/*      $NetBSD: mkbootimage.c,v 1.21 2024/11/03 03:11:24 gutteridge Exp $      */

/*-
* Copyright (c) 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tim Rightnour and NONAKA Kimihiro
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#if HAVE_NBTOOL_CONFIG_H
#include "nbtool_config.h"
#include "../../sys/sys/bootblock.h"
#else
#include <sys/bootblock.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <zlib.h>
#include <err.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/uio.h>
#include <sys/signal.h>

#undef USE_SYSCTL

#if defined(__NetBSD__) && !defined(HAVE_NBTOOL_CONFIG_H)
#define USE_SYSCTL 1
#include <sys/param.h>
#include <sys/sysctl.h>
#include <sys/utsname.h>
#endif

/* BFD ELF headers */
#include <elf/common.h>
#include <elf/external.h>

#include "bebox_bootrec.h"
#include "byteorder.h"
#include "magic.h"
#include "pef.h"
#include "rs6000_bootrec.h"

/* Globals */

int inkernflag = 1;
int saloneflag = 0;
int verboseflag = 0;
int lfloppyflag = 0;
Elf32_External_Ehdr hdr, khdr;
struct stat elf_stat;
unsigned char mbr[512];

/* the boot and config records for rs6000 */
rs6000_boot_record_t bootrec;
rs6000_config_record_t confrec;

/* supported platforms */
char *sup_plats[] = {
       "bebox",
       "prep",
       "rs6000",
       NULL,
};

/*
* Macros to get values from multi-byte ELF header fields.  These assume
* a big-endian image.
*/
#define ELFGET16(x)     (((x)[0] << 8) | (x)[1])

#define ELFGET32(x)     (((x)[0] << 24) | ((x)[1] << 16) |              \
                        ((x)[2] <<  8) |  (x)[3])

#define ULALIGN(x)      ((x + 0x0f) & 0xfffffff0)

static void usage(int);
static int open_file(const char *, char *, Elf32_External_Ehdr *,
   struct stat *);
static void check_mbr(int, char *);
static void rs6000_build_records(int);
int main(int, char **);


static void
usage(int extended)
{
       int i;

       if (extended) {
               fprintf(stderr, "You are not running this program on"
                   " the target machine.  You must supply the\n"
                   "machine architecture with the -m flag\n");
               fprintf(stderr, "Supported architectures: ");
               for (i=0; sup_plats[i] != NULL; i++)
                       fprintf(stderr, " %s", sup_plats[i]);
               fprintf(stderr, "\n\n");
       }
#ifdef USE_SYSCTL
       fprintf(stderr, "usage: %s [-Ilsv] [-m machine] [-b bootfile] "
           "[-k kernel] [-r rawdev] [-t epoch] bootimage\n", getprogname());
#else
       fprintf(stderr, "usage: %s [-Ilsv] -m machine [-b bootfile] "
           "[-k kernel] [-r rawdev] [-t epoch]  bootimage\n", getprogname());
#endif
       exit(1);
}

/* verify the file is ELF and ppc, and open it up */
static int
open_file(const char *ftype, char *file, Elf32_External_Ehdr *hdr,
       struct stat *f_stat)
{
       int fd;

       if ((fd = open(file, 0)) < 0)
               errx(2, "Can't open %s '%s': %s", ftype, file, strerror(errno));
       fstat(fd, f_stat);

       if (read(fd, hdr, sizeof(Elf32_External_Ehdr)) !=
           sizeof(Elf32_External_Ehdr))
               errx(3, "Can't read input '%s': %s", file, strerror(errno));

       if (hdr->e_ident[EI_MAG0] != ELFMAG0 ||
           hdr->e_ident[EI_MAG1] != ELFMAG1 ||
           hdr->e_ident[EI_MAG2] != ELFMAG2 ||
           hdr->e_ident[EI_MAG3] != ELFMAG3 ||
           hdr->e_ident[EI_CLASS] != ELFCLASS32)
               errx(3, "input '%s' is not ELF32 format", file);

       if (hdr->e_ident[EI_DATA] != ELFDATA2MSB)
               errx(3, "input '%s' is not big-endian", file);

       if (ELFGET16(hdr->e_machine) != EM_PPC)
               errx(3, "input '%s' is not PowerPC exec binary", file);

       return fd;
}

static void
prep_check_mbr(int prep_fd, char *rawdev)
{
       int raw_fd;
       unsigned long entry, length;
       struct mbr_partition *mbrp;
       struct stat raw_stat;

       /* If we are building a standalone image, do not write an MBR, just
        * set entry point and boot image size skipping over elf header
        */
       if (saloneflag) {
               entry  = sa_htole32(0x400);
               length = sa_htole32(elf_stat.st_size - sizeof(hdr) + 0x400);
               lseek(prep_fd, sizeof(mbr), SEEK_SET);
               write(prep_fd, &entry, sizeof(entry));
               write(prep_fd, &length, sizeof(length));
               return;
       }

       /*
        * if we have a raw device, we need to check to see if it already
        * has a partition table, and if so, read it in and check for
        * suitability.
        */
       if (rawdev != NULL) {
               raw_fd = open(rawdev, O_RDONLY, 0);
               if (raw_fd == -1)
                       errx(3, "couldn't open raw device %s: %s", rawdev,
                           strerror(errno));

               fstat(raw_fd, &raw_stat);
               if (!S_ISCHR(raw_stat.st_mode))
                       errx(3, "%s is not a raw device", rawdev);

               if (read(raw_fd, mbr, 512) != 512)
                       errx(3, "MBR Read Failed: %s", strerror(errno));

               mbrp = (struct mbr_partition *)&mbr[MBR_PART_OFFSET];
               if (mbrp->mbrp_type != MBR_PTYPE_PREP)
                       errx(3, "First partition is not of type 0x%x.",
                           MBR_PTYPE_PREP);
               if (mbrp->mbrp_start != 0)
                       errx(3, "Use of the raw device is intended for"
                           " upgrading of legacy installations.  Your"
                           " install does not have a PReP boot partition"
                           " starting at sector 0.  Use the -s option"
                           " to build an image instead.");

               /* if we got this far, we are fine, write back the partition
                * and write the entry points and get outta here */
       /* Set entry point and boot image size skipping over elf header */
               lseek(prep_fd, 0, SEEK_SET);
               entry  = sa_htole32(0x400);
               length = sa_htole32(elf_stat.st_size - sizeof(hdr) + 0x400);
               write(prep_fd, mbr, sizeof(mbr));
               write(prep_fd, &entry, sizeof(entry));
               write(prep_fd, &length, sizeof(length));
               close(raw_fd);
               return;
       }

       /* if we get to here, we want to build a standard floppy or netboot
        * image to file, so just build it */

       memset(mbr, 0, sizeof(mbr));
       mbrp = (struct mbr_partition *)&mbr[MBR_PART_OFFSET];

       /* Set entry point and boot image size skipping over elf header */
       entry  = sa_htole32(0x400);
       length = sa_htole32(elf_stat.st_size - sizeof(hdr) + 0x400);

       /*
        * Set magic number for msdos partition
        */
       *(unsigned short *)&mbr[MBR_MAGIC_OFFSET] = sa_htole16(MBR_MAGIC);

       /*
        * Build a "PReP" partition table entry in the boot record
        *  - "PReP" may only look at the system_indicator
        */
       mbrp->mbrp_flag = MBR_PFLAG_ACTIVE;
       mbrp->mbrp_type  = MBR_PTYPE_PREP;

       /*
        * The first block of the diskette is used by this "boot record" which
        * actually contains the partition table. (The first block of the
        * partition contains the boot image, but I digress...)  We'll set up
        * one partition on the diskette and it shall contain the rest of the
        * diskette.
        */
       mbrp->mbrp_shd   = 0;   /* zero-based */
       mbrp->mbrp_ssect = 2;   /* one-based */
       mbrp->mbrp_scyl  = 0;   /* zero-based */
       mbrp->mbrp_ehd   = 1;   /* assumes two heads */
       if (lfloppyflag)
               mbrp->mbrp_esect = 36;  /* 2.88MB floppy */
       else
               mbrp->mbrp_esect = 18;  /* assumes 18 sectors/track */
       mbrp->mbrp_ecyl  = 79;  /* assumes 80 cylinders/diskette */

       /*
        * The "PReP" software ignores the above fields and just looks at
        * the next two.
        *   - size of the diskette is (assumed to be)
        *     (2 tracks/cylinder)(18 sectors/tracks)(80 cylinders/diskette)
        *   - unlike the above sector numbers,
        *     the beginning sector is zero-based!
        */

       /* This has to be 0 on the PowerStack? */
       mbrp->mbrp_start = sa_htole32(0);
       mbrp->mbrp_size  = sa_htole32(2 * 18 * 80 - 1);

       write(prep_fd, mbr, sizeof(mbr));
       write(prep_fd, &entry, sizeof(entry));
       write(prep_fd, &length, sizeof(length));
}

static int
prep_build_image(char *kernel, char *boot, char *rawdev, char *outname)
{
       unsigned char *elf_img = NULL, *kern_img = NULL;
       int i, ch, tmp, kgzlen, err;
       int elf_fd, prep_fd, kern_fd, elf_img_len = 0;
       off_t lenpos, kstart, kend;
       unsigned long length;
       long flength;
       gzFile gzf;
       struct stat kern_stat;
       Elf32_External_Phdr phdr;

       elf_fd = open_file("bootloader", boot, &hdr, &elf_stat);
       if (inkernflag) {
               kern_fd = open_file("kernel", kernel, &khdr, &kern_stat);
               kern_len = kern_stat.st_size + PREP_MAGICSIZE + KERNLENSIZE;
       } else
               kern_len = PREP_MAGICSIZE + KERNLENSIZE;

       for (i = 0; i < ELFGET16(hdr.e_phnum); i++) {
               lseek(elf_fd, ELFGET32(hdr.e_phoff) + sizeof(phdr) * i,
                       SEEK_SET);
               if (read(elf_fd, &phdr, sizeof(phdr)) != sizeof(phdr))
                       errx(3, "Can't read input '%s' phdr : %s", boot,
                           strerror(errno));

               if ((ELFGET32(phdr.p_type) != PT_LOAD) ||
                   !(ELFGET32(phdr.p_flags) & PF_X))
                       continue;

               fstat(elf_fd, &elf_stat);
               elf_img_len = elf_stat.st_size - ELFGET32(phdr.p_offset);
               lseek(elf_fd, ELFGET32(phdr.p_offset), SEEK_SET);

               break;
       }
       if ((prep_fd = open(outname, O_RDWR|O_TRUNC, 0)) < 0) {
               /* we couldn't open it, it must be new */
               prep_fd = creat(outname, 0644);
               if (prep_fd < 0)
                       errx(2, "Can't open output '%s': %s", outname,
                           strerror(errno));
       }

       prep_check_mbr(prep_fd, rawdev);

       /* Set file pos. to 2nd sector where image will be written */
       lseek(prep_fd, 0x400, SEEK_SET);

       /* Copy boot image */
       elf_img = malloc(elf_img_len);
       if (!elf_img)
               errx(3, "Can't malloc: %s", strerror(errno));
       if (read(elf_fd, elf_img, elf_img_len) != elf_img_len)
               errx(3, "Can't read file '%s' : %s", boot, strerror(errno));

       write(prep_fd, elf_img, elf_img_len);
       free(elf_img);

       if (inkernflag) {
               /* Copy kernel */
               kern_img = malloc(kern_stat.st_size);

               if (kern_img == NULL)
                       errx(3, "Can't malloc: %s", strerror(errno));

               /* we need to jump back after having read the headers */
               lseek(kern_fd, 0, SEEK_SET);
               if (read(kern_fd, (void *)kern_img, kern_stat.st_size) !=
                   kern_stat.st_size)
                       errx(3, "Can't read kernel '%s' : %s",
                           kernel, strerror(errno));
       }

       gzf = gzdopen(dup(prep_fd), "a");
       if (gzf == NULL)
               errx(3, "Can't init compression: %s", strerror(errno));
       if (gzsetparams(gzf, Z_BEST_COMPRESSION, Z_DEFAULT_STRATEGY) != Z_OK)
               errx(3, "%s", gzerror(gzf, &err));

       /* write a magic number and size before the kernel */
       write(prep_fd, (void *)prep_magic, PREP_MAGICSIZE);
       lenpos = lseek(prep_fd, 0, SEEK_CUR);
       tmp = sa_htobe32(0);
       write(prep_fd, (void *)&tmp, KERNLENSIZE);

       /* write in the compressed kernel */
       kstart = lseek(prep_fd, 0, SEEK_CUR);
       if (inkernflag) {
               kgzlen = gzwrite(gzf, kern_img, kern_stat.st_size);
               gzclose(gzf);
       }
       kend = lseek(prep_fd, 0, SEEK_CUR);

       /* jump back to the length position now that we know the length */
       lseek(prep_fd, lenpos, SEEK_SET);
       kgzlen = kend - kstart;
       tmp = sa_htobe32(kgzlen);
       write(prep_fd, (void *)&tmp, KERNLENSIZE);

       length = sa_htole32(0x400 + elf_img_len + 8 + kgzlen);
       lseek(prep_fd, sizeof(mbr) + 4, SEEK_SET);
       write(prep_fd, &length, sizeof(length));

       flength = 0x400 + elf_img_len + 8 + kgzlen;
       if (lfloppyflag)
               flength -= (5760 * 512);
       else
               flength -= (2880 * 512);
       if (flength > 0 && !saloneflag)
               fprintf(stderr, "%s: Image %s is %ld bytes larger than single"
                   " floppy. Can only be used for netboot.\n", getprogname(),
                   outname, flength);

       if (inkernflag) {
               free(kern_img);
               close(kern_fd);
       }
       close(prep_fd);
       close(elf_fd);

       return 0;
}

/* Fill in the needed information on the boot and config records.  Most of
* this is just AIX garbage that we don't really need to boot.
*/
static void
rs6000_build_records(int img_len)
{
       int bcl;

       /* zero out all the fields, so we only have to set the ones
        * we care about, which are rather few.
        */
       memset(&bootrec, 0, sizeof(rs6000_boot_record_t));
       memset(&confrec, 0, sizeof(rs6000_config_record_t));

       bootrec.ipl_record = IPLRECID;
       bcl = img_len/512;
       if (img_len%512 != 0)
               bcl++;
       bootrec.bootcode_len = bcl;
       bootrec.bootcode_off = 0; /* XXX */
       bootrec.bootpart_start = 2; /* skip bootrec and confrec */
       bootrec.bootprg_start = 2;
       bootrec.bootpart_len = bcl;
       bootrec.boot_load_addr = 0x800000; /* XXX? */
       bootrec.boot_frag = 1;
       bootrec.boot_emul = 0x02; /* ?? */
       /* service mode is a repeat of normal mode */
       bootrec.servcode_len = bootrec.bootcode_len;
       bootrec.servcode_off = bootrec.bootcode_off;
       bootrec.servpart_start = bootrec.bootpart_start;
       bootrec.servprg_start = bootrec.bootprg_start;
       bootrec.servpart_len = bootrec.bootpart_len;
       bootrec.serv_load_addr = bootrec.boot_load_addr;
       bootrec.serv_frag = bootrec.boot_frag;
       bootrec.serv_emul = bootrec.boot_emul;

       /* now the config record */
       confrec.conf_rec = CONFRECID;
       confrec.sector_size = 0x02; /* 512 bytes */
       confrec.last_cyl = 0x4f; /* 79 cyl, emulates floppy */
}

static int
rs6000_build_image(char *kernel, char *boot, char *rawdev, char *outname)
{
       unsigned char *elf_img = NULL, *kern_img = NULL;
       int i, ch, tmp, kgzlen, err;
       int elf_fd, rs6000_fd, kern_fd, elf_img_len = 0, elf_pad;
       uint32_t swapped[128];
       off_t lenpos, kstart, kend;
       unsigned long length;
       long flength;
       gzFile gzf;
       struct stat kern_stat;
       Elf32_External_Phdr phdr;

       elf_fd = open_file("bootloader", boot, &hdr, &elf_stat);
       kern_fd = open_file("kernel", kernel, &khdr, &kern_stat);
       kern_len = kern_stat.st_size + RS6000_MAGICSIZE + KERNLENSIZE;

       for (i = 0; i < ELFGET16(hdr.e_phnum); i++) {
               lseek(elf_fd, ELFGET32(hdr.e_phoff) + sizeof(phdr) * i,
                       SEEK_SET);
               if (read(elf_fd, &phdr, sizeof(phdr)) != sizeof(phdr))
                       errx(3, "Can't read input '%s' phdr : %s", boot,
                           strerror(errno));

               if ((ELFGET32(phdr.p_type) != PT_LOAD) ||
                   !(ELFGET32(phdr.p_flags) & PF_X))
                       continue;

               fstat(elf_fd, &elf_stat);
               elf_img_len = elf_stat.st_size - ELFGET32(phdr.p_offset);
               elf_pad = ELFGET32(phdr.p_memsz) - ELFGET32(phdr.p_filesz);
               if (verboseflag)
                       printf("Padding %d\n", elf_pad);
               lseek(elf_fd, ELFGET32(phdr.p_offset), SEEK_SET);

               break;
       }
       if ((rs6000_fd = open(outname, O_RDWR|O_TRUNC, 0)) < 0) {
               /* we couldn't open it, it must be new */
               rs6000_fd = creat(outname, 0644);
               if (rs6000_fd < 0)
                       errx(2, "Can't open output '%s': %s", outname,
                           strerror(errno));
       }

       /* Set file pos. to 2nd sector where image will be written */
       lseek(rs6000_fd, 0x400, SEEK_SET);

       /* Copy boot image */
       elf_img = malloc(elf_img_len);
       if (!elf_img)
               errx(3, "Can't malloc: %s", strerror(errno));
       if (read(elf_fd, elf_img, elf_img_len) != elf_img_len)
               errx(3, "Can't read file '%s' : %s", boot, strerror(errno));

       write(rs6000_fd, elf_img, elf_img_len);
       free(elf_img);

       /* now dump in the padding space for the BSS */
       elf_pad += 100; /* just a little extra for good luck */
       lseek(rs6000_fd, elf_pad, SEEK_CUR);

       /* Copy kernel */
       kern_img = malloc(kern_stat.st_size);

       if (kern_img == NULL)
               errx(3, "Can't malloc: %s", strerror(errno));

       /* we need to jump back after having read the headers */
       lseek(kern_fd, 0, SEEK_SET);
       if (read(kern_fd, (void *)kern_img, kern_stat.st_size) !=
           kern_stat.st_size)
               errx(3, "Can't read kernel '%s' : %s", kernel, strerror(errno));

       gzf = gzdopen(dup(rs6000_fd), "a");
       if (gzf == NULL)
               errx(3, "Can't init compression: %s", strerror(errno));
       if (gzsetparams(gzf, Z_BEST_COMPRESSION, Z_DEFAULT_STRATEGY) != Z_OK)
               errx(3, "%s", gzerror(gzf, &err));

       /* write a magic number and size before the kernel */
       write(rs6000_fd, (void *)rs6000_magic, RS6000_MAGICSIZE);
       lenpos = lseek(rs6000_fd, 0, SEEK_CUR);
       if (verboseflag)
               printf("wrote magic at pos 0x%lx\n", (unsigned long)lenpos);
       tmp = sa_htobe32(0);
       write(rs6000_fd, (void *)&tmp, KERNLENSIZE);

       /* write in the compressed kernel */
       kstart = lseek(rs6000_fd, 0, SEEK_CUR);
       if (verboseflag)
               printf("kernel start at pos 0x%lx\n", (unsigned long)kstart);
       kgzlen = gzwrite(gzf, kern_img, kern_stat.st_size);
       gzclose(gzf);
       kend = lseek(rs6000_fd, 0, SEEK_CUR);
       if (verboseflag)
               printf("kernel end at pos 0x%lx\n", (unsigned long)kend);

       /* jump back to the length position now that we know the length */
       lseek(rs6000_fd, lenpos, SEEK_SET);
       kgzlen = kend - kstart;
       tmp = sa_htobe32(kgzlen);
       if (verboseflag)
               printf("kernel len = 0x%x tmp = 0x%x\n", kgzlen, tmp);
       write(rs6000_fd, (void *)&tmp, KERNLENSIZE);

#if 0
       lseek(rs6000_fd, sizeof(boot_record_t) + sizeof(config_record_t),
           SEEK_SET);
       /* set entry and length */
       length = sa_htole32(0x400);
       write(rs6000_fd, &length, sizeof(length));
       length = sa_htole32(0x400 + elf_img_len + 8 + kgzlen);
       write(rs6000_fd, &length, sizeof(length));
#endif

       /* generate the header now that we know the kernel length */
       if (verboseflag)
               printf("building records\n");
       rs6000_build_records(elf_img_len + 8 + kgzlen);
       lseek(rs6000_fd, 0, SEEK_SET);
       /* ROM wants it byteswapped in 32bit chunks */
       if (verboseflag)
               printf("writing records\n");
       memcpy(swapped, &bootrec, sizeof(rs6000_boot_record_t));
       for (i=0; i < 128; i++)
               swapped[i] = sa_htobe32(swapped[i]);
       write(rs6000_fd, swapped, sizeof(rs6000_boot_record_t));
       memcpy(swapped, &confrec, sizeof(rs6000_config_record_t));
       for (i=0; i < 128; i++)
               swapped[i] = sa_htobe32(swapped[i]);
       write(rs6000_fd, swapped, sizeof(rs6000_config_record_t));

       free(kern_img);
       close(kern_fd);
       close(rs6000_fd);
       close(elf_fd);

       return 0;
}

static int
bebox_write_header(int bebox_fd, int elf_image_len, int kern_img_len)
{
       int hsize = BEBOX_HEADER_SIZE;
       unsigned long textOffset, dataOffset, ldrOffset;
       unsigned long entry_vector[3];
       struct FileHeader fileHdr;
       struct SectionHeader textHdr, dataHdr, ldrHdr;
       struct LoaderHeader lh;


       ldrOffset = ULALIGN(sizeof (fileHdr) + sizeof (textHdr) +
           sizeof (dataHdr) + sizeof (ldrHdr));
       dataOffset = ULALIGN(ldrOffset + sizeof (lh));
       textOffset = ULALIGN(dataOffset + sizeof (entry_vector) + kern_img_len);

       /* Create the File Header */
       memset(&fileHdr, 0, sizeof (fileHdr));
       fileHdr.magic = sa_htobe32(PEF_MAGIC);
       fileHdr.fileTypeID = sa_htobe32(PEF_FILE);
       fileHdr.archID = sa_htobe32(PEF_PPC);
       fileHdr.versionNumber = sa_htobe32(1);
       fileHdr.numSections = sa_htobe16(3);
       fileHdr.loadableSections = sa_htobe16(2);
       write(bebox_fd, &fileHdr, sizeof (fileHdr));

       /* Create the Section Header for TEXT */
       memset(&textHdr, 0, sizeof (textHdr));
       textHdr.sectionName = sa_htobe32(-1);
       textHdr.sectionAddress = sa_htobe32(0);
       textHdr.execSize = sa_htobe32(elf_image_len);
       textHdr.initSize = sa_htobe32(elf_image_len);
       textHdr.rawSize = sa_htobe32(elf_image_len);
       textHdr.fileOffset = sa_htobe32(textOffset);
       textHdr.regionKind = CodeSection;
       textHdr.shareKind = ContextShare;
       textHdr.alignment = 4;  /* 16 byte alignment */
       write(bebox_fd, &textHdr, sizeof (textHdr));

       /* Create the Section Header for DATA */
       memset(&dataHdr, 0, sizeof (dataHdr));
       dataHdr.sectionName = sa_htobe32(-1);
       dataHdr.sectionAddress = sa_htobe32(0);
       dataHdr.execSize = sa_htobe32(sizeof (entry_vector) + kern_img_len);
       dataHdr.initSize = sa_htobe32(sizeof (entry_vector) + kern_img_len);
       dataHdr.rawSize = sa_htobe32(sizeof (entry_vector) + kern_img_len);
       dataHdr.fileOffset = sa_htobe32(dataOffset);
       dataHdr.regionKind = DataSection;
       dataHdr.shareKind = ContextShare;
       dataHdr.alignment = 4;  /* 16 byte alignment */
       write(bebox_fd, &dataHdr, sizeof (dataHdr));

       /* Create the Section Header for loader stuff */
       memset(&ldrHdr, 0, sizeof (ldrHdr));
       ldrHdr.sectionName = sa_htobe32(-1);
       ldrHdr.sectionAddress = sa_htobe32(0);
       ldrHdr.execSize = sa_htobe32(sizeof (lh));
       ldrHdr.initSize = sa_htobe32(sizeof (lh));
       ldrHdr.rawSize = sa_htobe32(sizeof (lh));
       ldrHdr.fileOffset = sa_htobe32(ldrOffset);
       ldrHdr.regionKind = LoaderSection;
       ldrHdr.shareKind = GlobalShare;
       ldrHdr.alignment = 4;  /* 16 byte alignment */
       write(bebox_fd, &ldrHdr, sizeof (ldrHdr));

       /* Create the Loader Header */
       memset(&lh, 0, sizeof (lh));
       lh.entryPointSection = sa_htobe32(1);           /* Data */
       lh.entryPointOffset = sa_htobe32(0);
       lh.initPointSection = sa_htobe32(-1);
       lh.initPointOffset = sa_htobe32(0);
       lh.termPointSection = sa_htobe32(-1);
       lh.termPointOffset = sa_htobe32(0);
       lseek(bebox_fd, ldrOffset + hsize, SEEK_SET);
       write(bebox_fd, &lh, sizeof (lh));

       /* Copy the pseudo-DATA */
       memset(entry_vector, 0, sizeof (entry_vector));
       entry_vector[0] = sa_htobe32(BEBOX_ENTRY);      /* Magic */
       lseek(bebox_fd, dataOffset + hsize, SEEK_SET);
       write(bebox_fd, entry_vector, sizeof (entry_vector));

       return textOffset;
}

static int
bebox_build_image(char *kernel, char *boot, char *rawdev, char *outname, char *repro_timestamp)
{
       unsigned char *elf_img = NULL, *kern_img = NULL, *header_img = NULL;
       int i, ch, tmp, kgzlen, err, hsize = BEBOX_HEADER_SIZE;
       int elf_fd, bebox_fd, kern_fd, elf_img_len = 0;
       off_t lenpos, kstart, kend, toff, endoff, flength;
       uint32_t swapped[128];
       int32_t *offset;
       gzFile gzf;
       struct stat kern_stat;
       struct bebox_image_block *p;
       struct timeval tp;
       Elf32_External_Phdr phdr;

       elf_fd = open_file("bootloader", boot, &hdr, &elf_stat);
       if (inkernflag) {
               kern_fd = open_file("kernel", kernel, &khdr, &kern_stat);
               kern_len = kern_stat.st_size + BEBOX_MAGICSIZE + KERNLENSIZE;
       } else
               kern_len = BEBOX_MAGICSIZE + KERNLENSIZE;

       for (i = 0; i < ELFGET16(hdr.e_phnum); i++) {
               lseek(elf_fd, ELFGET32(hdr.e_phoff) + sizeof(phdr) * i,
                       SEEK_SET);
               if (read(elf_fd, &phdr, sizeof(phdr)) != sizeof(phdr))
                       errx(3, "Can't read input '%s' phdr : %s", boot,
                           strerror(errno));

               if ((ELFGET32(phdr.p_type) != PT_LOAD) ||
                   !(ELFGET32(phdr.p_flags) & PF_X))
                       continue;

               fstat(elf_fd, &elf_stat);
               elf_img_len = ELFGET32(phdr.p_filesz);
               lseek(elf_fd, ELFGET32(phdr.p_offset), SEEK_SET);

               break;
       }
       if ((bebox_fd = open(outname, O_RDWR|O_TRUNC, 0)) < 0) {
               /* we couldn't open it, it must be new */
               bebox_fd = creat(outname, 0644);
               if (bebox_fd < 0)
                       errx(2, "Can't open output '%s': %s", outname,
                           strerror(errno));
       }
       lseek(bebox_fd, hsize, SEEK_SET);

       if (inkernflag) {
               /*
                * write the header with the wrong values to get the offset
                * right
                */
               bebox_write_header(bebox_fd, elf_img_len, kern_stat.st_size);

               /* Copy kernel */
               kern_img = malloc(kern_stat.st_size);

               if (kern_img == NULL)
                       errx(3, "Can't malloc: %s", strerror(errno));

               /* we need to jump back after having read the headers */
               lseek(kern_fd, 0, SEEK_SET);
               if (read(kern_fd, (void *)kern_img, kern_stat.st_size) !=
                   kern_stat.st_size)
                       errx(3, "Can't read kernel '%s' : %s",
                           kernel, strerror(errno));

               gzf = gzdopen(dup(bebox_fd), "a");
               if (gzf == NULL)
                       errx(3, "Can't init compression: %s", strerror(errno));
               if (gzsetparams(gzf, Z_BEST_COMPRESSION, Z_DEFAULT_STRATEGY) !=
                   Z_OK)
                       errx(3, "%s", gzerror(gzf, &err));
       } else
               bebox_write_header(bebox_fd, elf_img_len, 0);

       /* write a magic number and size before the kernel */
       write(bebox_fd, (void *)bebox_magic, BEBOX_MAGICSIZE);
       lenpos = lseek(bebox_fd, 0, SEEK_CUR);
       tmp = sa_htobe32(0);
       write(bebox_fd, (void *)&tmp, KERNLENSIZE);

       if (inkernflag) {
               /* write in the compressed kernel */
               kstart = lseek(bebox_fd, 0, SEEK_CUR);
               kgzlen = gzwrite(gzf, kern_img, kern_stat.st_size);
               gzclose(gzf);
               kend = lseek(bebox_fd, 0, SEEK_CUR);
               free(kern_img);
       } else {
               kstart = kend = lseek(bebox_fd, 0, SEEK_CUR);
               kgzlen = 0;
       }

       /* jump back to the length position now that we know the length */
       lseek(bebox_fd, lenpos, SEEK_SET);
       kgzlen = kend - kstart;
       tmp = sa_htobe32(kgzlen);
       write(bebox_fd, (void *)&tmp, KERNLENSIZE);

       /* now rewrite the header correctly */
       lseek(bebox_fd, hsize, SEEK_SET);
       tmp = kgzlen + BEBOX_MAGICSIZE + KERNLENSIZE;
       toff = bebox_write_header(bebox_fd, elf_img_len, tmp);

       /* Copy boot image */
       elf_img = malloc(elf_img_len);
       if (!elf_img)
               errx(3, "Can't malloc: %s", strerror(errno));
       if (read(elf_fd, elf_img, elf_img_len) != elf_img_len)
               errx(3, "Can't read file '%s' : %s", boot, strerror(errno));
       lseek(bebox_fd, toff + hsize, SEEK_SET);
       write(bebox_fd, elf_img, elf_img_len);
       free(elf_img);

       if (inkernflag)
               close(kern_fd);
       close(elf_fd);

       /* Now go back and write in the block header */
       endoff = lseek(bebox_fd, 0, SEEK_END);
       lseek(bebox_fd, 0, SEEK_SET);
       header_img = malloc(BEBOX_HEADER_SIZE);
       if (!header_img)
               errx(3, "Can't malloc: %s", strerror(errno));
       memset(header_img, 0, BEBOX_HEADER_SIZE);

       /* copy the boot image into the buffer */
       for (p = bebox_image_block; p->offset != -1; p++)
               memcpy(header_img + p->offset, p->data, p->size);

       /* fill used block bitmap */
       memset(header_img + BEBOX_FILE_BLOCK_MAP_START, 0xff,
           BEBOX_FILE_BLOCK_MAP_END - BEBOX_FILE_BLOCK_MAP_START);

       /* fix the file size in the header */
       tmp = endoff - BEBOX_HEADER_SIZE;
       *(int32_t *)(header_img + BEBOX_FILE_SIZE_OFFSET) =
           (int32_t)sa_htobe32(tmp);
       *(int32_t *)(header_img + BEBOX_FILE_SIZE_ALIGN_OFFSET) =
           (int32_t)sa_htobe32(roundup(tmp, BEBOX_FILE_BLOCK_SIZE));

       if (repro_timestamp) {
               tp.tv_sec = (time_t)atoll(repro_timestamp);
               tp.tv_usec = 0;
       } else
               gettimeofday(&tp, 0);
       for (offset = bebox_mtime_offset; *offset != -1; offset++)
               *(int32_t *)(header_img + *offset) =
                   (int32_t)sa_htobe32(tp.tv_sec);

       write(bebox_fd, header_img, BEBOX_HEADER_SIZE);

       /* now pad the end */
       flength = roundup(endoff, BEBOX_BLOCK_SIZE);
       /* refill the header_img with zeros */
       memset(header_img, 0, BEBOX_BLOCK_SIZE * 2);
       lseek(bebox_fd, 0, SEEK_END);
       write(bebox_fd, header_img, flength - endoff);

       close(bebox_fd);
       free(header_img);

       return 0;
}

int
main(int argc, char **argv)
{
       int ch, lfloppyflag=0;
       char *kernel = NULL, *boot = NULL, *rawdev = NULL, *outname = NULL;
       char *march = NULL;
       char *repro_timestamp = NULL;
#ifdef USE_SYSCTL
       char machine[SYS_NMLN];
       int mib[2] = { CTL_HW, HW_MACHINE };
#endif

       setprogname(argv[0]);
       kern_len = 0;

       while ((ch = getopt(argc, argv, "b:Ik:lm:r:st:v")) != -1)
               switch (ch) {
               case 'b':
                       boot = optarg;
                       break;
               case 'I':
                       inkernflag = 0;
                       break;
               case 'k':
                       kernel = optarg;
                       inkernflag = 1;
                       break;
               case 'l':
                       lfloppyflag = 1;
                       break;
               case 'm':
                       march = optarg;
                       break;
               case 'r':
                       rawdev = optarg;
                       break;
               case 's':
                       saloneflag = 1;
                       break;
               case 't':
                       repro_timestamp = optarg;
                       break;
               case 'v':
                       verboseflag = 1;
                       break;
               case '?':
               default:
                       usage(0);
                       /* NOTREACHED */
               }
       argc -= optind;
       argv += optind;

       if (argc < 1)
               usage(0);

       if (kernel == NULL && inkernflag)
               kernel = "/netbsd";

       if (boot == NULL)
               boot = "/usr/mdec/boot";

       if (march != NULL && strcmp(march, "") == 0)
               march = NULL;
       if (march == NULL) {
               int i;
#ifdef USE_SYSCTL
               size_t len = sizeof(machine);

               if (sysctl(mib, sizeof (mib) / sizeof (mib[0]), machine,
                       &len, NULL, 0) != -1) {
                       for (i=0; sup_plats[i] != NULL; i++) {
                               if (strcmp(sup_plats[i], machine) == 0) {
                                       march = strdup(sup_plats[i]);
                                       break;
                               }
                       }
               }
               if (march == NULL)
#endif
                       usage(1);
       }

       outname = argv[0];

       if (strcmp(march, "prep") == 0)
               return prep_build_image(kernel, boot, rawdev, outname);
       if (strcmp(march, "rs6000") == 0)
               return rs6000_build_image(kernel, boot, rawdev, outname);
       if (strcmp(march, "bebox") == 0)
               return bebox_build_image(kernel, boot, rawdev, outname,
                   repro_timestamp);

       usage(1);
       return 0;
}