/*      $NetBSD: copyout.c,v 1.10 2022/05/22 11:27:34 andvar Exp $      */

/*-
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
*
* This material is based upon work supported by the Defense Advanced Research
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
* Contract No. N66001-09-C-2073.
* Approved for Public Release, Distribution Unlimited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#define __UFETCHSTORE_PRIVATE

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: copyout.c,v 1.10 2022/05/22 11:27:34 andvar Exp $");

#include <sys/param.h>
#include <sys/lwp.h>
#include <sys/systm.h>

#include <powerpc/pcb.h>

#include <powerpc/booke/cpuvar.h>

static inline void
copyout_uint8(uint8_t *udaddr, uint8_t data, register_t ds_msr)
{
       register_t msr;
       __asm volatile(
               "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "stb    %[data],0(%[udaddr])"           /* store user byte */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr)
           : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
}

static inline void
copyout_uint16(uint16_t *udaddr, uint8_t data, register_t ds_msr)
{
       register_t msr;
       __asm volatile(
               "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "sth    %[data],0(%[udaddr])"           /* store user half */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr)
           : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
}

static inline void
copyout_uint32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
{
       register_t msr;
       __asm volatile(
               "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "stw    %[data],0(%[udaddr])"           /* store user data */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr)
           : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
}

#if 0
static inline void
copyout_le32(uint32_t * const udaddr, uint32_t data, register_t ds_msr)
{
       register_t msr;
       __asm volatile(
               "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "stwbrx %[data],0,%[udaddr]"            /* store user data */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr)
           : [ds_msr] "r" (ds_msr), [data] "r" (data), [udaddr] "b" (udaddr));
}

static inline void
copyout_le32_with_mask(uint32_t * const udaddr, uint32_t data,
       uint32_t mask, register_t ds_msr)
{
       register_t msr;
       uint32_t tmp;
       KASSERT((data & ~mask) == 0);
       __asm volatile(
               "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "lwbrx  %[tmp],0,%[udaddr]"             /* fetch user data */
       "\n\t"  "andc   %[tmp],%[tmp],%[mask]"          /* mask out new data */
       "\n\t"  "or     %[tmp],%[tmp],%[data]"          /* merge new data */
       "\n\t"  "stwbrx %[tmp],0,%[udaddr]"             /* store user data */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
           : [ds_msr] "r" (ds_msr), [data] "r" (data),
             [mask] "r" (mask), [udaddr] "b" (udaddr));
}
#endif

static inline void
copyout_16uint8s(const uint8_t *ksaddr8, uint8_t *udaddr8, register_t ds_msr)
{
       register_t msr;
       __asm volatile(
               "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "stb    %[data0],0(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data1],1(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data2],2(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data3],3(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data4],4(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data5],5(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data6],6(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data7],7(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data8],8(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data9],9(%[udaddr8])"         /* store user data */
       "\n\t"  "stb    %[data10],10(%[udaddr8])"       /* store user data */
       "\n\t"  "stb    %[data11],11(%[udaddr8])"       /* store user data */
       "\n\t"  "stb    %[data12],12(%[udaddr8])"       /* store user data */
       "\n\t"  "stb    %[data13],13(%[udaddr8])"       /* store user data */
       "\n\t"  "stb    %[data14],14(%[udaddr8])"       /* store user data */
       "\n\t"  "stb    %[data15],15(%[udaddr8])"       /* store user data */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr)
           : [ds_msr] "r" (ds_msr), [udaddr8] "b" (udaddr8),
             [data0] "r" (ksaddr8[0]), [data1] "r" (ksaddr8[1]),
             [data2] "r" (ksaddr8[2]), [data3] "r" (ksaddr8[3]),
             [data4] "r" (ksaddr8[4]), [data5] "r" (ksaddr8[5]),
             [data6] "r" (ksaddr8[6]), [data7] "r" (ksaddr8[7]),
             [data8] "r" (ksaddr8[8]), [data9] "r" (ksaddr8[9]),
             [data10] "r" (ksaddr8[10]), [data11] "r" (ksaddr8[11]),
             [data12] "r" (ksaddr8[12]), [data13] "r" (ksaddr8[13]),
             [data14] "r" (ksaddr8[14]), [data15] "r" (ksaddr8[15]));
}

static inline void
copyout_8uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
       const register_t ds_msr, const size_t line_mask)
{
       register_t msr;
       register_t tmp;
       __asm volatile(
               "and.   %[tmp],%[line_mask],%[udaddr32]"
       "\n\t"  "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "bne    0,1f"
       "\n\t"  "dcba   0,%[udaddr32]"
       "\n"    "1:"
       "\n\t"  "stw    %[data0],0(%[udaddr32])"        /* store user data */
       "\n\t"  "stw    %[data1],4(%[udaddr32])"        /* store user data */
       "\n\t"  "stw    %[data2],8(%[udaddr32])"        /* store user data */
       "\n\t"  "stw    %[data3],12(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data4],16(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data5],20(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data6],24(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data7],28(%[udaddr32])"       /* store user data */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
           : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
             [line_mask] "r" (line_mask),
             [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
             [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
             [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
             [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7])
           : "cr0");
}

static inline void
copyout_16uint32s(const uint32_t * const ksaddr32, uint32_t * const udaddr32,
       const register_t ds_msr, const size_t line_mask)
{
       KASSERT(((uintptr_t)udaddr32 & line_mask) == 0);
       register_t msr;
       register_t tmp;
       __asm volatile(
               "and.   %[tmp],%[line_mask],%[udaddr32]"
       "\n\t"  "cmplwi 2,%[line_size],32"
       "\n\t"  "mfmsr  %[msr]"                         /* Save MSR */
       "\n\t"  "mtmsr  %[ds_msr]; sync; isync"         /* DS on */
       "\n\t"  "bne    0,1f"
       "\n\t"  "dcba   0,%[udaddr32]"
       "\n\t"  "bne    2,1f"
       "\n\t"  "dcba   %[line_size],%[udaddr32]"
       "\n"    "1:"
       "\n\t"  "stw    %[data0],0(%[udaddr32])"        /* store user data */
       "\n\t"  "stw    %[data1],4(%[udaddr32])"        /* store user data */
       "\n\t"  "stw    %[data2],8(%[udaddr32])"        /* store user data */
       "\n\t"  "stw    %[data3],12(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data4],16(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data5],20(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data6],24(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data7],28(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data8],32(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data9],36(%[udaddr32])"       /* store user data */
       "\n\t"  "stw    %[data10],40(%[udaddr32])"      /* store user data */
       "\n\t"  "stw    %[data11],44(%[udaddr32])"      /* store user data */
       "\n\t"  "stw    %[data12],48(%[udaddr32])"      /* store user data */
       "\n\t"  "stw    %[data13],52(%[udaddr32])"      /* store user data */
       "\n\t"  "stw    %[data14],56(%[udaddr32])"      /* store user data */
       "\n\t"  "stw    %[data15],60(%[udaddr32])"      /* store user data */
       "\n\t"  "mtmsr  %[msr]; sync; isync"            /* DS off */
           : [msr] "=&r" (msr), [tmp] "=&r" (tmp)
           : [ds_msr] "r" (ds_msr), [udaddr32] "b" (udaddr32),
             [line_size] "r" (line_mask + 1), [line_mask] "r" (line_mask),
             [data0] "r" (ksaddr32[0]), [data1] "r" (ksaddr32[1]),
             [data2] "r" (ksaddr32[2]), [data3] "r" (ksaddr32[3]),
             [data4] "r" (ksaddr32[4]), [data5] "r" (ksaddr32[5]),
             [data6] "r" (ksaddr32[6]), [data7] "r" (ksaddr32[7]),
             [data8] "r" (ksaddr32[8]), [data9] "r" (ksaddr32[9]),
             [data10] "r" (ksaddr32[10]), [data11] "r" (ksaddr32[11]),
             [data12] "r" (ksaddr32[12]), [data13] "r" (ksaddr32[13]),
             [data14] "r" (ksaddr32[14]), [data15] "r" (ksaddr32[15])
           : "cr0", "cr2");
}

static inline void
copyout_uint8s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
{
       const uint8_t *ksaddr8 = (void *)ksaddr;
       uint8_t *udaddr8 = (void *)udaddr;

       __builtin_prefetch(ksaddr8, 0, 1);

       for (; len >= 16; len -= 16, ksaddr8 += 16, udaddr8 += 16) {
               __builtin_prefetch(ksaddr8 + 16, 0, 1);
               copyout_16uint8s(ksaddr8, udaddr8, ds_msr);
       }

       while (len-- > 0) {
               copyout_uint8(udaddr8++, *ksaddr8++, ds_msr);
       }
}

static inline void
copyout_uint32s(vaddr_t ksaddr, vaddr_t udaddr, size_t len, register_t ds_msr)
{
       const size_t line_size = curcpu()->ci_ci.dcache_line_size;
       const size_t line_mask = line_size - 1;
       const size_t udalignment = udaddr & line_mask;
       KASSERT((ksaddr & 3) == 0);
       KASSERT((udaddr & 3) == 0);
       const uint32_t *ksaddr32 = (void *)ksaddr;
       uint32_t *udaddr32 = (void *)udaddr;
       len >>= 2;
       __builtin_prefetch(ksaddr32, 0, 1);
       if (udalignment != 0 && udalignment + 4*len > line_size) {
               size_t slen = (line_size - udalignment) >> 2;
               len -= slen;
               for (; slen >= 8; ksaddr32 += 8, udaddr32 += 8, slen -= 8) {
                       copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
               }
               while (slen-- > 0) {
                       copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
               }
               if (len == 0)
                       return;
       }
       __builtin_prefetch(ksaddr32, 0, 1);
       while (len >= 16) {
               __builtin_prefetch(ksaddr32 + 8, 0, 1);
               __builtin_prefetch(ksaddr32 + 16, 0, 1);
               copyout_16uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
               ksaddr32 += 16, udaddr32 += 16, len -= 16;
       }
       KASSERT(len <= 16);
       if (len >= 8) {
               __builtin_prefetch(ksaddr32 + 8, 0, 1);
               copyout_8uint32s(ksaddr32, udaddr32, ds_msr, line_mask);
               ksaddr32 += 8, udaddr32 += 8, len -= 8;
       }
       while (len-- > 0) {
               copyout_uint32(udaddr32++, *ksaddr32++, ds_msr);
       }
}

int
_ustore_8(uint8_t *vusaddr, uint8_t val)
{
       struct pcb * const pcb = lwp_getpcb(curlwp);
       struct faultbuf env;

       if (setfault(&env) != 0) {
               pcb->pcb_onfault = NULL;
               return EFAULT;
       }

       copyout_uint8(vusaddr, val, mfmsr() | PSL_DS);

       pcb->pcb_onfault = NULL;

       return 0;
}

int
_ustore_16(uint16_t *vusaddr, uint16_t val)
{
       struct pcb * const pcb = lwp_getpcb(curlwp);
       struct faultbuf env;

       if (setfault(&env) != 0) {
               pcb->pcb_onfault = NULL;
               return EFAULT;
       }

       copyout_uint16(vusaddr, val, mfmsr() | PSL_DS);

       pcb->pcb_onfault = NULL;

       return 0;
}

int
_ustore_32(uint32_t *vusaddr, uint32_t val)
{
       struct pcb * const pcb = lwp_getpcb(curlwp);
       struct faultbuf env;

       if (setfault(&env) != 0) {
               pcb->pcb_onfault = NULL;
               return EFAULT;
       }

       copyout_uint32(vusaddr, val, mfmsr() | PSL_DS);

       pcb->pcb_onfault = NULL;

       return 0;
}

int
copyout(const void *vksaddr, void *vudaddr, size_t len)
{
       struct pcb * const pcb = lwp_getpcb(curlwp);
       struct faultbuf env;
       vaddr_t udaddr = (vaddr_t) vudaddr;
       vaddr_t ksaddr = (vaddr_t) vksaddr;

       if (__predict_false(len == 0)) {
               return 0;
       }

       const register_t ds_msr = mfmsr() | PSL_DS;

       int rv = setfault(&env);
       if (rv != 0) {
               pcb->pcb_onfault = NULL;
               return rv;
       }

       if (__predict_false(len < 4)) {
               copyout_uint8s(ksaddr, udaddr, len, ds_msr);
               pcb->pcb_onfault = NULL;
               return 0;
       }

       const size_t alignment = (udaddr ^ ksaddr) & 3;
       if (__predict_true(alignment == 0)) {
               size_t slen;
               if (__predict_false(ksaddr & 3)) {
                       slen = 4 - (ksaddr & 3);
                       copyout_uint8s(ksaddr, udaddr, slen, ds_msr);
                       udaddr += slen, ksaddr += slen, len -= slen;
               }
               slen = len & ~3;
               if (__predict_true(slen >= 4)) {
                       copyout_uint32s(ksaddr, udaddr, slen, ds_msr);
                       udaddr += slen, ksaddr += slen, len -= slen;
               }
       }

       if (len > 0) {
               copyout_uint8s(ksaddr, udaddr, len, ds_msr);
       }
       pcb->pcb_onfault = NULL;
       return 0;
}

#if 1
int
copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *done)
{
       struct pcb * const pcb = lwp_getpcb(curlwp);
       struct faultbuf env;
       int rv;

       if (__predict_false(len == 0)) {
               if (done)
                       *done = 0;
               return 0;
       }

       rv = setfault(&env);
       if (rv != 0) {
               pcb->pcb_onfault = NULL;
               if (done)
                       *done = 0;
               return rv;
       }

       const register_t ds_msr = mfmsr() | PSL_DS;
       const uint8_t *ksaddr8 = ksaddr;
       size_t copylen = 0;

       uint8_t *udaddr8 = (void *)udaddr;

       while (copylen++ < len) {
               const uint8_t data = *ksaddr8++;
               copyout_uint8(udaddr8++, data, ds_msr);
               if (data == 0)
                       goto out;
       }
       rv = ENAMETOOLONG;

out:
       pcb->pcb_onfault = NULL;
       if (done)
               *done = copylen;
       return rv;
}
#else
/* XXX This version of copyoutstr(9) has never been enabled so far. */
int
copyoutstr(const void *ksaddr, void *udaddr, size_t len, size_t *lenp)
{
       struct pcb * const pcb = lwp_getpcb(curlwp);
       struct faultbuf env;

       if (__predict_false(len == 0)) {
               if (lenp)
                       *lenp = 0;
               return 0;
       }

       if (setfault(&env)) {
               pcb->pcb_onfault = NULL;
               if (lenp)
                       *lenp = 0;
               return EFAULT;
       }

       const register_t ds_msr = mfmsr() | PSL_DS;
       const uint8_t *ksaddr8 = ksaddr;
       size_t copylen = 0;

       uint32_t *udaddr32 = (void *)((uintptr_t)udaddr & ~3);

       size_t boff = (uintptr_t)udaddr & 3;
       bool done = false;
       size_t wlen = 0;
       size_t data = 0;

       /*
        * If the destination buffer doesn't start on a 32-bit boundary
        * try to partially fill in the first word.  If we succeed we can
        * finish writing it while preserving the bytes on front.
        */
       if (boff > 0) {
               KASSERT(len > 0);
               do {
                       data = (data << 8) | *ksaddr8++;
                       wlen++;
                       done = ((uint8_t)data == 0 || len == wlen);
               } while (!done && boff + wlen < 4);
               KASSERT(wlen > 0);
               data <<= 8 * boff;
               if (!done || boff + wlen == 4) {
                       uint32_t mask = 0xffffffff << (8 * boff);
                       copyout_le32_with_mask(udaddr32++, data, mask, ds_msr);
                       boff = 0;
                       copylen = wlen;
                       wlen = 0;
                       data = 0;
               }
       }

       /*
        * Now we get to the heart of the routine.  Build up complete words
        * if possible.  When we have one, write it to the user's address
        * space and go for the next.  If we ran out of space or we found the
        * end of the string, stop building.  If we managed to build a complete
        * word, just write it and be happy.  Otherwise we have to deal with
        * the trailing bytes.
        */
       KASSERT(done || boff == 0);
       KASSERT(done || copylen < len);
       while (!done) {
               KASSERT(wlen == 0);
               KASSERT(copylen < len);
               do {
                       data = (data << 8) | *ksaddr8++;
                       wlen++;
                       done = ((uint8_t)data == 0 || copylen + wlen == len);
               } while (!done && wlen < 4);
               KASSERT(done || wlen == 4);
               if (__predict_true(wlen == 4)) {
                       copyout_le32(udaddr32++, data, ds_msr);
                       data = 0;
                       copylen += wlen;
                       wlen = 0;
                       KASSERT(copylen < len || done);
               }
       }
       KASSERT(wlen < 3);
       if (wlen) {
               /*
                * Remember even though we are running big-endian we are using
                * byte reversed load/stores so we need to deal with things as
                * little endian.
                *
                * wlen=1 boff=0:
                * (~(~0 <<  8) <<  0) -> (~(0xffffff00) <<  0) -> 0x000000ff
                * wlen=1 boff=1:
                * (~(~0 <<  8) <<  8) -> (~(0xffffff00) <<  8) -> 0x0000ff00
                * wlen=1 boff=2:
                * (~(~0 <<  8) << 16) -> (~(0xffffff00) << 16) -> 0x00ff0000
                * wlen=1 boff=3:
                * (~(~0 <<  8) << 24) -> (~(0xffffff00) << 24) -> 0xff000000
                * wlen=2 boff=0:
                * (~(~0 << 16) <<  0) -> (~(0xffff0000) <<  0) -> 0x0000ffff
                * wlen=2 boff=1:
                * (~(~0 << 16) <<  8) -> (~(0xffff0000) <<  8) -> 0x00ffff00
                * wlen=2 boff=2:
                * (~(~0 << 16) << 16) -> (~(0xffff0000) << 16) -> 0xffff0000
                * wlen=3 boff=0:
                * (~(~0 << 24) <<  0) -> (~(0xff000000) <<  0) -> 0x00ffffff
                * wlen=3 boff=1:
                * (~(~0 << 24) <<  8) -> (~(0xff000000) <<  8) -> 0xffffff00
                */
               KASSERT(boff + wlen <= 4);
               uint32_t mask = (~(~0 << (8 * wlen))) << (8 * boff);
               KASSERT(mask != 0xffffffff);
               copyout_le32_with_mask(udaddr32, data, mask, ds_msr);
               copylen += wlen;
       }

       pcb->pcb_onfault = NULL;
       if (lenp)
               *lenp = copylen;
       return 0;
}
#endif