/*      $NetBSD: fpu_explode.c,v 1.14 2022/09/07 06:51:58 rin Exp $ */

/*
* Copyright (c) 1992, 1993
*      The Regents of the University of California.  All rights reserved.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
*      This product includes software developed by the University of
*      California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
*    may be used to endorse or promote products derived from this software
*    without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*      @(#)fpu_explode.c       8.1 (Berkeley) 6/11/93
*/

/*
* FPU subroutines: `explode' the machine's `packed binary' format numbers
* into our internal format.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: fpu_explode.c,v 1.14 2022/09/07 06:51:58 rin Exp $");

#include <sys/types.h>
#include <sys/systm.h>

#include <powerpc/instr.h>
#include <machine/fpu.h>
#include <machine/ieee.h>
#include <machine/reg.h>

#include <powerpc/fpu/fpu_arith.h>
#include <powerpc/fpu/fpu_emu.h>
#include <powerpc/fpu/fpu_extern.h>

static int fpu_itof(struct fpn *, u_int);
static int fpu_xtof(struct fpn *, uint64_t);
static int fpu_stof(struct fpn *, u_int);
static int fpu_dtof(struct fpn *, u_int, u_int);

/*
* N.B.: in all of the following, we assume the FP format is
*
*      ---------------------------
*      | s | exponent | fraction |
*      ---------------------------
*
* (which represents -1**s * 1.fraction * 2**exponent), so that the
* sign bit is way at the top (bit 31), the exponent is next, and
* then the remaining bits mark the fraction.  A zero exponent means
* zero or denormalized (0.fraction rather than 1.fraction), and the
* maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
*
* Since the sign bit is always the topmost bit---this holds even for
* integers---we set that outside all the *tof functions.  Each function
* returns the class code for the new number (but note that we use
* FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
*/

/*
* int -> fpn.
*/
static int
fpu_itof(struct fpn *fp, u_int lo)
{

       if (lo == 0)
               return (FPC_ZERO);
       /*
        * The value FP_1 represents 2^FP_LG, so set the exponent
        * there and let normalization fix it up.  Convert negative
        * numbers to sign-and-magnitude.  Note that this relies on
        * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
        */
       fp->fp_exp = FP_LG;
       fp->fp_mant[0] = (int)lo < 0 ? -lo : lo;
       fp->fp_mant[1] = 0;
       fp->fp_mant[2] = 0;
       fp->fp_mant[3] = 0;
       fpu_norm(fp);
       return (FPC_NUM);
}

/*
* 64-bit int -> fpn.
*/
static int
fpu_xtof(struct fpn *fp, uint64_t i)
{

       if (i == 0)
               return (FPC_ZERO);
       /*
        * The value FP_1 represents 2^FP_LG, so set the exponent
        * there and let normalization fix it up.  Convert negative
        * numbers to sign-and-magnitude.  Note that this relies on
        * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
        */
       fp->fp_exp = FP_LG2;
       *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i;
       fp->fp_mant[2] = 0;
       fp->fp_mant[3] = 0;
       fpu_norm(fp);
       return (FPC_NUM);
}

#define mask(nbits) ((1L << (nbits)) - 1)

/*
* All external floating formats convert to internal in the same manner,
* as defined here.  Note that only normals get an implied 1.0 inserted.
*/
#define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
       if (exp == 0) { \
               if (allfrac == 0) \
                       return (FPC_ZERO); \
               fp->fp_exp = 1 - expbias; \
               fp->fp_mant[0] = f0; \
               fp->fp_mant[1] = f1; \
               fp->fp_mant[2] = f2; \
               fp->fp_mant[3] = f3; \
               fpu_norm(fp); \
               return (FPC_NUM); \
       } \
       if (exp == (2 * expbias + 1)) { \
               if (allfrac == 0) \
                       return (FPC_INF); \
               fp->fp_mant[0] = f0; \
               fp->fp_mant[1] = f1; \
               fp->fp_mant[2] = f2; \
               fp->fp_mant[3] = f3; \
               return (FPC_QNAN); \
       } \
       fp->fp_exp = exp - expbias; \
       fp->fp_mant[0] = FP_1 | f0; \
       fp->fp_mant[1] = f1; \
       fp->fp_mant[2] = f2; \
       fp->fp_mant[3] = f3; \
       return (FPC_NUM)

/*
* 32-bit single precision -> fpn.
* We assume a single occupies at most (64-FP_LG) bits in the internal
* format: i.e., needs at most fp_mant[0] and fp_mant[1].
*/
static int
fpu_stof(struct fpn *fp, u_int hi)
{
       int exp;
       u_int frac, f0, f1;
#define SNG_SHIFT (SNG_FRACBITS - FP_LG)

       exp = (hi >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
       frac = hi & mask(SNG_FRACBITS);
       f0 = frac >> SNG_SHIFT;
       f1 = frac << (32 - SNG_SHIFT);
       FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
}

/*
* 64-bit double -> fpn.
* We assume this uses at most (96-FP_LG) bits.
*/
static int
fpu_dtof(struct fpn *fp, u_int hi, u_int lo)
{
       int exp;
       u_int frac, f0, f1, f2;
#define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)

       exp = (hi >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
       frac = hi & mask(DBL_FRACBITS - 32);
       f0 = frac >> DBL_SHIFT;
       f1 = (frac << (32 - DBL_SHIFT)) | (lo >> DBL_SHIFT);
       f2 = lo << (32 - DBL_SHIFT);
       frac |= lo;
       FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
}

/*
* Explode the contents of a register / regpair / regquad.
* If the input is a signalling NaN, an NV (invalid) exception
* will be set.  (Note that nothing but NV can occur until ALU
* operations are performed.)
*/
void
fpu_explode(struct fpemu *fe, struct fpn *fp, int type, uint64_t i)
{
       u_int hi, lo;
       int class;

       hi = (u_int)(i >> 32);
       lo = (u_int)i;
       fp->fp_sign = hi >> 31;
       fp->fp_sticky = 0;
       switch (type) {

       case FTYPE_LNG:
               class = fpu_xtof(fp, i);
               break;

       case FTYPE_INT:
               fp->fp_sign = lo >> 31;
               class = fpu_itof(fp, lo);
               break;

       case FTYPE_SNG:
               class = fpu_stof(fp, hi);
               break;

       case FTYPE_DBL:
               class = fpu_dtof(fp, hi, lo);
               break;

       default:
               panic("fpu_explode: invalid type %d", type);
       }

       if (class == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
               /*
                * Input is a signalling NaN.  All operations that return
                * an input NaN operand put it through a ``NaN conversion'',
                * which basically just means ``turn on the quiet bit''.
                * We do this here so that all NaNs internally look quiet
                * (we can tell signalling ones by their class).
                */
               fp->fp_mant[0] |= FP_QUIETBIT;
               fe->fe_cx = FPSCR_VXSNAN;       /* assert invalid operand */
               class = FPC_SNAN;
       }
       fp->fp_class = class;
       DUMPFPN(FPE_REG, fp);
}