/*      $NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $ */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)fpu_implode.c       8.1 (Berkeley) 6/11/93
*/

/*
* FPU subroutines: `implode' internal format numbers into the machine's
* `packed binary' format.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fpu_implode.c,v 1.24 2022/09/14 05:55:08 rin Exp $");

#include <sys/types.h>
#include <sys/systm.h>

#include <powerpc/instr.h>
#include <machine/fpu.h>
#include <machine/ieee.h>
#include <machine/reg.h>

#include <powerpc/fpu/fpu_arith.h>
#include <powerpc/fpu/fpu_emu.h>
#include <powerpc/fpu/fpu_extern.h>

static int round(struct fpemu *, struct fpn *, int *);
static int toinf(struct fpemu *, int);
static int round_int(struct fpn *, int *, int, int, int);

static u_int fpu_ftoi(struct fpemu *, struct fpn *, int *, int);
static uint64_t fpu_ftox(struct fpemu *, struct fpn *, int *, int);
static u_int fpu_ftos(struct fpemu *, struct fpn *, int *);
static uint64_t fpu_ftod(struct fpemu *, struct fpn *, int *);

/*
* Round a number (algorithm from Motorola MC68882 manual, modified for
* our internal format).  Set inexact exception if rounding is required.
* Return true iff we rounded up.
*
* After rounding, we discard the guard and round bits by shifting right
* 2 bits (a la fpu_shr(), but we do not bother with fp->fp_sticky).
* This saves effort later.
*
* Note that we may leave the value 2.0 in fp->fp_mant; it is the caller's
* responsibility to fix this if necessary.
*/
static int
round(struct fpemu *fe, struct fpn *fp, int *cx)
{
       u_int m0, m1, m2, m3;
       int gr, s;
       FPU_DECL_CARRY;

       m0 = fp->fp_mant[0];
       m1 = fp->fp_mant[1];
       m2 = fp->fp_mant[2];
       m3 = fp->fp_mant[3];
       gr = m3 & 3;
       s = fp->fp_sticky;

       /* mant >>= FP_NG */
       m3 = (m3 >> FP_NG) | (m2 << (32 - FP_NG));
       m2 = (m2 >> FP_NG) | (m1 << (32 - FP_NG));
       m1 = (m1 >> FP_NG) | (m0 << (32 - FP_NG));
       m0 >>= FP_NG;

       if ((gr | s) == 0)      /* result is exact: no rounding needed */
               goto rounddown;

       *cx |= FPSCR_FI;        /* inexact */

       /* Go to rounddown to round down; break to round up. */
       switch ((fe->fe_fpscr) & FPSCR_RN) {

       case FSR_RD_RN:
       default:
               /*
                * Round only if guard is set (gr & 2).  If guard is set,
                * but round & sticky both clear, then we want to round
                * but have a tie, so round to even, i.e., add 1 iff odd.
                */
               if ((gr & 2) == 0)
                       goto rounddown;
               if ((gr & 1) || fp->fp_sticky || (m3 & 1))
                       break;
               goto rounddown;

       case FSR_RD_RZ:
               /* Round towards zero, i.e., down. */
               goto rounddown;

       case FSR_RD_RM:
               /* Round towards -Inf: up if negative, down if positive. */
               if (fp->fp_sign)
                       break;
               goto rounddown;

       case FSR_RD_RP:
               /* Round towards +Inf: up if positive, down otherwise. */
               if (!fp->fp_sign)
                       break;
               goto rounddown;
       }

       /* Bump low bit of mantissa, with carry. */
       *cx |= FPSCR_FR;

       FPU_ADDS(m3, m3, 1);
       FPU_ADDCS(m2, m2, 0);
       FPU_ADDCS(m1, m1, 0);
       FPU_ADDC(m0, m0, 0);
       fp->fp_mant[0] = m0;
       fp->fp_mant[1] = m1;
       fp->fp_mant[2] = m2;
       fp->fp_mant[3] = m3;
       return (1);

rounddown:
       fp->fp_mant[0] = m0;
       fp->fp_mant[1] = m1;
       fp->fp_mant[2] = m2;
       fp->fp_mant[3] = m3;
       return (0);
}

/*
* For overflow: return true if overflow is to go to +/-Inf, according
* to the sign of the overflowing result.  If false, overflow is to go
* to the largest magnitude value instead.
*/
static int
toinf(struct fpemu *fe, int sign)
{
       int inf;

       /* look at rounding direction */
       switch ((fe->fe_fpscr) & FPSCR_RN) {

       default:
       case FSR_RD_RN:         /* the nearest value is always Inf */
               inf = 1;
               break;

       case FSR_RD_RZ:         /* toward 0 => never towards Inf */
               inf = 0;
               break;

       case FSR_RD_RP:         /* toward +Inf iff positive */
               inf = sign == 0;
               break;

       case FSR_RD_RM:         /* toward -Inf iff negative */
               inf = sign;
               break;
       }
       return (inf);
}

static int
round_int(struct fpn *fp, int *cx, int rn, int sign, int odd)
{
       int g, rs;

       g =   fp->fp_mant[3] & 0x80000000;
       rs = (fp->fp_mant[3] & 0x7fffffff) | fp->fp_sticky;

       if ((g | rs) == 0)
               return 0;       /* exact */

       *cx |= FPSCR_FI;

       switch (rn) {
       case FSR_RD_RN:
               if (g && (rs | odd))
                       break;
               return 0;
       case FSR_RD_RZ:
               return 0;
       case FSR_RD_RP:
               if (!sign)
                       break;
               return 0;
       case FSR_RD_RM:
               if (sign)
                       break;
               return 0;
       }

       *cx |= FPSCR_FR;
       return 1;
}

/*
* fpn -> int (int value returned as return value).
*/
static u_int
fpu_ftoi(struct fpemu *fe, struct fpn *fp, int *cx, int rn)
{
       u_int i;
       int sign, exp, tmp_cx;

       sign = fp->fp_sign;
       switch (fp->fp_class) {
       case FPC_SNAN:
               *cx |= FPSCR_VXSNAN;
               /* FALLTHROUGH */
       case FPC_QNAN:
               sign = 1;
               break;

       case FPC_ZERO:
               return (0);

       case FPC_NUM:
               /*
                * If exp >= 2^32, overflow.  Otherwise shift value right
                * into last mantissa word (this will not exceed 0xffffffff),
                * shifting any guard and round bits out into the sticky
                * bit.  Then ``round'' towards zero, i.e., just set an
                * inexact exception if sticky is set (see round()).
                * If the result is > 0x80000000, or is positive and equals
                * 0x80000000, overflow; otherwise the last fraction word
                * is the result.
                */
               if ((exp = fp->fp_exp) >= 32)
                       break;
               /* NB: the following includes exp < 0 cases */
               (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
               i = fp->fp_mant[2];
               tmp_cx = 0;
               i += round_int(fp, &tmp_cx, rn, sign, i & 1);
               if (i >= ((u_int)0x80000000 + sign))
                       break;
               *cx |= tmp_cx;
               return (sign ? -i : i);

       case FPC_INF:
               break;
       }
       /* overflow: replace any inexact exception with invalid */
       *cx |= FPSCR_VXCVI;
       return (0x7fffffff + sign);
}

/*
* fpn -> extended int (high bits of int value returned as return value).
*/
static uint64_t
fpu_ftox(struct fpemu *fe, struct fpn *fp, int *cx, int rn)
{
       uint64_t i;
       int sign, exp, tmp_cx;

       sign = fp->fp_sign;
       switch (fp->fp_class) {
       case FPC_SNAN:
               *cx |= FPSCR_VXSNAN;
               /* FALLTHROUGH */
       case FPC_QNAN:
               sign = 1;
               break;

       case FPC_ZERO:
               return (0);

       case FPC_NUM:
               /*
                * If exp >= 2^64, overflow.  Otherwise shift value right
                * into last mantissa word (this will not exceed 0xffffffffffffffff),
                * shifting any guard and round bits out into the sticky
                * bit.  Then ``round'' towards zero, i.e., just set an
                * inexact exception if sticky is set (see round()).
                * If the result is > 0x8000000000000000, or is positive and equals
                * 0x8000000000000000, overflow; otherwise the last fraction word
                * is the result.
                */
               if ((exp = fp->fp_exp) >= 64)
                       break;
               /* NB: the following includes exp < 0 cases */
               (void)fpu_shr(fp, FP_NMANT - 32 - 1 - exp);
               i = ((uint64_t)fp->fp_mant[1] << 32) | fp->fp_mant[2];
               tmp_cx = 0;
               i += round_int(fp, &tmp_cx, rn, sign, i & 1);
               if (i >= ((uint64_t)0x8000000000000000LL + sign))
                       break;
               *cx |= tmp_cx;
               return (sign ? -i : i);

       case FPC_INF:
               break;
       }
       /* overflow: replace any inexact exception with invalid */
       *cx |= FPSCR_VXCVI;
       return (0x7fffffffffffffffLL + sign);
}

#define FPRF_SIGN(sign) ((sign) ? FPSCR_FL : FPSCR_FG)

/*
* fpn -> single (32 bit single returned as return value).
* We assume <= 29 bits in a single-precision fraction (1.f part).
*/
static u_int
fpu_ftos(struct fpemu *fe, struct fpn *fp, int *cx)
{
       u_int sign = fp->fp_sign << 31;
       int exp;

#define SNG_EXP(e)      ((e) << SNG_FRACBITS)   /* makes e an exponent */
#define SNG_MASK        (SNG_EXP(1) - 1)        /* mask for fraction */

       /* Take care of non-numbers first. */
       if (ISNAN(fp)) {
               *cx |= FPSCR_C | FPSCR_FU;
               /*
                * Preserve upper bits of NaN, per SPARC V8 appendix N.
                * Note that fp->fp_mant[0] has the quiet bit set,
                * even if it is classified as a signalling NaN.
                */
               (void) fpu_shr(fp, FP_NMANT - 1 - SNG_FRACBITS);
               exp = SNG_EXP_INFNAN;
               goto done;
       }
       if (ISINF(fp)) {
               *cx |= FPRF_SIGN(sign) | FPSCR_FU;
               return (sign | SNG_EXP(SNG_EXP_INFNAN));
       }
       if (ISZERO(fp)) {
               *cx |= FPSCR_FE;
               if (sign)
                       *cx |= FPSCR_C;
               return (sign);
       }

       /*
        * Normals (including subnormals).  Drop all the fraction bits
        * (including the explicit ``implied'' 1 bit) down into the
        * single-precision range.  If the number is subnormal, move
        * the ``implied'' 1 into the explicit range as well, and shift
        * right to introduce leading zeroes.  Rounding then acts
        * differently for normals and subnormals: the largest subnormal
        * may round to the smallest normal (1.0 x 2^minexp), or may
        * remain subnormal.  In the latter case, signal an underflow
        * if the result was inexact or if underflow traps are enabled.
        *
        * Rounding a normal, on the other hand, always produces another
        * normal (although either way the result might be too big for
        * single precision, and cause an overflow).  If rounding a
        * normal produces 2.0 in the fraction, we need not adjust that
        * fraction at all, since both 1.0 and 2.0 are zero under the
        * fraction mask.
        *
        * Note that the guard and round bits vanish from the number after
        * rounding.
        */
       if ((exp = fp->fp_exp + SNG_EXP_BIAS) <= 0) {   /* subnormal */
               /* -NG for g,r; -SNG_FRACBITS-exp for fraction */
               (void) fpu_shr(fp, FP_NMANT - FP_NG - SNG_FRACBITS - exp);
               if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(1)) {
                       *cx |= FPRF_SIGN(sign);
                       return (sign | SNG_EXP(1) | 0);
               }
               if (*cx & FPSCR_FI) {
                       *cx |= FPSCR_UX;
                       if (fp->fp_mant[3] == 0) {
                               *cx |= FPSCR_FE;
                               return sign;
                       }
               }
               *cx |= FPSCR_C | FPRF_SIGN(sign);
               return (sign | SNG_EXP(0) | fp->fp_mant[3]);
       }
       /* -FP_NG for g,r; -1 for implied 1; -SNG_FRACBITS for fraction */
       (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - SNG_FRACBITS);
#ifdef DIAGNOSTIC
       if ((fp->fp_mant[3] & SNG_EXP(1 << FP_NG)) == 0)
               panic("fpu_ftos");
#endif
       if (round(fe, fp, cx) && fp->fp_mant[3] == SNG_EXP(2))
               exp++;
       if (exp >= SNG_EXP_INFNAN) {
               *cx |= FPSCR_OX | FPSCR_FI;
               /* overflow to inf or to max single */
               if (toinf(fe, sign)) {
                       *cx |= FPRF_SIGN(sign) | FPSCR_FU;
                       return (sign | SNG_EXP(SNG_EXP_INFNAN));
               }
               *cx |= FPRF_SIGN(sign);
               return (sign | SNG_EXP(SNG_EXP_INFNAN - 1) | SNG_MASK);
       }
       *cx |= FPRF_SIGN(sign);
done:
       /* phew, made it */
       return (sign | SNG_EXP(exp) | (fp->fp_mant[3] & SNG_MASK));
}

/*
* fpn -> double.  Assumes <= 61 bits in double precision fraction.
*
* This code mimics fpu_ftos; see it for comments.
*/
static uint64_t
fpu_ftod(struct fpemu *fe, struct fpn *fp, int *cx)
{
       u_int sign = fp->fp_sign << 31;
       int exp;

#define DBL_EXP(e)      ((e) << (DBL_FRACBITS & 31))
#define DBL_MASK        (DBL_EXP(1) - 1)
#define HI_WORD(i)      ((uint64_t)(i) << 32)
#define LO_WORD(i)      ((uint32_t)(i))

       if (ISNAN(fp)) {
               *cx |= FPSCR_C | FPSCR_FU;
               (void) fpu_shr(fp, FP_NMANT - 1 - DBL_FRACBITS);
               exp = DBL_EXP_INFNAN;
               goto done;
       }
       if (ISINF(fp)) {
               *cx |= FPRF_SIGN(sign) | FPSCR_FU;
               return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN));
       }
       if (ISZERO(fp)) {
               *cx |= FPSCR_FE;
               if (sign)
                       *cx |= FPSCR_C;
               return HI_WORD(sign);
       }

       if ((exp = fp->fp_exp + DBL_EXP_BIAS) <= 0) {
               (void) fpu_shr(fp, FP_NMANT - FP_NG - DBL_FRACBITS - exp);
               if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(1)) {
                       *cx |= FPRF_SIGN(sign);
                       return HI_WORD(sign | DBL_EXP(1) | 0);
               }
               if (*cx & FPSCR_FI) {
                       *cx |= FPSCR_UX;
                       if ((fp->fp_mant[2] & DBL_MASK) == 0 &&
                            fp->fp_mant[3] == 0) {
                               *cx |= FPSCR_FE;
                               return HI_WORD(sign);
                       }
               }
               *cx |= FPSCR_C | FPRF_SIGN(sign);
               exp = 0;
               goto done;
       }
       (void) fpu_shr(fp, FP_NMANT - FP_NG - 1 - DBL_FRACBITS);
       if (round(fe, fp, cx) && fp->fp_mant[2] == DBL_EXP(2))
               exp++;
       if (exp >= DBL_EXP_INFNAN) {
               *cx |= FPSCR_OX | FPSCR_FI;
               /* overflow to inf or to max double */
               if (toinf(fe, sign)) {
                       *cx |= FPRF_SIGN(sign) | FPSCR_FU;
                       return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN) | 0);
               }
               *cx |= FPRF_SIGN(sign);
               return HI_WORD(sign | DBL_EXP(DBL_EXP_INFNAN - 1) | DBL_MASK) |
                      LO_WORD(~0);
       }
       *cx |= FPRF_SIGN(sign);
done:
       return HI_WORD(sign | DBL_EXP(exp) | (fp->fp_mant[2] & DBL_MASK)) |
              LO_WORD(fp->fp_mant[3]);
}

/*
* Implode an fpn, writing the result into the given space.
*/
void
fpu_implode(struct fpemu *fe, struct fpn *fp, int type, uint64_t *p)
{
       u_int *hi, *lo;
       int cx, rn;
       bool fpscr;

       hi = (u_int *)p;
       lo = hi + 1;

       if (type & FTYPE_RD_RZ)
               rn = FSR_RD_RZ;
       else
               rn = fe->fe_fpscr & FPSCR_RN;
       fpscr = type & FTYPE_FPSCR;
       type &= ~FTYPE_FLAG_MASK;

       cx = 0;
       switch (type) {

       case FTYPE_LNG:
               /* FPRF is undefined. */
               *p = fpu_ftox(fe, fp, &cx, rn);
               DPRINTF(FPE_REG, ("fpu_implode: long %x %x\n", *hi, *lo));
               break;

       case FTYPE_INT:
               /* FPRF is undefined. */
               *hi = 0;
               *lo = fpu_ftoi(fe, fp, &cx, rn);
               DPRINTF(FPE_REG, ("fpu_implode: int %x\n", *lo));
               break;

       case FTYPE_SNG:
               *hi = fpu_ftos(fe, fp, &cx);
               *lo = 0;
               DPRINTF(FPE_REG, ("fpu_implode: single %x\n", *hi));
               break;

       case FTYPE_DBL:
               *p = fpu_ftod(fe, fp, &cx);
               DPRINTF(FPE_REG, ("fpu_implode: double %x %x\n", *hi, *lo));
               break;

       default:
               panic("fpu_implode: invalid type %d", type);
       }

       if (fpscr) {
               fe->fe_fpscr &= ~(FPSCR_FR | FPSCR_FI | FPSCR_FPRF);
               fe->fe_cx |= cx;
               if (cx & FPSCR_FI)
                       fe->fe_cx |= FPSCR_XX;
       }
}