/*      $NetBSD: booke_machdep.c,v 1.35 2024/03/05 14:15:34 thorpej Exp $       */
/*-
* Copyright (c) 2010, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Raytheon BBN Technologies Corp and Defense Advanced Research Projects
* Agency and which was developed by Matt Thomas of 3am Software Foundry.
*
* This material is based upon work supported by the Defense Advanced Research
* Projects Agency and Space and Naval Warfare Systems Center, Pacific, under
* Contract No. N66001-09-C-2073.
* Approved for Public Release, Distribution Unlimited
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

#define __INTR_PRIVATE
#define _POWERPC_BUS_DMA_PRIVATE

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: booke_machdep.c,v 1.35 2024/03/05 14:15:34 thorpej Exp $");

#include "ksyms.h"

#ifdef _KERNEL_OPT
#include "opt_ddb.h"
#include "opt_modular.h"
#include "opt_multiprocessor.h"
#endif

#include <sys/param.h>
#include <sys/cpu.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/mount.h>
#include <sys/msgbuf.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/bus.h>
#include <sys/cpu.h>

#include <uvm/uvm_extern.h>

#include <dev/cons.h>

#include <powerpc/pcb.h>
#include <powerpc/spr.h>
#include <powerpc/booke/spr.h>
#include <powerpc/booke/cpuvar.h>

/*
* Global variables used here and there
*/
paddr_t msgbuf_paddr;
psize_t pmemsize;
struct vm_map *phys_map;

#ifdef MODULAR
register_t cpu_psluserset = PSL_USERSET;
register_t cpu_pslusermod = PSL_USERMOD;
register_t cpu_pslusermask = PSL_USERMASK;
#endif

static bus_addr_t booke_dma_phys_to_bus_mem(bus_dma_tag_t, bus_addr_t);
static bus_addr_t booke_dma_bus_mem_to_phys(bus_dma_tag_t, bus_addr_t);


struct powerpc_bus_dma_tag booke_bus_dma_tag = {
       ._dmamap_create = _bus_dmamap_create,
       ._dmamap_destroy = _bus_dmamap_destroy,
       ._dmamap_load = _bus_dmamap_load,
       ._dmamap_load_mbuf = _bus_dmamap_load_mbuf,
       ._dmamap_load_uio = _bus_dmamap_load_uio,
       ._dmamap_load_raw = _bus_dmamap_load_raw,
       ._dmamap_unload = _bus_dmamap_unload,
       /*
        * The caches on BookE are coherent so we don't need to do any special
        * cache synchronization.
        */
       //._dmamap_sync = _bus_dmamap_sync,
       ._dmamem_alloc = _bus_dmamem_alloc,
       ._dmamem_free = _bus_dmamem_free,
       ._dmamem_map = _bus_dmamem_map,
       ._dmamem_unmap = _bus_dmamem_unmap,
       ._dmamem_mmap = _bus_dmamem_mmap,
       ._dma_phys_to_bus_mem = booke_dma_phys_to_bus_mem,
       ._dma_bus_mem_to_phys = booke_dma_bus_mem_to_phys,
};

static bus_addr_t
booke_dma_phys_to_bus_mem(bus_dma_tag_t t, bus_addr_t a)
{
       return a;
}

static bus_addr_t
booke_dma_bus_mem_to_phys(bus_dma_tag_t t, bus_addr_t a)
{
       return a;
}

struct cpu_md_ops cpu_md_ops;

struct cpu_softc cpu_softc[] = {
       [0] = {
               .cpu_ci = &cpu_info[0],
       },
#ifdef MULTIPROCESSOR
       [CPU_MAXNUM-1] = {
               .cpu_ci = &cpu_info[CPU_MAXNUM-1],
       },
#endif
};
struct cpu_info cpu_info[] = {
       [0] = {
               .ci_curlwp = &lwp0,
               .ci_tlb_info = &pmap_tlb0_info,
               .ci_softc = &cpu_softc[0],
               .ci_cpl = IPL_HIGH,
               .ci_idepth = -1,
               .ci_pmap_kern_segtab = &pmap_kern_segtab,
       },
#ifdef MULTIPROCESSOR
       [CPU_MAXNUM-1] = {
               .ci_curlwp = NULL,
               .ci_tlb_info = &pmap_tlb0_info,
               .ci_softc = &cpu_softc[CPU_MAXNUM-1],
               .ci_cpl = IPL_HIGH,
               .ci_idepth = -1,
               .ci_pmap_kern_segtab = &pmap_kern_segtab,
       },
#endif
};
__CTASSERT(__arraycount(cpu_info) == __arraycount(cpu_softc));

/*
* This should probably be in autoconf!                         XXX
*/
char machine[] = MACHINE;               /* from <machine/param.h> */
char machine_arch[] = MACHINE_ARCH;     /* from <machine/param.h> */

char bootpath[256];

#if NKSYMS || defined(DDB) || defined(MODULAR)
void *startsym, *endsym;
#endif

#if defined(MULTIPROCESSOR)
volatile struct cpu_hatch_data cpu_hatch_data __cacheline_aligned;
#endif

int fake_mapiodev = 1;

void
booke_cpu_startup(const char *model)
{
       vaddr_t         minaddr, maxaddr;
       char            pbuf[9];

       cpu_setmodel("%s", model);

       printf("%s%s", copyright, version);

       format_bytes(pbuf, sizeof(pbuf), ctob((uint64_t)physmem));
       printf("total memory = %s\n", pbuf);

       minaddr = 0;
       /*
        * Allocate a submap for physio
        */
       phys_map = uvm_km_suballoc(kernel_map, &minaddr, &maxaddr,
                                VM_PHYS_SIZE, 0, false, NULL);

       /*
        * No need to allocate an mbuf cluster submap.  Mbuf clusters
        * are allocated via the pool allocator, and we use direct-mapped
        * pool pages.
        */

       format_bytes(pbuf, sizeof(pbuf), ptoa(uvm_availmem(false)));
       printf("avail memory = %s\n", pbuf);

       /*
        * Register the tlb's evcnts
        */
       pmap_tlb_info_evcnt_attach(curcpu()->ci_tlb_info);

       /*
        * Set up the board properties database.
        */
       board_info_init();

       /*
        * Now that we have VM, malloc()s are OK in bus_space.
        */
       bus_space_mallocok();
       fake_mapiodev = 0;

#ifdef MULTIPROCESSOR
       pmap_kernel()->pm_active = kcpuset_running;
       pmap_kernel()->pm_onproc = kcpuset_running;

       for (size_t i = 1; i < __arraycount(cpu_info); i++) {
               struct cpu_info * const ci = &cpu_info[i];
               struct cpu_softc * const cpu = &cpu_softc[i];
               cpu->cpu_ci = ci;
               cpu->cpu_bst = cpu_softc[0].cpu_bst;
               cpu->cpu_le_bst = cpu_softc[0].cpu_le_bst;
               cpu->cpu_bsh = cpu_softc[0].cpu_bsh;
               cpu->cpu_highmem = cpu_softc[0].cpu_highmem;
               ci->ci_softc = cpu;
               ci->ci_tlb_info = &pmap_tlb0_info;
               ci->ci_cpl = IPL_HIGH;
               ci->ci_idepth = -1;
               ci->ci_pmap_kern_segtab = curcpu()->ci_pmap_kern_segtab;
       }

       kcpuset_create(&cpuset_info.cpus_running, true);
       kcpuset_create(&cpuset_info.cpus_hatched, true);
       kcpuset_create(&cpuset_info.cpus_paused, true);
       kcpuset_create(&cpuset_info.cpus_resumed, true);
       kcpuset_create(&cpuset_info.cpus_halted, true);

       kcpuset_set(cpuset_info.cpus_running, cpu_number());
#endif /* MULTIPROCESSOR */
}

static void
dumpsys(void)
{

       printf("dumpsys: TBD\n");
}

/*
* Halt or reboot the machine after syncing/dumping according to howto.
*/
void
cpu_reboot(int howto, char *what)
{
       static int syncing;
       static char str[256];
       char *ap = str, *ap1 = ap;

       boothowto = howto;
       if (!cold && !(howto & RB_NOSYNC) && !syncing) {
               syncing = 1;
               vfs_shutdown();         /* sync */
       }

       splhigh();

       if (!cold && (howto & RB_DUMP))
               dumpsys();

       doshutdownhooks();

       pmf_system_shutdown(boothowto);

       if ((howto & RB_POWERDOWN) == RB_POWERDOWN) {
         /* Power off here if we know how...*/
       }

       if (howto & RB_HALT) {
               printf("The operating system has halted.\n"
                   "Press any key to reboot.\n\n");
               cnpollc(1);     /* For proper keyboard command handling */
               cngetc();
               cnpollc(0);
       }

       printf("rebooting\n\n");
       if (what && *what) {
               if (strlen(what) > sizeof str - 5)
                       printf("boot string too large, ignored\n");
               else {
                       strcpy(str, what);
                       ap1 = ap = str + strlen(str);
                       *ap++ = ' ';
               }
       }
       *ap++ = '-';
       if (howto & RB_SINGLE)
               *ap++ = 's';
       if (howto & RB_KDB)
               *ap++ = 'd';
       *ap++ = 0;
       if (ap[-2] == '-')
               *ap1 = 0;

       /* flush cache for msgbuf */
       dcache_wb(msgbuf_paddr, round_page(MSGBUFSIZE));

       __asm volatile("msync; isync");
       (*cpu_md_ops.md_cpu_reset)();

       printf("%s: md_cpu_reset() failed!\n", __func__);
#ifdef DDB
       for (;;)
               Debugger();
#else
       for (;;)
               /* nothing */;
#endif
}

/*
* mapiodev:
*
*      Allocate vm space and mapin the I/O address. Use reserved TLB
*      mapping if one is found.
*/
void *
mapiodev(paddr_t pa, psize_t len, bool prefetchable)
{
       const vsize_t off = pa & PAGE_MASK;

       /*
        * See if we have reserved TLB entry for the pa. This needs to be
        * true for console as we can't use uvm during early bootstrap.
        */
       void * const p = tlb_mapiodev(pa, len, prefetchable);
       if (p != NULL)
               return p;

       if (fake_mapiodev)
               panic("mapiodev: no TLB entry reserved for %llx+%llx",
                   (long long)pa, (long long)len);

       const paddr_t orig_pa = pa;
       const psize_t orig_len = len;
       vsize_t align = 0;
       pa = trunc_page(pa);
       len = round_page(off + len);
       /*
        * If we are allocating a large amount (>= 1MB) try to get an
        * aligned VA region for it so try to do a large mapping for it.
        */
       if ((len & (len - 1)) == 0 && len >= 0x100000)
               align = len;

       vaddr_t va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);

       if (va == 0 && align > 0) {
               /*
                * Large aligned request failed.  Let's just get anything.
                */
               align = 0;
               va = uvm_km_alloc(kernel_map, len, align, UVM_KMF_VAONLY);
       }
       if (va == 0)
               return NULL;

       if (align) {
               /*
                * Now try to map that via one big TLB entry.
                */
               pt_entry_t pte = pte_make_kenter_pa(pa, NULL,
                   VM_PROT_READ|VM_PROT_WRITE,
                   prefetchable ? 0 : PMAP_NOCACHE);
               if (!tlb_ioreserve(va, len, pte)) {
                       void * const p0 = tlb_mapiodev(orig_pa, orig_len,
                           prefetchable);
                       KASSERT(p0 != NULL);
                       return p0;
               }
       }

       for (va += len, pa += len; len > 0; len -= PAGE_SIZE) {
               va -= PAGE_SIZE;
               pa -= PAGE_SIZE;
               pmap_kenter_pa(va, pa, VM_PROT_READ|VM_PROT_WRITE,
                   prefetchable ? 0 : PMAP_NOCACHE);
       }
       pmap_update(pmap_kernel());
       return (void *)(va + off);
}

void
unmapiodev(vaddr_t va, vsize_t len)
{
       /* Nothing to do for reserved (ie. not uvm_km_alloc'd) mappings. */
       if (va < VM_MIN_KERNEL_ADDRESS || va > VM_MAX_KERNEL_ADDRESS) {
               tlb_unmapiodev(va, len);
               return;
       }

       len = round_page((va & PAGE_MASK) + len);
       va = trunc_page(va);

       pmap_kremove(va, len);
       uvm_km_free(kernel_map, va, len, UVM_KMF_VAONLY);
}

void
cpu_evcnt_attach(struct cpu_info *ci)
{
       struct cpu_softc * const cpu = ci->ci_softc;
       const char * const xname = ci->ci_data.cpu_name;

       evcnt_attach_dynamic_nozero(&ci->ci_ev_clock, EVCNT_TYPE_INTR,
               NULL, xname, "clock");
       evcnt_attach_dynamic_nozero(&cpu->cpu_ev_late_clock, EVCNT_TYPE_INTR,
               NULL, xname, "late clock");
       evcnt_attach_dynamic_nozero(&cpu->cpu_ev_exec_trap_sync, EVCNT_TYPE_TRAP,
               NULL, xname, "exec pages synced (trap)");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_traps, EVCNT_TYPE_TRAP,
               NULL, xname, "traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_kdsi, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "kernel DSI traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "user DSI traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_udsi_fatal, EVCNT_TYPE_TRAP,
               &ci->ci_ev_udsi, xname, "user DSI failures");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_kisi, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "kernel ISI traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_isi, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "user ISI traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_isi_fatal, EVCNT_TYPE_TRAP,
               &ci->ci_ev_isi, xname, "user ISI failures");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_scalls, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "system call traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_pgm, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "PGM traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_debug, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "debug traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_fpu, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "FPU unavailable traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_fpusw, EVCNT_TYPE_MISC,
               &ci->ci_ev_fpu, xname, "FPU context switches");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_ali, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "user alignment traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_ali_fatal, EVCNT_TYPE_TRAP,
               &ci->ci_ev_ali, xname, "user alignment traps");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_umchk, EVCNT_TYPE_TRAP,
               &ci->ci_ev_umchk, xname, "user MCHK failures");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_vec, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "SPE unavailable");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_vecsw, EVCNT_TYPE_MISC,
           &ci->ci_ev_vec, xname, "SPE context switches");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_ipi, EVCNT_TYPE_INTR,
               NULL, xname, "IPIs");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_tlbmiss_soft, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "soft tlb misses");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_dtlbmiss_hard, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "data tlb misses");
       evcnt_attach_dynamic_nozero(&ci->ci_ev_itlbmiss_hard, EVCNT_TYPE_TRAP,
               &ci->ci_ev_traps, xname, "inst tlb misses");
}

#ifdef MULTIPROCESSOR
register_t
cpu_hatch(void)
{
       struct cpuset_info * const csi = &cpuset_info;
       const size_t id = cpu_number();

       /*
        * We've hatched so tell the spinup code.
        */
       kcpuset_set(csi->cpus_hatched, id);

       /*
        * Loop until running bit for this cpu is set.
        */
       while (!kcpuset_isset(csi->cpus_running, id)) {
               continue;
       }

       /*
        * Now that we are active, start the clocks.
        */
       cpu_initclocks();

       /*
        * Return sp of the idlelwp.  Which we should be already using but ...
        */
       return curcpu()->ci_curpcb->pcb_sp;
}

void
cpu_boot_secondary_processors(void)
{
       volatile struct cpuset_info * const csi = &cpuset_info;
       CPU_INFO_ITERATOR cii;
       struct cpu_info *ci;
       kcpuset_t *running;

       kcpuset_create(&running, true);

       for (CPU_INFO_FOREACH(cii, ci)) {
               /*
                * Skip this CPU if it didn't successfully hatch.
                */
               if (!kcpuset_isset(csi->cpus_hatched, cpu_index(ci)))
                       continue;

               KASSERT(!CPU_IS_PRIMARY(ci));
               KASSERT(ci->ci_data.cpu_idlelwp);

               kcpuset_set(running, cpu_index(ci));
       }
       KASSERT(kcpuset_match(csi->cpus_hatched, running));
       if (!kcpuset_iszero(running)) {
               kcpuset_merge(csi->cpus_running, running);
       }
       kcpuset_destroy(running);
}
#endif

uint32_t
cpu_read_4(bus_addr_t a)
{
       struct cpu_softc * const cpu = curcpu()->ci_softc;
//      printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
       return bus_space_read_4(cpu->cpu_bst, cpu->cpu_bsh, a);
}

uint8_t
cpu_read_1(bus_addr_t a)
{
       struct cpu_softc * const cpu = curcpu()->ci_softc;
//      printf(" %s(%p, %x, %x)", __func__, cpu->cpu_bst, cpu->cpu_bsh, a);
       return bus_space_read_1(cpu->cpu_bst, cpu->cpu_bsh, a);
}

void
cpu_write_4(bus_addr_t a, uint32_t v)
{
       struct cpu_softc * const cpu = curcpu()->ci_softc;
       bus_space_write_4(cpu->cpu_bst, cpu->cpu_bsh, a, v);
}

void
cpu_write_1(bus_addr_t a, uint8_t v)
{
       struct cpu_softc * const cpu = curcpu()->ci_softc;
       bus_space_write_1(cpu->cpu_bst, cpu->cpu_bsh, a, v);
}

void
booke_sstep(struct trapframe *tf)
{
       uint32_t insn;

       KASSERT(tf->tf_srr1 & PSL_DE);
       if (ufetch_32((const void *)tf->tf_srr0, &insn) != 0)
               return;

       register_t dbcr0 = DBCR0_IAC1 | DBCR0_IDM;
       register_t dbcr1 = DBCR1_IAC1US_USER | DBCR1_IAC1ER_DS1;
       if ((insn >> 28) == 4) {
               uint32_t iac2 = 0;
               if ((insn >> 26) == 0x12) {
                       const int32_t off = (((int32_t)insn << 6) >> 6) & ~3;
                       iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
                       dbcr0 |= DBCR0_IAC2;
               } else if ((insn >> 26) == 0x10) {
                       const int16_t off = insn & ~3;
                       iac2 = ((insn & 2) ? 0 : tf->tf_srr0) + off;
                       dbcr0 |= DBCR0_IAC2;
               } else if ((insn & 0xfc00fffe) == 0x4c000420) {
                       iac2 = tf->tf_ctr;
                       dbcr0 |= DBCR0_IAC2;
               } else if ((insn & 0xfc00fffe) == 0x4c000020) {
                       iac2 = tf->tf_lr;
                       dbcr0 |= DBCR0_IAC2;
               }
               if (dbcr0 & DBCR0_IAC2) {
                       dbcr1 |= DBCR1_IAC2US_USER | DBCR1_IAC2ER_DS1;
                       mtspr(SPR_IAC2, iac2);
               }
       }
       mtspr(SPR_IAC1, tf->tf_srr0 + 4);
       mtspr(SPR_DBCR1, dbcr1);
       mtspr(SPR_DBCR0, dbcr0);
}

#ifdef DIAGNOSTIC
static inline void
swap_data(uint64_t *data, size_t a, size_t b)
{
       uint64_t swap = data[a];
       data[a] = data[b];
       data[b] = swap;
}

static void
sort_data(uint64_t *data, size_t count)
{
#if 0
       /*
        * Mostly classic bubble sort
        */
       do {
               size_t new_count = 0;
               for (size_t i = 1; i < count; i++) {
                       if (tbs[i - 1] > tbs[i]) {
                               swap_tbs(tbs, i - 1, i);
                               new_count = i;
                       }
               }
               count = new_count;
       } while (count > 0);
#else
       /*
        * Comb sort
        */
       size_t gap = count;
       bool swapped = false;
       while (gap > 1 || swapped) {
               if (gap > 1) {
                       /*
                        * phi = (1 + sqrt(5)) / 2 [golden ratio]
                        * N = 1 / (1 - e^-phi)) = 1.247330950103979
                        *
                        * We want to but can't use floating point to calculate
                        *      gap = (size_t)((double)gap / N)
                        *
                        * So we will use the multiplicative inverse of N
                        * (module 65536) to achieve the division.
                        *
                        * iN = 2^16 / 1.24733... = 52540
                        * x / N == (x * iN) / 65536
                        */
                       gap = (gap * 52540) / 65536;
               }

               swapped = false;

               for (size_t i = 0; gap + i < count; i++) {
                       if (data[i] > data[i + gap]) {
                               swap_data(data, i, i + gap);
                               swapped = true;
                       }
               }
       }
#endif
}
#endif

void
dump_splhist(struct cpu_info *ci, void (*pr)(const char *, ...))
{
#ifdef DIAGNOSTIC
       struct cpu_softc * const cpu = ci->ci_softc;
       uint64_t tbs[NIPL*NIPL];
       size_t ntbs = 0;
       for (size_t to = 0; to < NIPL; to++) {
               for (size_t from = 0; from < NIPL; from++) {
                       uint64_t tb = cpu->cpu_spl_tb[to][from];
                       if (tb == 0)
                               continue;
                       tbs[ntbs++] = (tb << 8) | (to << 4) | from;
               }
       }
       sort_data(tbs, ntbs);

       if (pr == NULL)
               pr = printf;
       uint64_t last_tb = 0;
       for (size_t i = 0; i < ntbs; i++) {
               uint64_t tb = tbs[i];
               size_t from = tb & 15;
               size_t to = (tb >> 4) & 15;
               tb >>= 8;
               (*pr)("%s(%zu) from %zu at %"PRId64"",
                    from < to ? "splraise" : "splx",
                    to, from, tb);
               if (last_tb && from != IPL_NONE)
                       (*pr)(" (+%"PRId64")", tb - last_tb);
               (*pr)("\n");
               last_tb = tb;
       }
#endif
}