/* $NetBSD: sip.c,v 1.2 2011/01/27 17:38:04 phx Exp $ */

/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tohru Nishimura.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#include <sys/param.h>

#include <netinet/in.h>
#include <netinet/in_systm.h>

#include <lib/libsa/stand.h>
#include <lib/libsa/net.h>

#include "globals.h"

/*
* - reverse endian access every CSR.
* - no VTOPHYS() translation, vaddr_t == paddr_t.
* - PIPT writeback cache aware.
*/
#define CSR_READ(l, r)          in32rb((l)->csr+(r))
#define CSR_WRITE(l, r, v)      out32rb((l)->csr+(r), (v))
#define VTOPHYS(va)             (uint32_t)(va)
#define DEVTOV(pa)              (uint32_t)(pa)
#define wbinv(adr, siz)         _wbinv(VTOPHYS(adr), (uint32_t)(siz))
#define inv(adr, siz)           _inv(VTOPHYS(adr), (uint32_t)(siz))
#define DELAY(n)                delay(n)
#define ALLOC(T,A)              (T *)allocaligned(sizeof(T),(A))

struct desc {
       uint32_t xd0, xd1, xd2;
       uint32_t hole;
};
#define XD1_OWN         (1U << 31)
#define XD1_OK          (1U << 27)

#define SIP_CR          0x00
#define  CR_RST         (1U << 8)       /* software reset */
#define  CR_RXR         (1U << 5)       /* Rx abort and reset */
#define  CR_TXR         (1U << 4)       /* Tx abort and reset */
#define  CR_RXD         (1U << 3)       /* graceful Rx stop */
#define  CR_RXE         (1U << 2)       /* run and activate Rx */
#define  CR_TXD         (1U << 1)       /* graceful Tx stop */
#define  CR_TXE         (1U << 0)       /* run and activate Tx */
#define SIP_CFG         0x04
#define SIP_MEAR        0x08
#define  MEAR_EESEL     (1U << 3)       /* SEEP chipselect */
#define  MEAR_EECLK     (1U << 2)       /* clock */
#define  MEAR_EEDO      (1U << 1)       /* bit retrieve */
#define  MEAR_EEDI      (1U << 0)       /* bit feed */
#define SIP_IMR         0x14
#define SIP_IER         0x18
#define SIP_TXDP        0x20
#define SIP_TXCFG       0x24
#define  TXCFG_CSI      (1U << 31)
#define  TXCFG_HBI      (1U << 30)
#define  TXCFG_ATP      (1U << 28)
#define  TXCFG_DMA256   0x300000
#define SIP_RXDP        0x30
#define SIP_RXCFG       0x34
#define  RXCFG_ATX      (1U << 28)
#define  RXCFG_DMA256   0x300000
#define SIP_RFCR        0x48
#define  RFCR_RFEN      (1U << 31)      /* activate Rx filter */
#define  RFCR_APM       (1U << 27)      /* accept perfect match */
#define SIP_RFDR        0x4c
#define SIP_MIBC        0x5c
#define SIP_BMCR        0x80
#define SIP_PHYSTS      0xc0
#define SIP_PHYCR       0xe4

#define FRAMESIZE       1536

struct local {
       struct desc txd[2];
       struct desc rxd[2];
       uint8_t store[2][FRAMESIZE];
       unsigned csr, tx, rx;
       unsigned phy, bmsr, anlpar;
       unsigned cr;
};

static int read_eeprom(struct local *, int);
static unsigned mii_read(struct local *, int, int);
static void mii_write(struct local *, int, int, int);
static void mii_initphy(struct local *);
static void mii_dealan(struct local *, unsigned);

/* Table and macro to bit-reverse an octet. */
static const uint8_t bbr4[] = {0,8,4,12,2,10,6,14,1,9,5,13,3,11,7,15};
#define bbr(v)  ((bbr4[(v)&0xf] << 4) | bbr4[((v)>>4) & 0xf])

int
sip_match(unsigned tag, void *data)
{
       unsigned v;

       v = pcicfgread(tag, PCI_ID_REG);
       switch (v) {
       case PCI_DEVICE(0x100b, 0x0020):
               return 1;
       }
       return 0;
}

void *
sip_init(unsigned tag, void *data)
{
       unsigned val, i, fdx, txc, rxc;
       struct local *l;
       struct desc *txd, *rxd;
       uint16_t eedata[4], *ee;
       uint8_t *en;

       val = pcicfgread(tag, PCI_ID_REG);
       if (PCI_DEVICE(0x100b, 0x0020) != val)
               return NULL;

       l = ALLOC(struct local, 32); /* desc alignment */
       memset(l, 0, sizeof(struct local));
       l->csr = DEVTOV(pcicfgread(tag, 0x14)); /* use mem space */

       CSR_WRITE(l, SIP_IER, 0);
       CSR_WRITE(l, SIP_IMR, 0);
       CSR_WRITE(l, SIP_RFCR, 0);
       CSR_WRITE(l, SIP_CR, CR_RST);
       do {
               val = CSR_READ(l, SIP_CR);
       } while (val & CR_RST); /* S1C */

       mii_initphy(l);

       ee = eedata; en = data;
       ee[0] = read_eeprom(l, 6);
       ee[1] = read_eeprom(l, 7);
       ee[2] = read_eeprom(l, 8);
       ee[3] = read_eeprom(l, 9);
       en[0] = ((*ee & 0x1) << 7);
       ee++;
       en[0] |= ((*ee & 0xFE00) >> 9);
       en[1] = ((*ee & 0x1FE) >> 1);
       en[2] = ((*ee & 0x1) << 7);
       ee++;
       en[2] |= ((*ee & 0xFE00) >> 9);
       en[3] = ((*ee & 0x1FE) >> 1);
       en[4] = ((*ee & 0x1) << 7);
       ee++;
       en[4] |= ((*ee & 0xFE00) >> 9);
       en[5] = ((*ee & 0x1FE) >> 1);
       for (i = 0; i < 6; i++)
               en[i] = bbr(en[i]);

       printf("MAC address %02x:%02x:%02x:%02x:%02x:%02x, ",
           en[0], en[1], en[2], en[3], en[4], en[5]);
       DPRINTF(("PHY %d (%04x.%04x)\n", l->phy,
           mii_read(l, l->phy, 2), mii_read(l, l->phy, 3)));

       mii_dealan(l, 5);

       /* speed and duplexity are found in CFG */
       val = CSR_READ(l, SIP_CFG);
       fdx = !!(val & (1U << 29));
       printf("%s", (val & (1U << 30)) ? "100Mbps" : "10Mbps");
       if (fdx)
               printf("-FDX");
       printf("\n");

       txd = &l->txd[0];
       txd->xd0 = htole32(VTOPHYS(txd));
       rxd = l->rxd;
       rxd[0].xd0 = htole32(VTOPHYS(&rxd[1]));
       rxd[0].xd1 = htole32(XD1_OWN | FRAMESIZE);
       rxd[0].xd2 = htole32(VTOPHYS(l->store[0]));
       rxd[1].xd0 = htole32(VTOPHYS(&rxd[0]));
       rxd[1].xd1 = htole32(XD1_OWN | FRAMESIZE);
       rxd[1].xd2 = htole32(VTOPHYS(l->store[1]));
       wbinv(l, sizeof(struct local));
       l->tx = l->rx = 0;

       CSR_WRITE(l, SIP_RFCR, 0);
       CSR_WRITE(l, SIP_RFDR, (en[1] << 8) | en[0]);
       CSR_WRITE(l, SIP_RFCR, 2);
       CSR_WRITE(l, SIP_RFDR, (en[3] << 8) | en[2]);
       CSR_WRITE(l, SIP_RFCR, 4);
       CSR_WRITE(l, SIP_RFDR, (en[5] << 8) | en[4]);
       CSR_WRITE(l, SIP_RFCR, RFCR_RFEN | RFCR_APM);

       txc = TXCFG_ATP | TXCFG_DMA256 | 0x1002;
       rxc = RXCFG_DMA256 | 0x20;
       if (fdx) {
               txc |= TXCFG_CSI | TXCFG_HBI;
               rxc |= RXCFG_ATX;
       }
       l->cr = CR_RXE;
       CSR_WRITE(l, SIP_TXDP, VTOPHYS(txd));
       CSR_WRITE(l, SIP_RXDP, VTOPHYS(rxd));
       CSR_WRITE(l, SIP_TXCFG, txc);
       CSR_WRITE(l, SIP_RXCFG, rxc);
       CSR_WRITE(l, SIP_CR, l->cr);

       return l;
}

int
sip_send(void *dev, char *buf, unsigned len)
{
       struct local *l = dev;
       volatile struct desc *txd;
       unsigned loop;

       wbinv(buf, len);
       txd = &l->txd[l->tx];
       txd->xd2 = htole32(VTOPHYS(buf));
       txd->xd1 = htole32(XD1_OWN | (len & 0xfff));
       wbinv(txd, sizeof(struct desc));
       CSR_WRITE(l, SIP_CR, l->cr | CR_TXE);
       loop = 100;
       do {
               if ((le32toh(txd->xd1) & XD1_OWN) == 0)
                       goto done;
               DELAY(10);
               inv(txd, sizeof(struct desc));
       } while (--loop != 0);
       printf("xmit failed\n");
       return -1;
 done:
       l->tx ^= 1;
       return len;
}

int
sip_recv(void *dev, char *buf, unsigned maxlen, unsigned timo)
{
       struct local *l = dev;
       volatile struct desc *rxd;
       unsigned bound, rxstat, len;
       uint8_t *ptr;

       bound = 1000 * timo;
printf("recving with %u sec. timeout\n", timo);
 again:
       rxd = &l->rxd[l->rx];
       do {
               inv(rxd, sizeof(struct desc));
               rxstat = le32toh(rxd->xd1);
               if ((rxstat & XD1_OWN) == 0)
                       goto gotone;
               DELAY(1000);    /* 1 milli second */
       } while (--bound > 0);
       errno = 0;
       return -1;
 gotone:
       if ((rxstat & XD1_OK) == 0) {
               rxd->xd1 = htole32(XD1_OWN | FRAMESIZE);
               wbinv(rxd, sizeof(struct desc));
               l->rx ^= 1;
               goto again;
       }
       /* good frame */
       len = (rxstat & 0xfff) - 4 /* HASFCS */;
       if (len > maxlen)
               len = maxlen;
       ptr = l->store[l->rx];
       inv(ptr, len);
       memcpy(buf, ptr, len);
       rxd->xd1 = htole32(XD1_OWN | FRAMESIZE);
       wbinv(rxd, sizeof(struct desc));
       l->rx ^= 1;
       CSR_WRITE(l, SIP_CR, l->cr);
       return len;
}

static int
read_eeprom(struct local *l, int loc)
{
#define R110 06 /* SEEPROM READ op. */
       unsigned data, v, i;

       /* hold chip select */
       v = MEAR_EESEL;
       CSR_WRITE(l, SIP_MEAR, v);

       data = (R110 << 6) | (loc & 0x3f); /* 6 bit addressing */
       /* instruct R110 op. at loc in MSB first order */
       for (i = (1 << 8); i != 0; i >>= 1) {
               if (data & i)
                       v |= MEAR_EEDI;
               else
                       v &= ~MEAR_EEDI;
               CSR_WRITE(l, SIP_MEAR, v);
               CSR_WRITE(l, SIP_MEAR, v | MEAR_EECLK);
               DELAY(4);
               CSR_WRITE(l, SIP_MEAR, v);
               DELAY(4);
       }
       v = MEAR_EESEL;
       /* read 16bit quantity in MSB first order */
       data = 0;
       for (i = 0; i < 16; i++) {
               CSR_WRITE(l, SIP_MEAR, v | MEAR_EECLK);
               DELAY(4);
               data = (data << 1) | !!(CSR_READ(l, SIP_MEAR) & MEAR_EEDO);
               CSR_WRITE(l, SIP_MEAR, v);
               DELAY(4);
       }
       /* turn off chip select */
       CSR_WRITE(l, SIP_MEAR, 0);
       DELAY(4);
       return data;
}

#define MII_BMCR        0x00    /* Basic mode control register (rw) */
#define  BMCR_RESET     0x8000  /* reset */
#define  BMCR_AUTOEN    0x1000  /* autonegotiation enable */
#define  BMCR_ISO       0x0400  /* isolate */
#define  BMCR_STARTNEG  0x0200  /* restart autonegotiation */
#define MII_BMSR        0x01    /* Basic mode status register (ro) */
#define  BMSR_ACOMP     0x0020  /* Autonegotiation complete */
#define  BMSR_LINK      0x0004  /* Link status */
#define MII_ANAR        0x04    /* Autonegotiation advertisement (rw) */
#define  ANAR_FC        0x0400  /* local device supports PAUSE */
#define  ANAR_TX_FD     0x0100  /* local device supports 100bTx FD */
#define  ANAR_TX        0x0080  /* local device supports 100bTx */
#define  ANAR_10_FD     0x0040  /* local device supports 10bT FD */
#define  ANAR_10        0x0020  /* local device supports 10bT */
#define  ANAR_CSMA      0x0001  /* protocol selector CSMA/CD */
#define MII_ANLPAR      0x05    /* Autonegotiation lnk partner abilities (rw) */

unsigned
mii_read(struct local *l, int phy, int reg)
{
       unsigned val;

       do {
               val = CSR_READ(l, SIP_BMCR + (reg << 2));
       } while (reg == MII_BMSR && val == 0);
       return val & 0xffff;
}

void
mii_write(struct local *l, int phy, int reg, int val)
{

       CSR_WRITE(l, SIP_BMCR + (reg << 2), val);
}

void
mii_initphy(struct local *l)
{
       int phy, ctl, sts, bound;

       for (phy = 0; phy < 32; phy++) {
               ctl = mii_read(l, phy, MII_BMCR);
               sts = mii_read(l, phy, MII_BMSR);
               if (ctl != 0xffff && sts != 0xffff)
                       goto found;
       }
       printf("MII: no PHY found\n");
       return;
 found:
       ctl = mii_read(l, phy, MII_BMCR);
       mii_write(l, phy, MII_BMCR, ctl | BMCR_RESET);
       bound = 100;
       do {
               DELAY(10);
               ctl = mii_read(l, phy, MII_BMCR);
               if (ctl == 0xffff) {
                       printf("MII: PHY %d has died after reset\n", phy);
                       return;
               }
       } while (bound-- > 0 && (ctl & BMCR_RESET));
       if (bound == 0) {
               printf("PHY %d reset failed\n", phy);
       }
       ctl &= ~BMCR_ISO;
       mii_write(l, phy, MII_BMCR, ctl);
       sts = mii_read(l, phy, MII_BMSR) |
           mii_read(l, phy, MII_BMSR); /* read twice */
       l->phy = phy; /* should be 0 */
       l->bmsr = sts;
}

void
mii_dealan(struct local *l, unsigned timo)
{
       unsigned anar, bound;

       anar = ANAR_TX_FD | ANAR_TX | ANAR_10_FD | ANAR_10 | ANAR_CSMA;
       mii_write(l, l->phy, MII_ANAR, anar);
       mii_write(l, l->phy, MII_BMCR, BMCR_AUTOEN | BMCR_STARTNEG);
       l->anlpar = 0;
       bound = getsecs() + timo;
       do {
               l->bmsr = mii_read(l, l->phy, MII_BMSR) |
                  mii_read(l, l->phy, MII_BMSR); /* read twice */
               if ((l->bmsr & BMSR_LINK) && (l->bmsr & BMSR_ACOMP)) {
                       l->anlpar = mii_read(l, l->phy, MII_ANLPAR);
                       break;
               }
               DELAY(10 * 1000);
       } while (getsecs() < bound);
       return;
}