/*      $NetBSD: instr.h,v 1.8 2005/12/11 12:19:05 christos Exp $ */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)instr.h     8.1 (Berkeley) 6/11/93
*/

/* see also Appendix F of the SPARC version 8 document */
enum IOP { IOP_OP2, IOP_CALL, IOP_reg, IOP_mem };
enum IOP2 { IOP2_UNIMP, IOP2_BPcc, IOP2_Bicc, IOP2_BPr,
       IOP2_SETHI, IOP2_FBPfcc, IOP2_FBfcc, IOP2_CBccc };
enum IOP3_reg {
       IOP3_ADD, IOP3_AND, IOP3_OR, IOP3_XOR,
       IOP3_SUB, IOP3_ANDN, IOP3_ORN, IOP3_XNOR,
       IOP3_ADDX, IOP3_rerr09, IOP3_UMUL, IOP3_SMUL,
       IOP3_SUBX, IOP3_rerr0d, IOP3_UDIV, IOP3_SDIV,
       IOP3_ADDcc, IOP3_ANDcc, IOP3_ORcc, IOP3_XORcc,
       IOP3_SUBcc, IOP3_ANDNcc, IOP3_ORNcc, IOP3_XNORcc,
       IOP3_ADDXcc, IOP3_rerr19, IOP3_UMULcc, IOP3_SMULcc,
       IOP3_SUBXcc, IOP3_rerr1d, IOP3_UDIVcc, IOP3_SDIVcc,
       IOP3_TADDcc, IOP3_TSUBcc, IOP3_TADDccTV, IOP3_TSUBccTV,
       IOP3_MULScc, IOP3_SLL, IOP3_SRL, IOP3_SRA,
       IOP3_RDASR_RDY_STBAR, IOP3_RDPSR, IOP3_RDWIM, IOP3_RDTGBR,
       IOP3_rerr2c, IOP3_rerr2d, IOP3_rerr2e, IOP3_rerr2f,
       IOP3_WRASR_WRY, IOP3_WRPSR, IOP3_WRWIM, IOP3_WRTBR,
       IOP3_FPop1, IOP3_FPop2, IOP3_CPop1, IOP3_CPop2,
       IOP3_JMPL, IOP3_RETT, IOP3_Ticc, IOP3_FLUSH,
       IOP3_SAVE, IOP3_RESTORE, IOP3_rerr3e, IOP3_rerr3f
};
enum IOP3_mem {
       IOP3_LD, IOP3_LDUB, IOP3_LDUH, IOP3_LDD,
       IOP3_ST, IOP3_STB, IOP3_STH, IOP3_STD,
       IOP3_merr08, IOP3_LDSB, IOP3_LDSH, IOP3_merr0b,
       IOP3_merr0c, IOP3_LDSTUB, IOP3_merr0f, IOP3_SWAP,
       IOP3_LDA, IOP3_LDUBA, IOP3_LDUHA, IOP3_LDDA,
       IOP3_STA, IOP3_STBA, IOP3_STHA, IOP3_STDA,
       IOP3_merr18, IOP3_LDSBA, IOP3_LDSHA, IOP3_merr1b,
       IOP3_merr1c, IOP3_LDSTUBA, IOP3_merr1f, IOP3_SWAPA,
       IOP3_LDF, IOP3_LDFSR, IOP3_merr22, IOP3_LDDF,
       IOP3_STF, IOP3_STFSR, IOP3_STDFQ, IOP3_STDF,
       IOP3_merr28, IOP3_merr29, IOP3_merr2a, IOP3_merr2b,
       IOP3_merr2c, IOP3_merr2d, IOP3_merr2e, IOP3_merr2f,
       IOP3_LFC, IOP3_LDCSR, IOP3_merr32, IOP3_LDDC,
       IOP3_STC, IOP3_STCSR, IOP3_STDCQ, IOP3_STDC,
       IOP3_merr38, IOP3_merr39, IOP3_merr3a, IOP3_merr3b,
       IOP3_merr3c, IOP3_merr3d, IOP3_merr3e, IOP3_merr3f
};

/*
* Integer condition codes.
*/
#define Icc_N   0x0             /* never */
#define Icc_E   0x1             /* equal (equiv. zero) */
#define Icc_LE  0x2             /* less or equal */
#define Icc_L   0x3             /* less */
#define Icc_LEU 0x4             /* less or equal unsigned */
#define Icc_CS  0x5             /* carry set (equiv. less unsigned) */
#define Icc_NEG 0x6             /* negative */
#define Icc_VS  0x7             /* overflow set */
#define Icc_A   0x8             /* always */
#define Icc_NE  0x9             /* not equal (equiv. not zero) */
#define Icc_G   0xa             /* greater */
#define Icc_GE  0xb             /* greater or equal */
#define Icc_GU  0xc             /* greater unsigned */
#define Icc_CC  0xd             /* carry clear (equiv. gtr or eq unsigned) */
#define Icc_POS 0xe             /* positive */
#define Icc_VC  0xf             /* overflow clear */

/*
* Integer registers.
*/
#define I_G0    0
#define I_G1    1
#define I_G2    2
#define I_G3    3
#define I_G4    4
#define I_G5    5
#define I_G6    6
#define I_G7    7
#define I_O0    8
#define I_O1    9
#define I_O2    10
#define I_O3    11
#define I_O4    12
#define I_O5    13
#define I_O6    14
#define I_O7    15
#define I_L0    16
#define I_L1    17
#define I_L2    18
#define I_L3    19
#define I_L4    20
#define I_L5    21
#define I_L6    22
#define I_L7    23
#define I_I0    24
#define I_I1    25
#define I_I2    26
#define I_I3    27
#define I_I4    28
#define I_I5    29
#define I_I6    30
#define I_I7    31

/*
* An instruction.
*/
union instr {
       int     i_int;                  /* as a whole */

       /*
        * The first level of decoding is to use the top 2 bits.
        * This gives us one of three `formats', which usually give
        * a second level of decoding.
        */
       struct {
               u_int   i_op:2;         /* first-level decode */
               u_int   :30;
       } i_any;

       /*
        * Format 1 instructions: CALL (undifferentiated).
        */
       struct {
               u_int   :2;             /* 01 */
               int     i_disp:30;      /* displacement */
       } i_call;

       /*
        * Format 2 instructions (SETHI, UNIMP, and branches, plus illegal
        * unused codes).
        */
       struct {
               u_int   :2;             /* 00 */
               u_int   :5;
               u_int   i_op2:3;        /* second-level decode */
               u_int   :22;
       } i_op2;

       /* UNIMP, SETHI */
       struct {
               u_int   :2;             /* 00 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op2:3;        /* opcode: UNIMP or SETHI */
               u_int   i_imm:22;       /* immediate value */
       } i_imm22;

       /* branches: Bicc, FBfcc, CBccc */
       struct {
               u_int   :2;             /* 00 */
               u_int   i_annul:1;      /* annul bit */
               u_int   i_cond:4;       /* condition codes */
               u_int   i_op2:3;        /* opcode: {Bi,FBf,CBc}cc */
               int     i_disp:22;      /* branch displacement */
       } i_branch;

       /* more branches: BPcc, FBPfcc */
       struct {
               u_int   :2;             /* 00 */
               u_int   i_annul:1;      /* annul bit */
               u_int   i_cond:4;       /* condition codes */
               u_int   i_op2:3;        /* opcode: {BP,FBPf}cc */
               u_int   i_cc:2;         /* condition code selector */
               u_int   i_pred:1;       /* branch prediction bit */
               int     i_disp:19;      /* branch displacement */
       } i_branch_p;

       /* one last branch: BPr */
       struct {
               u_int   :2;             /* 00 */
               u_int   i_annul:1;      /* annul bit */
               u_int   :1;             /* 0 */
               u_int   i_rcond:4;      /* register condition */
               u_int   :3;             /* 011 */
               int     i_disphi:2;     /* branch displacement, hi bits */
               u_int   i_pred:1;       /* branch prediction bit */
               u_int   i_rs1:1;        /* source register 1 */
               u_int   i_displo:16;    /* branch displacement, lo bits */
       } i_branch_pr;


       /*
        * Format 3 instructions (memory reference; arithmetic, logical,
        * shift, and other miscellaneous operations).  The second-level
        * decode almost always makes use of an `rd' and `rs1', however
        * (see also IOP3_reg and IOP3_mem).
        *
        * Beyond that, the low 14 bits may be broken up in one of three
        * different ways, if at all:
        *      1 bit of imm=0 + 8 bits of asi + 5 bits of rs2 [reg & mem]
        *      1 bit of imm=1 + 13 bits of signed immediate [reg & mem]
        *      9 bits of copressor `opf' opcode + 5 bits of rs2 [reg only]
        */
       struct {
               u_int   :2;             /* 10 or 11 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   i_low14:14;     /* varies */
       } i_op3;

       /*
        * Memory forms.  These set i_op=3 and use simm13 or asi layout.
        * Memory references without an ASI should use 0, but the actual
        * ASI field is simply ignored.
        */
       struct {
               u_int   :2;             /* 11 only */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode (see IOP3_mem) */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   i_i:1;          /* immediate vs asi */
               u_int   i_low13:13;     /* depend on i bit */
       } i_loadstore;

       /*
        * Memory and register forms.
        * These come in quite a variety and we do not
        * attempt to break them down much.
        */
       struct {
               u_int   :2;             /* 10 or 11 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   i_i:1;          /* immediate bit (1) */
               int     i_simm13:13;    /* signed immediate */
       } i_simm13;
       struct {
               u_int   :2;             /* 10 or 11 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   i_i:1;          /* immediate vs asi */
               u_int   i_asi:8;        /* asi */
               u_int   i_rs2:5;        /* source register 2 */
       } i_asi;
       struct {
               u_int   :2;             /* 10 only (register, no memory) */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode (see IOP3_reg) */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   i_opf:9;        /* coprocessor 3rd-level decode */
               u_int   i_rs2:5;        /* source register 2 */
       } i_opf;

       /*
        * Format 4 instructions (movcc, fmovr, fmovcc, and tcc).  The
        * second-level decode almost always makes use of an `rd' and either
        * `rs1' or `cond'.
        *
        * Beyond that, the low 14 bits may be broken up in one of three
        * different ways, if at all:
        *      1 bit of imm=0 + 8 bits of asi + 5 bits of rs2 [reg & mem]
        *      1 bit of imm=1 + 13 bits of signed immediate [reg & mem]
        * 9 bits of copressor `opf' opcode + 5 bits of rs2 [reg only] */
       struct {
               u_int   :2;             /* 10 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   i_low14:14;     /* varies */
       } i_op4;

       /*
        * Move fp register on condition codes.
        */
       struct {
               u_int   :2;             /* 10 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode */
               u_int   :1;
               u_int   i_cond:4;       /* condition */
               u_int   i_opf_cc:3;     /* condition code register */
               u_int   i_opf_low:6;    /* third level decode */
               u_int   i_rs2:5;        /* source register */
       } i_fmovcc;

       /*
        * Move fp register on integer register.
        */
       struct {
               u_int   :2;             /* 10 */
               u_int   i_rd:5;         /* destination register */
               u_int   i_op3:6;        /* second-level decode */
               u_int   i_rs1:5;        /* source register 1 */
               u_int   :1;
               u_int   i_rcond:3;      /* register condition */
               u_int   i_opf_low:6;
               u_int   i_rs2:5;        /* source register 2 */
       } i_fmovr;

};

/*
* Internal macros for building instructions.  These correspond 1-to-1 to
* the names above.  Note that x << y | z == (x << y) | z.
*/
#define _I_ANY(op, b)   ((op) << 30 | (b))

#define _I_OP2(high, op2, low) \
               _I_ANY(IOP_OP2, (high) << 25 | (op2) << 22 | (low))
#define _I_IMM22(rd, op2, imm) \
               _I_ANY(IOP_OP2, (rd) << 25 | (op2) << 22 | (imm))
#define _I_BRANCH(a, c, op2, disp) \
               _I_ANY(IOP_OP2, (a) << 29 | (c) << 25 | (op2) << 22 | (disp))
#define _I_FBFCC(a, cond, disp) \
               _I_BRANCH(a, cond, IOP2_FBfcc, disp)
#define _I_CBCCC(a, cond, disp) \
               _I_BRANCH(a, cond, IOP2_CBccc, disp)

#define _I_SIMM(simm)           (1 << 13 | ((simm) & 0x1fff))

#define _I_OP3_GEN(form, rd, op3, rs1, low14) \
               _I_ANY(form, (rd) << 25 | (op3) << 19 | (rs1) << 14 | (low14))
#define _I_OP3_LS_RAR(rd, op3, rs1, asi, rs2) \
               _I_OP3_GEN(IOP_mem, rd, op3, rs1, (asi) << 5 | (rs2))
#define _I_OP3_LS_RI(rd, op3, rs1, simm13) \
               _I_OP3_GEN(IOP_mem, rd, op3, rs1, _I_SIMM(simm13))
#define _I_OP3_LS_RR(rd, op3, rs1, rs2) \
               _I_OP3_GEN(IOP_mem, rd, op3, rs1, rs2)
#define _I_OP3_R_RAR(rd, op3, rs1, asi, rs2) \
               _I_OP3_GEN(IOP_reg, rd, op3, rs1, (asi) << 5 | (rs2))
#define _I_OP3_R_RI(rd, op3, rs1, simm13) \
               _I_OP3_GEN(IOP_reg, rd, op3, rs1, _I_SIMM(simm13))
#define _I_OP3_R_RR(rd, op3, rs1, rs2) \
               _I_OP3_GEN(IOP_reg, rd, op3, rs1, rs2)

#define I_CALL(d)               _I_ANY(IOP_CALL, d)
#define I_UNIMP(v)              _I_IMM22(0, IOP2_UNIMP, v)
#define I_BN(a, d)              _I_BRANCH(a, Icc_N, IOP2_Bicc, d)
#define I_BE(a, d)              _I_BRANCH(a, Icc_E, IOP2_Bicc, d)
#define I_BZ(a, d)              _I_BRANCH(a, Icc_E, IOP2_Bicc, d)
#define I_BLE(a, d)             _I_BRANCH(a, Icc_LE, IOP2_Bicc, d)
#define I_BL(a, d)              _I_BRANCH(a, Icc_L, IOP2_Bicc, d)
#define I_BLEU(a, d)            _I_BRANCH(a, Icc_LEU, IOP2_Bicc, d)
#define I_BCS(a, d)             _I_BRANCH(a, Icc_CS, IOP2_Bicc, d)
#define I_BLU(a, d)             _I_BRANCH(a, Icc_CS, IOP2_Bicc, d)
#define I_BNEG(a, d)            _I_BRANCH(a, Icc_NEG, IOP2_Bicc, d)
#define I_BVS(a, d)             _I_BRANCH(a, Icc_VS, IOP2_Bicc, d)
#define I_BA(a, d)              _I_BRANCH(a, Icc_A, IOP2_Bicc, d)
#define I_B(a, d)               _I_BRANCH(a, Icc_A, IOP2_Bicc, d)
#define I_BNE(a, d)             _I_BRANCH(a, Icc_NE, IOP2_Bicc, d)
#define I_BNZ(a, d)             _I_BRANCH(a, Icc_NE, IOP2_Bicc, d)
#define I_BG(a, d)              _I_BRANCH(a, Icc_G, IOP2_Bicc, d)
#define I_BGE(a, d)             _I_BRANCH(a, Icc_GE, IOP2_Bicc, d)
#define I_BGU(a, d)             _I_BRANCH(a, Icc_GU, IOP2_Bicc, d)
#define I_BCC(a, d)             _I_BRANCH(a, Icc_CC, IOP2_Bicc, d)
#define I_BGEU(a, d)            _I_BRANCH(a, Icc_CC, IOP2_Bicc, d)
#define I_BPOS(a, d)            _I_BRANCH(a, Icc_POS, IOP2_Bicc, d)
#define I_BVC(a, d)             _I_BRANCH(a, Icc_VC, IOP2_Bicc, d)
#define I_SETHI(r, v)           _I_IMM22(r, 4, v)

#define I_ORri(rd, rs1, imm)    _I_OP3_R_RI(rd, IOP3_OR, rs1, imm)
#define I_ORrr(rd, rs1, rs2)    _I_OP3_R_RR(rd, IOP3_OR, rs1, rs2)

#define I_MOVi(rd, imm)         _I_OP3_R_RI(rd, IOP3_OR, I_G0, imm)
#define I_MOVr(rd, rs)          _I_OP3_R_RR(rd, IOP3_OR, I_G0, rs)

#define I_RDPSR(rd)             _I_OP3_R_RR(rd, IOP3_RDPSR, 0, 0)

#define I_JMPLri(rd, rs1, imm)  _I_OP3_R_RI(rd, IOP3_JMPL, rs1, imm)
#define I_JMPLrr(rd, rs1, rs2)  _I_OP3_R_RR(rd, IOP3_JMPL, rs1, rs2)

/*
* (Since these are sparse, we skip the enumerations for now.)
* FPop values.  All appear in both FPop1 and FPop2 spaces, but arithmetic
* ops should happen only with FPop1 and comparison only with FPop2.
* The type sits in the low two bits; those bits are given as zero here.
*/
#define FMOV    0x00
#define FNEG    0x04
#define FABS    0x08
#define FSQRT   0x28
#define FADD    0x40
#define FSUB    0x44
#define FMUL    0x48
#define FDIV    0x4c
#define FCMP    0x50
#define FCMPE   0x54
#define FSMULD  0x68
#define FDMULX  0x6c
#define FTOX    0x80
#define FXTOS   0x84
#define FXTOD   0x88
#define FXTOQ   0x8c
#define FTOS    0xc4
#define FTOD    0xc8
#define FTOQ    0xcc
#define FTOI    0xd0

/* These are in FPop2 space */
#define FMVFC0  0x00
#define FMVRZ   0x24
#define FMVFC1  0x40
#define FMVRLEZ 0x44
#define FMVRLZ  0x64
#define FMVFC2  0x80
#define FMVRNZ  0xa4
#define FMVFC3  0xc0
#define FMVRGZ  0xc4
#define FMVRGEZ 0xe4
#define FMVIC   0x100
#define FMVXC   0x180

/*
* FPU data types.
*/
#define FTYPE_LNG       -1      /* data = 64-bit signed long integer */
#define FTYPE_INT       0       /* data = 32-bit signed integer */
#define FTYPE_SNG       1       /* data = 32-bit float */
#define FTYPE_DBL       2       /* data = 64-bit double */
#define FTYPE_EXT       3       /* data = 128-bit extended (quad-prec) */