* unit number */

       /*
        * We must keep a copy of the write registers as they are
        * mostly write-only and we sometimes need to set and clear
        * individual bits (e.g., in WR3).  Not all of these are
        * needed but 16 bytes is cheap and this makes the addressing
        * simpler.  Unfortunately, we can only write to some registers
        * when the chip is not actually transmitting, so whenever
        * we are expecting a `transmit done' interrupt the preg array
        * is allowed to `get ahead' of the current values.  In a
        * few places we must change the current value of a register,
        * rather than (or in addition to) the pending value; for these
        * cs_creg[] contains the current value.
        */
       uint8_t cs_creg[16];            /* current values */
       uint8_t cs_preg[16];            /* pending values */
       uint8_t cs_heldchange;          /* change pending (creg != preg) */
       uint8_t cs_rr0;                 /* last rr0 processed */

       /* pure software data, per channel */
       char    cs_softcar;             /* software carrier */
       char    cs_conk;                /* is console keyboard, decode L1-A */
       char    cs_brkabort;            /* abort (as if via L1-A) on BREAK */
       char    cs_kgdb;                /* enter debugger on frame char */
       char    cs_consio;              /* port does /dev/console I/O */
       char    cs_xxx;                 /* (spare) */
       int     cs_speed;               /* default baud rate (from ROM) */

       /*
        * The transmit byte count and address are used for pseudo-DMA
        * output in the hardware interrupt code.  PDMA can be suspended
        * to get pending changes done; heldtbc is used for this.  It can
        * also be stopped for ^S; this sets TS_TTSTOP in tp->t_state.
        */
       int     cs_tbc;                 /* transmit byte count */
       int     cs_heldtbc;             /* held tbc while xmission stopped */
       void *  cs_tba;                 /* transmit buffer address */

       /*
        * Printing an overrun error message often takes long enough to
        * cause another overrun, so we only print one per second.
        */
       long    cs_rotime;              /* time of last ring overrun */
       long    cs_fotime;              /* time of last fifo overrun */

       /*
        * The ring buffer.
        */
       u_int   cs_rbget;               /* ring buffer `get' index */
       volatile u_int cs_rbput;        /* ring buffer `put' index */
       u_int   cs_ringmask;            /* mask, reflecting size of `rbuf' */
       int     *cs_rbuf;               /* type, value pairs */
};

/*
* N.B.: the keyboard is channel 1, the mouse channel 0; ttyb is 1, ttya
* is 0.  In other words, the things are BACKWARDS.
*/
#define ZS_CHAN_A       1
#define ZS_CHAN_B       0

/*
* Macros to read and write individual registers (except 0) in a channel.
*
* On the SparcStation the 1.6 microsecond recovery time is
* handled in hardware. On the older Sun4 machine it isn't, and
* software must deal with the problem.
*
* However, it *is* a problem on some Sun4m's (i.e. the SS20) (XXX: why?).
* Thus we leave in the delay.
*
* XXX: (ABB) Think about this more.
*/
#if 0

#define ZS_READ(c, r)           zs_read(c, r)
#define ZS_WRITE(c, r, v)       zs_write(c, r, v)
/*#define       ZS_DELAY()              (CPU_ISSUN4C ? (0) : delay(1))*/
#define ZS_DELAY()              (delay(1))

#else /* SUN4 */

#define ZS_READ(c, r)           ((c)->zc_csr = (r), (c)->zc_csr)
#define ZS_WRITE(c, r, v)       ((c)->zc_csr = (r), (c)->zc_csr = (v))
/* #define      ZS_DELAY()              (CPU_ISSUN4M ? delay(1) : 0) */
#define ZS_DELAY()              (0)

#endif /* SUN4 */