/*      $NetBSD: octeon_xhci.c,v 1.9 2022/09/29 07:00:46 skrll Exp $ */
/*      $OpenBSD: octxhci.c,v 1.4 2019/09/29 04:32:23 visa Exp $        */

/*
* Copyright (c) 2017 Visa Hankala
* Copyright (c) 2020 Jared McNeill <[email protected]>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/

/*
* Driver for OCTEON USB3 controller bridge.
*/

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>

#include <mips/cavium/octeonvar.h>

#include <mips/cavium/dev/octeon_xhcireg.h>

#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/xhcireg.h>
#include <dev/usb/xhcivar.h>

#include <dev/fdt/fdtvar.h>

#define XCTL_RD_8(sc, reg) \
       bus_space_read_8((sc)->sc_iot, (sc)->sc_ioh, (reg))
#define XCTL_WR_8(sc, reg, val) \
       bus_space_write_8((sc)->sc_iot, (sc)->sc_ioh, (reg), (val))

struct octxhci_softc {
       struct xhci_softc       sc_xhci;
       bus_space_tag_t         sc_iot;
       bus_space_handle_t      sc_ioh;
       struct fdtbus_gpio_pin  *sc_power_gpio;
       int                     sc_unit;
};

static int      octxhci_match(device_t, cfdata_t, void *);
static void     octxhci_attach(device_t, device_t, void *);

static int      octxhci_dwc3_init(struct xhci_softc *);
static void     octxhci_uctl_init(struct octxhci_softc *, uint64_t, uint64_t);

static void     octxhci_bus_io_init(bus_space_tag_t, void *);

static struct mips_bus_space octxhci_bus_tag;

CFATTACH_DECL_NEW(octxhci, sizeof(struct octxhci_softc),
   octxhci_match, octxhci_attach, NULL, NULL);

static const struct device_compatible_entry compat_data[] = {
       { .compat = "cavium,octeon-7130-usb-uctl" },
       DEVICE_COMPAT_EOL
};

int
octxhci_match(device_t parent, cfdata_t cf, void *aux)
{
       struct fdt_attach_args * const faa = aux;

       return of_compatible_match(faa->faa_phandle, compat_data);
}

void
octxhci_attach(device_t parent, device_t self, void *aux)
{
       struct octxhci_softc *osc = device_private(self);
       struct xhci_softc *sc = &osc->sc_xhci;
       struct fdt_attach_args * const faa = aux;
       const int phandle = faa->faa_phandle;
       const char *clock_type_hs;
       const char *clock_type_ss;
       u_int clock_freq, clock_sel;
       char intrstr[128];
       int child, error;
       bus_addr_t addr;
       bus_size_t size;
       void *ih;

       osc->sc_iot = faa->faa_bst;

       if (fdtbus_get_reg(phandle, 0, &addr, &size) != 0) {
               aprint_error(": couldn't get bridge registers\n");
               return;
       }
       if (bus_space_map(osc->sc_iot, addr, size, 0, &osc->sc_ioh) != 0) {
               aprint_error(": couldn't map bridge registers\n");
               return;
       }
       osc->sc_power_gpio = fdtbus_gpio_acquire(phandle, "power",
           GPIO_PIN_OUTPUT);
       osc->sc_unit = (addr >> 24) & 0x1;

       octxhci_bus_io_init(&octxhci_bus_tag, NULL);

       sc->sc_dev = self;
       sc->sc_bus.ub_hcpriv = sc;
       sc->sc_bus.ub_dmatag = faa->faa_dmat;
       sc->sc_iot = &octxhci_bus_tag;
       sc->sc_ios = size;

       child = of_find_bycompat(phandle, "synopsys,dwc3");
       if (child == -1) {
               aprint_error(": couldn't find dwc3 child node\n");
               return;
       }
       if (fdtbus_get_reg(child, 0, &addr, &size) != 0) {
               aprint_error(": couldn't get xhci registers\n");
               return;
       }
       if (bus_space_map(sc->sc_iot, addr, size, 0, &sc->sc_ioh) != 0) {
               aprint_error(": couldn't map xhci registers\n");
               return;
       }

       if (of_getprop_uint32(phandle, "refclk-frequency", &clock_freq) != 0) {
               aprint_error(": couldn't get refclk-frequency property\n");
               return;
       }
       clock_type_hs = fdtbus_get_string(phandle, "refclk-type-hs");
       if (clock_type_hs == NULL) {
               aprint_error(": couldn't get refclk-type-hs property\n");
               return;
       }
       clock_type_ss = fdtbus_get_string(phandle, "refclk-type-ss");
       if (clock_type_ss == NULL) {
               aprint_error(": couldn't get refclk-type-ss property\n");
               return;
       }

       clock_sel = 0;
       if (strcmp(clock_type_ss, "dlmc_ref_clk1") == 0)
               clock_sel |= 1;
       if (strcmp(clock_type_hs, "pll_ref_clk") == 0)
               clock_sel |= 2;

       octxhci_uctl_init(osc, clock_freq, clock_sel);

       if (octxhci_dwc3_init(sc) != 0) {
               /* Error message has been printed already. */
               return;
       }

       if (!fdtbus_intr_str(child, 0, intrstr, sizeof(intrstr))) {
               aprint_error_dev(self, "failed to decode interrupt\n");
               return;
       }

       ih = fdtbus_intr_establish(child, 0, IPL_USB, FDT_INTR_MPSAFE,
           xhci_intr, sc);
       if (ih == NULL) {
               aprint_error_dev(self, "couldn't establish interrupt on %s\n",
                   intrstr);
               return;
       }
       aprint_normal_dev(self, "interrupting on %s\n", intrstr);

       sc->sc_bus.ub_revision = USBREV_3_0;
       error = xhci_init(sc);
       if (error != 0) {
               aprint_error_dev(self, "init failed, error = %d\n", error);
               return;
       }

       sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint, CFARGS_NONE);
       sc->sc_child2 = config_found(self, &sc->sc_bus2, usbctlprint,
           CFARGS_NONE);
}

void
octxhci_uctl_init(struct octxhci_softc *sc, uint64_t clock_freq,
   uint64_t clock_sel)
{
       static const uint32_t clock_divs[] = { 1, 2, 4, 6, 8, 16, 24, 32 };
       uint64_t i, val;
       uint64_t ioclock = octeon_ioclock_speed();
       uint64_t mpll_mult;
       uint64_t refclk_fsel;
#if notyet
       int output_sel;
#endif

       /*
        * Put the bridge controller, USB core, PHY, and clock divider
        * into reset.
        */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val |= XCTL_CTL_UCTL_RST;
       val |= XCTL_CTL_UAHC_RST;
       val |= XCTL_CTL_UPHY_RST;
       XCTL_WR_8(sc, XCTL_CTL, val);
       val = XCTL_RD_8(sc, XCTL_CTL);
       val |= XCTL_CTL_CLKDIV_RST;
       XCTL_WR_8(sc, XCTL_CTL, val);

       /* Select IO clock divisor. */
       for (i = 0; i < __arraycount(clock_divs); i++) {
               if (ioclock / clock_divs[i] < 300000000)
                       break;
       }

       /* Update the divisor and enable the clock. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_CLKDIV_SEL;
       val |= (i << XCTL_CTL_CLKDIV_SEL_SHIFT) & XCTL_CTL_CLKDIV_SEL;
       val |= XCTL_CTL_CLK_EN;
       XCTL_WR_8(sc, XCTL_CTL, val);

       /* Take the clock divider out of reset. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_CLKDIV_RST;
       XCTL_WR_8(sc, XCTL_CTL, val);

       /* Select the reference clock. */
       switch (clock_freq) {
       case 50000000:
               refclk_fsel = 0x07;
               mpll_mult = 0x32;
               break;
       case 125000000:
               refclk_fsel = 0x07;
               mpll_mult = 0x28;
               break;
       case 100000000:
       default:
               if (clock_sel < 2)
                       refclk_fsel = 0x27;
               else
                       refclk_fsel = 0x07;
               mpll_mult = 0x19;
               break;
       }

       /* Set the clock and power up PHYs. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_REFCLK_SEL;
       val |= clock_sel << XCTL_CTL_REFCLK_SEL_SHIFT;
       val &= ~XCTL_CTL_REFCLK_DIV2;
       val &= ~XCTL_CTL_REFCLK_FSEL;
       val |= refclk_fsel << XCTL_CTL_REFCLK_FSEL_SHIFT;
       val &= ~XCTL_CTL_MPLL_MULT;
       val |= mpll_mult << XCTL_CTL_MPLL_MULT_SHIFT;
       val |= XCTL_CTL_SSC_EN;
       val |= XCTL_CTL_REFCLK_SSP_EN;
       val |= XCTL_CTL_SSPOWER_EN;
       val |= XCTL_CTL_HSPOWER_EN;
       XCTL_WR_8(sc, XCTL_CTL, val);

       delay(100);

       /* Take the bridge out of reset. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_UCTL_RST;
       XCTL_WR_8(sc, XCTL_CTL, val);

       delay(100);

#if notyet
       if (sc->sc_power_gpio[0] != 0) {
               if (sc->sc_unit == 0)
                       output_sel = GPIO_CONFIG_MD_USB0_VBUS_CTRL;
               else
                       output_sel = GPIO_CONFIG_MD_USB1_VBUS_CTRL;
               gpio_controller_config_pin(sc->sc_power_gpio,
                   GPIO_CONFIG_OUTPUT | output_sel);

               /* Enable port power control. */
               val = XCTL_RD_8(sc, XCTL_HOST_CFG);
               val |= XCTL_HOST_CFG_PPC_EN;
               if (sc->sc_power_gpio[2] & GPIO_ACTIVE_LOW)
                       val &= ~XCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN;
               else
                       val |= XCTL_HOST_CFG_PPC_ACTIVE_HIGH_EN;
               XCTL_WR_8(sc, XCTL_HOST_CFG, val);
       } else {
               /* Disable port power control. */
               val = XCTL_RD_8(sc, XCTL_HOST_CFG);
               val &= ~XCTL_HOST_CFG_PPC_EN;
               XCTL_WR_8(sc, XCTL_HOST_CFG, val);
       }
#else
       /* Disable port power control. */
       val = XCTL_RD_8(sc, XCTL_HOST_CFG);
       val &= ~XCTL_HOST_CFG_PPC_EN;
       XCTL_WR_8(sc, XCTL_HOST_CFG, val);
#endif

       /* Enable host-only mode. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_DRD_MODE;
       XCTL_WR_8(sc, XCTL_CTL, val);

       delay(100);

       /* Take the USB core out of reset. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_UAHC_RST;
       XCTL_WR_8(sc, XCTL_CTL, val);

       delay(100);

       val = XCTL_RD_8(sc, XCTL_CTL);
       val |= XCTL_CTL_CSCLK_EN;
       XCTL_WR_8(sc, XCTL_CTL, val);

       /* Take the PHY out of reset. */
       val = XCTL_RD_8(sc, XCTL_CTL);
       val &= ~XCTL_CTL_UPHY_RST;
       XCTL_WR_8(sc, XCTL_CTL, val);
       (void)XCTL_RD_8(sc, XCTL_CTL);

       /* Fix endianness. */
       val = XCTL_RD_8(sc, XCTL_SHIM_CFG);
       val &= ~XCTL_SHIM_CFG_CSR_BYTE_SWAP;
       val &= ~XCTL_SHIM_CFG_DMA_BYTE_SWAP;
       val |= __SHIFTIN(XCTL_SHIM_ENDIAN_BIG, XCTL_SHIM_CFG_DMA_BYTE_SWAP);
       val |= __SHIFTIN(XCTL_SHIM_ENDIAN_BIG, XCTL_SHIM_CFG_CSR_BYTE_SWAP);
       XCTL_WR_8(sc, XCTL_SHIM_CFG, val);
       (void)XCTL_RD_8(sc, XCTL_SHIM_CFG);
}

int
octxhci_dwc3_init(struct xhci_softc *sc)
{
       bus_space_handle_t ioh = sc->sc_ioh;
       uint32_t rev;
       uint32_t val;

       val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GSNPSID);
       if ((val & 0xffff0000u) != 0x55330000u) {
               aprint_error(": no DWC3 core (DWC3_GSNPSID=%08x)\n", val);
               return EIO;
       }
       rev = val & 0xffffu;
       aprint_normal(": DWC3 rev 0x%04x\n", rev);

       val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GUSB3PIPECTL(0));
       val &= ~DWC3_GUSB3PIPECTL_UX_EXIT_PX;
       val |= DWC3_GUSB3PIPECTL_SUSPHY;
       bus_space_write_4(sc->sc_iot, ioh, DWC3_GUSB3PIPECTL(0), val);

       val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GUSB2PHYCFG(0));
       val |= DWC3_GUSB2PHYCFG_SUSPHY;
       bus_space_write_4(sc->sc_iot, ioh, DWC3_GUSB2PHYCFG(0), val);

       /* Set the controller into host mode. */
       val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GCTL);
       val &= ~DWC3_GCTL_PRTCAP_MASK;
       val |= DWC3_GCTL_PRTCAP_HOST;
       bus_space_write_4(sc->sc_iot, ioh, DWC3_GCTL, val);

       val = bus_space_read_4(sc->sc_iot, ioh, DWC3_GCTL);
       val &= ~DWC3_GCTL_SCALEDOWN_MASK;
       val &= ~DWC3_GCTL_DISSCRAMBLE;
       if (rev >= DWC3_REV_210A && rev <= DWC3_REV_250A)
               val |= DWC3_GCTL_DSBLCLKGTNG | DWC3_GCTL_SOFITPSYNC;
       else
               val &= ~DWC3_GCTL_DSBLCLKGTNG;
       bus_space_write_4(sc->sc_iot, ioh, DWC3_GCTL, val);

       return 0;
}

/* ---- bus_space(9) */
#define CHIP                    octxhci
#define CHIP_IO
#define CHIP_LITTLE_ENDIAN

#define CHIP_W1_BUS_START(v)    0x0000000000000000ULL
#define CHIP_W1_BUS_END(v)      0x7fffffffffffffffULL
#define CHIP_W1_SYS_START(v)    0x8000000000000000ULL
#define CHIP_W1_SYS_END(v)      0xffffffffffffffffULL

#include <mips/mips/bus_space_alignstride_chipdep.c>