/* $NetBSD: if_aumac.c,v 1.53 2024/06/29 12:11:11 riastradh Exp $ */

/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
*    notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
*    notice, this list of conditions and the following disclaimer in the
*    documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
*    must display the following acknowledgement:
*      This product includes software developed for the NetBSD Project by
*      Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
*    or promote products derived from this software without specific prior
*    written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/

/*
* Device driver for Alchemy Semiconductor Au1x00 Ethernet Media
* Access Controller.
*
* TODO:
*
*      Better Rx buffer management; we want to get new Rx buffers
*      to the chip more quickly than we currently do.
*/

#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_aumac.c,v 1.53 2024/06/29 12:11:11 riastradh Exp $");



#include <sys/param.h>
#include <sys/bus.h>
#include <sys/callout.h>
#include <sys/device.h>
#include <sys/endian.h>
#include <sys/errno.h>
#include <sys/intr.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/mbuf.h>
#include <sys/socket.h>

#include <uvm/uvm.h>            /* for PAGE_SIZE */

#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>

#include <net/bpf.h>
#include <sys/rndsource.h>

#include <dev/mii/mii.h>
#include <dev/mii/miivar.h>

#include <mips/alchemy/include/aureg.h>
#include <mips/alchemy/include/auvar.h>
#include <mips/alchemy/include/aubusvar.h>
#include <mips/alchemy/dev/if_aumacreg.h>

/*
* The Au1X00 MAC has 4 transmit and receive descriptors.  Each buffer
* must consist of a single DMA segment, and must be aligned to a 2K
* boundary.  Therefore, this driver does not perform DMA directly
* to/from mbufs.  Instead, we copy the data to/from buffers allocated
* at device attach time.
*
* We also skip the bus_dma dance.  The MAC is built in to the CPU, so
* there's little point in not making assumptions based on the CPU type.
* We also program the Au1X00 cache to be DMA coherent, so the buffers
* are accessed via KSEG0 addresses.
*/
#define AUMAC_NTXDESC           4
#define AUMAC_NTXDESC_MASK      (AUMAC_NTXDESC - 1)

#define AUMAC_NRXDESC           4
#define AUMAC_NRXDESC_MASK      (AUMAC_NRXDESC - 1)

#define AUMAC_NEXTTX(x)         (((x) + 1) & AUMAC_NTXDESC_MASK)
#define AUMAC_NEXTRX(x)         (((x) + 1) & AUMAC_NRXDESC_MASK)

#define AUMAC_TXBUF_OFFSET      0
#define AUMAC_RXBUF_OFFSET      (MAC_BUFLEN * AUMAC_NTXDESC)
#define AUMAC_BUFSIZE           (MAC_BUFLEN * (AUMAC_NTXDESC + AUMAC_NRXDESC))

struct aumac_buf {
       vaddr_t buf_vaddr;              /* virtual address of buffer */
       bus_addr_t buf_paddr;           /* DMA address of buffer */
};

/*
* Software state per device.
*/
struct aumac_softc {
       device_t sc_dev;                /* generic device information */
       bus_space_tag_t sc_st;          /* bus space tag */
       bus_space_handle_t sc_mac_sh;   /* MAC space handle */
       bus_space_handle_t sc_macen_sh; /* MAC enable space handle */
       bus_space_handle_t sc_dma_sh;   /* DMA space handle */
       struct ethercom sc_ethercom;    /* Ethernet common data */
       void *sc_sdhook;                /* shutdown hook */

       int sc_irq;
       void *sc_ih;                    /* interrupt cookie */

       struct mii_data sc_mii;         /* MII/media information */

       struct callout sc_tick_ch;      /* tick callout */

       /* Transmit and receive buffers */
       struct aumac_buf sc_txbufs[AUMAC_NTXDESC];
       struct aumac_buf sc_rxbufs[AUMAC_NRXDESC];
       void *sc_bufaddr;

       int sc_txfree;                  /* number of free Tx descriptors */
       int sc_txnext;                  /* next Tx descriptor to use */
       int sc_txdirty;                 /* first dirty Tx descriptor */

       int sc_rxptr;                   /* next ready Rx descriptor */

       krndsource_t rnd_source;

#ifdef AUMAC_EVENT_COUNTERS
       struct evcnt sc_ev_txstall;     /* Tx stalled */
       struct evcnt sc_ev_rxstall;     /* Rx stalled */
       struct evcnt sc_ev_txintr;      /* Tx interrupts */
       struct evcnt sc_ev_rxintr;      /* Rx interrupts */
#endif

       uint32_t sc_control;            /* MAC_CONTROL contents */
       uint32_t sc_flowctrl;           /* MAC_FLOWCTRL contents */
};

#ifdef AUMAC_EVENT_COUNTERS
#define AUMAC_EVCNT_INCR(ev)    (ev)->ev_count++
#else
#define AUMAC_EVCNT_INCR(ev)    /* nothing */
#endif

#define AUMAC_INIT_RXDESC(sc, x)                                        \
do {                                                                    \
       bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh,                 \
           MACDMA_RX_STAT((x)), 0);                                    \
       bus_space_write_4((sc)->sc_st, (sc)->sc_dma_sh,                 \
           MACDMA_RX_ADDR((x)),                                        \
           (sc)->sc_rxbufs[(x)].buf_paddr | RX_ADDR_EN);               \
} while (/*CONSTCOND*/0)

static void     aumac_start(struct ifnet *);
static void     aumac_watchdog(struct ifnet *);
static int      aumac_ioctl(struct ifnet *, u_long, void *);
static int      aumac_init(struct ifnet *);
static void     aumac_stop(struct ifnet *, int);

static void     aumac_shutdown(void *);

static void     aumac_tick(void *);

static void     aumac_set_filter(struct aumac_softc *);

static void     aumac_powerup(struct aumac_softc *);
static void     aumac_powerdown(struct aumac_softc *);

static int      aumac_intr(void *);
static int      aumac_txintr(struct aumac_softc *);
static int      aumac_rxintr(struct aumac_softc *);

static int      aumac_mii_readreg(device_t, int, int, uint16_t *);
static int      aumac_mii_writereg(device_t, int, int, uint16_t);
static void     aumac_mii_statchg(struct ifnet *);
static int      aumac_mii_wait(struct aumac_softc *, const char *);

static int      aumac_match(device_t, struct cfdata *, void *);
static void     aumac_attach(device_t, device_t, void *);

int     aumac_copy_small = 0;

CFATTACH_DECL_NEW(aumac, sizeof(struct aumac_softc),
   aumac_match, aumac_attach, NULL, NULL);

static int
aumac_match(device_t parent, struct cfdata *cf, void *aux)
{
       struct aubus_attach_args *aa = aux;

       if (strcmp(aa->aa_name, cf->cf_name) == 0)
               return 1;

       return 0;
}

static void
aumac_attach(device_t parent, device_t self, void *aux)
{
       const uint8_t *enaddr;
       prop_data_t ea;
       struct aumac_softc *sc = device_private(self);
       struct aubus_attach_args *aa = aux;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mii_data * const mii = &sc->sc_mii;
       struct pglist pglist;
       paddr_t bufaddr;
       vaddr_t vbufaddr;
       int i;

       callout_init(&sc->sc_tick_ch, 0);

       aprint_normal(": Au1X00 10/100 Ethernet\n");
       aprint_naive("\n");

       sc->sc_dev = self;
       sc->sc_st = aa->aa_st;

       /* Get the MAC address. */
       ea = prop_dictionary_get(device_properties(self), "mac-address");
       if (ea == NULL) {
               aprint_error_dev(self, "unable to get mac-addr property\n");
               return;
       }
       KASSERT(prop_object_type(ea) == PROP_TYPE_DATA);
       KASSERT(prop_data_size(ea) == ETHER_ADDR_LEN);
       enaddr = prop_data_data_nocopy(ea);

       aprint_normal_dev(self, "Ethernet address %s\n", ether_sprintf(enaddr));

       /* Map the device. */
       if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_BASE],
           MACx_SIZE, 0, &sc->sc_mac_sh) != 0) {
               aprint_error_dev(self, "unable to map MAC registers\n");
               return;
       }
       if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_ENABLE],
           MACENx_SIZE, 0, &sc->sc_macen_sh) != 0) {
               aprint_error_dev(self, "unable to map MACEN registers\n");
               return;
       }
       if (bus_space_map(sc->sc_st, aa->aa_addrs[AA_MAC_DMA_BASE],
           MACx_DMA_SIZE, 0, &sc->sc_dma_sh) != 0) {
               aprint_error_dev(self, "unable to map MACDMA registers\n");
               return;
       }

       /* Make sure the MAC is powered off. */
       aumac_powerdown(sc);

       /* Hook up the interrupt handler. */
       sc->sc_ih = au_intr_establish(aa->aa_irq[0], 1, IPL_NET, IST_LEVEL,
           aumac_intr, sc);
       if (sc->sc_ih == NULL) {
               aprint_error_dev(self,
                   "unable to register interrupt handler\n");
               return;
       }
       sc->sc_irq = aa->aa_irq[0];
       au_intr_disable(sc->sc_irq);

       /*
        * Allocate space for the transmit and receive buffers.
        */
       if (uvm_pglistalloc(AUMAC_BUFSIZE, 0, ctob(physmem), PAGE_SIZE, 0,
           &pglist, 1, 0))
               return;

       bufaddr = VM_PAGE_TO_PHYS(TAILQ_FIRST(&pglist));
       vbufaddr = MIPS_PHYS_TO_KSEG0(bufaddr);

       for (i = 0; i < AUMAC_NTXDESC; i++) {
               int offset = AUMAC_TXBUF_OFFSET + (i * MAC_BUFLEN);

               sc->sc_txbufs[i].buf_vaddr = vbufaddr + offset;
               sc->sc_txbufs[i].buf_paddr = bufaddr + offset;
       }

       for (i = 0; i < AUMAC_NRXDESC; i++) {
               int offset = AUMAC_RXBUF_OFFSET + (i * MAC_BUFLEN);

               sc->sc_rxbufs[i].buf_vaddr = vbufaddr + offset;
               sc->sc_rxbufs[i].buf_paddr = bufaddr + offset;
       }

       /*
        * Power up the MAC before accessing any MAC registers (including
        * MII configuration.
        */
       aumac_powerup(sc);

       /*
        * Initialize the media structures and probe the MII.
        */
       mii->mii_ifp = ifp;
       mii->mii_readreg = aumac_mii_readreg;
       mii->mii_writereg = aumac_mii_writereg;
       mii->mii_statchg = aumac_mii_statchg;
       sc->sc_ethercom.ec_mii = mii;
       ifmedia_init(&mii->mii_media, 0, ether_mediachange, ether_mediastatus);

       mii_attach(self, mii, 0xffffffff, MII_PHY_ANY,
           MII_OFFSET_ANY, 0);

       if (LIST_FIRST(&mii->mii_phys) == NULL) {
               ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_NONE,
                   0, NULL);
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_NONE);
       } else
               ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);

       strcpy(ifp->if_xname, device_xname(self));
       ifp->if_softc = sc;
       ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
       ifp->if_ioctl = aumac_ioctl;
       ifp->if_start = aumac_start;
       ifp->if_watchdog = aumac_watchdog;
       ifp->if_init = aumac_init;
       ifp->if_stop = aumac_stop;
       IFQ_SET_READY(&ifp->if_snd);

       /* Attach the interface. */
       if_attach(ifp);
       if_deferred_start_init(ifp, NULL);
       ether_ifattach(ifp, enaddr);

       rnd_attach_source(&sc->rnd_source, device_xname(self),
           RND_TYPE_NET, RND_FLAG_DEFAULT);

#ifdef AUMAC_EVENT_COUNTERS
       evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
           NULL, device_xname(self), "txstall");
       evcnt_attach_dynamic(&sc->sc_ev_rxstall, EVCNT_TYPE_MISC,
           NULL, device_xname(self), "rxstall");
       evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_MISC,
           NULL, device_xname(self), "txintr");
       evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_MISC,
           NULL, device_xname(self), "rxintr");
#endif

       /* Make sure the interface is shutdown during reboot. */
       sc->sc_sdhook = shutdownhook_establish(aumac_shutdown, sc);
       if (sc->sc_sdhook == NULL)
               aprint_error_dev(self,
                   "WARNING: unable to establish shutdown hook\n");
       return;
}

/*
* aumac_shutdown:
*
*      Make sure the interface is stopped at reboot time.
*/
static void
aumac_shutdown(void *arg)
{
       struct aumac_softc *sc = arg;

       aumac_stop(&sc->sc_ethercom.ec_if, 1);

       /*
        * XXX aumac_stop leaves device powered up at the moment
        * XXX but this still isn't enough to keep yamon happy... :-(
        */
       bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, 0);
}

/*
* aumac_start:         [ifnet interface function]
*
*      Start packet transmission on the interface.
*/
static void
aumac_start(struct ifnet *ifp)
{
       struct aumac_softc *sc = ifp->if_softc;
       struct mbuf *m;
       int nexttx;

       if ((ifp->if_flags & IFF_RUNNING) == 0)
               return;

       /*
        * Loop through the send queue, setting up transmit descriptors
        * unitl we drain the queue, or use up all available transmit
        * descriptors.
        */
       for (;;) {
               /* Grab a packet off the queue. */
               IFQ_POLL(&ifp->if_snd, m);
               if (m == NULL)
                       return;

               /* Get a spare descriptor. */
               if (sc->sc_txfree == 0) {
                       /* No more slots left. */
                       AUMAC_EVCNT_INCR(&sc->sc_ev_txstall);
                       return;
               }
               nexttx = sc->sc_txnext;

               IFQ_DEQUEUE(&ifp->if_snd, m);

               /*
                * WE ARE NOW COMMITTED TO TRANSMITTING THE PACKET.
                */

               m_copydata(m, 0, m->m_pkthdr.len,
                   (void *)sc->sc_txbufs[nexttx].buf_vaddr);

               /* Zero out the remainder of any short packets. */
               if (m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN))
                       memset((char *)sc->sc_txbufs[nexttx].buf_vaddr +
                           m->m_pkthdr.len, 0,
                           ETHER_MIN_LEN - ETHER_CRC_LEN - m->m_pkthdr.len);

               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_STAT(nexttx), 0);
               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_LEN(nexttx),
                   m->m_pkthdr.len < (ETHER_MIN_LEN - ETHER_CRC_LEN) ?
                   ETHER_MIN_LEN - ETHER_CRC_LEN : m->m_pkthdr.len);
               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_ADDR(nexttx),
                   sc->sc_txbufs[nexttx].buf_paddr | TX_ADDR_EN);
               /* XXX - needed??  we should be coherent */
               bus_space_barrier(sc->sc_st, sc->sc_dma_sh, 0 /* XXX */,
                   0 /* XXX */, BUS_SPACE_BARRIER_WRITE);

               /* Advance the Tx pointer. */
               sc->sc_txfree--;
               sc->sc_txnext = AUMAC_NEXTTX(nexttx);

               /* Pass the packet to any BPF listeners. */
               bpf_mtap(ifp, m, BPF_D_OUT);

               m_freem(m);

               /* Set a watchdog timer in case the chip flakes out. */
               ifp->if_timer = 5;
       }
       /* NOTREACHED */
}

/*
* aumac_watchdog:      [ifnet interface function]
*
*      Watchdog timer handler.
*/
static void
aumac_watchdog(struct ifnet *ifp)
{
       struct aumac_softc *sc = ifp->if_softc;

       printf("%s: device timeout\n", device_xname(sc->sc_dev));
       (void) aumac_init(ifp);

       /* Try to get more packets going. */
       aumac_start(ifp);
}

/*
* aumac_ioctl:         [ifnet interface function]
*
*      Handle control requests from the operator.
*/
static int
aumac_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
       struct aumac_softc *sc = ifp->if_softc;
       int s, error;

       s = splnet();

       error = ether_ioctl(ifp, cmd, data);
       if (error == ENETRESET) {
               /*
                * Multicast list has changed; set the hardware filter
                * accordingly.
                */
               if (ifp->if_flags & IFF_RUNNING)
                       aumac_set_filter(sc);
               error = 0;
       }

       /* Try to get more packets going. */
       aumac_start(ifp);

       splx(s);
       return error;
}

/*
* aumac_intr:
*
*      Interrupt service routine.
*/
static int
aumac_intr(void *arg)
{
       struct aumac_softc *sc = arg;
       int status;

       /*
        * There aren't really any interrupt status bits on the
        * Au1X00 MAC, and each MAC has a dedicated interrupt
        * in the CPU's built-in interrupt controller.  Just
        * check for new incoming packets, and then Tx completions
        * (for status updating).
        */
       if ((sc->sc_ethercom.ec_if.if_flags & IFF_RUNNING) == 0)
               return 0;

       status = aumac_rxintr(sc);
       status += aumac_txintr(sc);

       rnd_add_uint32(&sc->rnd_source, status);

       return status;
}

/*
* aumac_txintr:
*
*      Helper; handle transmit interrupts.
*/
static int
aumac_txintr(struct aumac_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       uint32_t stat;
       int i;
       int pkts = 0;

       for (i = sc->sc_txdirty; sc->sc_txfree != AUMAC_NTXDESC;
            i = AUMAC_NEXTTX(i)) {
               if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
                    MACDMA_TX_ADDR(i)) & TX_ADDR_DN) == 0)
                       break;
               pkts++;

               /* ACK interrupt. */
               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_ADDR(i), 0);

               stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_STAT(i));

               net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
               if (stat & TX_STAT_FA) {
                       /* XXX STATS */
                       if_statinc_ref(ifp, nsr, if_oerrors);
               } else {
                       if_statinc_ref(ifp, nsr, if_opackets);
               }

               if (stat & TX_STAT_EC) {
                       if_statadd_ref(ifp, nsr, if_collisions, 16);
               } else if (TX_STAT_CC(stat)) {
                       if_statadd_ref(ifp, nsr, if_collisions,
                           TX_STAT_CC(stat));
               }
               IF_STAT_PUTREF(ifp);

               sc->sc_txfree++;

               /* Try to queue more packets. */
               if_schedule_deferred_start(ifp);
       }

       if (pkts)
               AUMAC_EVCNT_INCR(&sc->sc_ev_txintr);

       /* Update the dirty descriptor pointer. */
       sc->sc_txdirty = i;

       /*
        * If there are no more pending transmissions, cancel the watchdog
        * timer.
        */
       if (sc->sc_txfree == AUMAC_NTXDESC)
               ifp->if_timer = 0;

       return pkts;
}

/*
* aumac_rxintr:
*
*      Helper; handle receive interrupts.
*/
static int
aumac_rxintr(struct aumac_softc *sc)
{
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct mbuf *m;
       uint32_t stat;
       int i, len;
       int pkts = 0;

       for (i = sc->sc_rxptr;; i = AUMAC_NEXTRX(i)) {
               if ((bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
                    MACDMA_RX_ADDR(i)) & RX_ADDR_DN) == 0)
                       break;
               pkts++;

               stat = bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_RX_STAT(i));

#define PRINTERR(str)                                                   \
       do {                                                            \
               error++;                                                \
               printf("%s: %s\n", device_xname(sc->sc_dev), str);      \
       } while (0)

               if (stat & RX_STAT_ERRS) {
                       int error = 0;

#if 0   /*
        * Missed frames are a semi-frequent occurrence with this hardware,
        * and reporting of them just makes everything run slower and fills
        * the system log.  Be silent.
        *
        * Additionally, this missed bit indicates an error with the previous
        * packet, and not with this one!  So PRINTERR is definitely wrong
        * here.
        *
        * These should probably all be converted to evcnt counters anyway.
        */
                       if (stat & RX_STAT_MI)
                               PRINTERR("missed frame");
#endif
                       if (stat & RX_STAT_UC)
                               PRINTERR("unknown control frame");
                       if (stat & RX_STAT_LE)
                               PRINTERR("short frame");
                       if (stat & RX_STAT_CR)
                               PRINTERR("CRC error");
                       if (stat & RX_STAT_ME)
                               PRINTERR("medium error");
                       if (stat & RX_STAT_CS)
                               PRINTERR("late collision");
                       if (stat & RX_STAT_FL)
                               PRINTERR("frame too big");
                       if (stat & RX_STAT_RF)
                               PRINTERR("runt frame (collision)");
                       if (stat & RX_STAT_WT)
                               PRINTERR("watch dog");
                       if (stat & RX_STAT_DB) {
                               if (stat & (RX_STAT_CS | RX_STAT_RF |
                                   RX_STAT_CR)) {
                                       if (!error)
                                               goto pktok;
                               } else
                                       PRINTERR("dribbling bit");
                       }
#undef PRINTERR
                       if_statinc(ifp, if_ierrors);

dropit:
                       /* reuse the current descriptor */
                       AUMAC_INIT_RXDESC(sc, i);
                       continue;
               }
pktok:
               len = RX_STAT_L(stat);

               /*
                * The Au1X00 MAC includes the CRC with every packet;
                * trim it off here.
                */
               len -= ETHER_CRC_LEN;

               /*
                * Truncate the packet if it's too big to fit in
                * a single mbuf cluster.
                */
               if (len > MCLBYTES - 2)
                       len = MCLBYTES - 2;

               MGETHDR(m, M_DONTWAIT, MT_DATA);
               if (m == NULL) {
                       printf("%s: unable to allocate Rx mbuf\n",
                           device_xname(sc->sc_dev));
                       goto dropit;
               }
               if (len > MHLEN - 2) {
                       MCLGET(m, M_DONTWAIT);
                       if ((m->m_flags & M_EXT) == 0) {
                               printf("%s: unable to allocate Rx cluster\n",
                                   device_xname(sc->sc_dev));
                               m_freem(m);
                               goto dropit;
                       }
               }

               m->m_data += 2;         /* align payload */
               memcpy(mtod(m, void *),
                   (void *)sc->sc_rxbufs[i].buf_vaddr, len);
               AUMAC_INIT_RXDESC(sc, i);

               m_set_rcvif(m, ifp);
               m->m_pkthdr.len = m->m_len = len;

               /* Pass it on. */
               if_percpuq_enqueue(ifp->if_percpuq, m);
       }
       if (pkts)
               AUMAC_EVCNT_INCR(&sc->sc_ev_rxintr);
       if (pkts == AUMAC_NRXDESC)
               AUMAC_EVCNT_INCR(&sc->sc_ev_rxstall);

       /* Update the receive pointer. */
       sc->sc_rxptr = i;

       return pkts;
}

/*
* aumac_tick:
*
*      One second timer, used to tick the MII.
*/
static void
aumac_tick(void *arg)
{
       struct aumac_softc *sc = arg;
       int s;

       s = splnet();
       mii_tick(&sc->sc_mii);
       splx(s);

       callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);
}

/*
* aumac_init:          [ifnet interface function]
*
*      Initialize the interface.  Must be called at splnet().
*/
static int
aumac_init(struct ifnet *ifp)
{
       struct aumac_softc *sc = ifp->if_softc;
       int i, error = 0;

       /* Cancel any pending I/O, reset MAC. */
       aumac_stop(ifp, 0);

       /* Set up the transmit ring. */
       for (i = 0; i < AUMAC_NTXDESC; i++) {
               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_STAT(i), 0);
               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_LEN(i), 0);
               bus_space_write_4(sc->sc_st, sc->sc_dma_sh,
                   MACDMA_TX_ADDR(i), sc->sc_txbufs[i].buf_paddr);
       }
       sc->sc_txfree = AUMAC_NTXDESC;
       sc->sc_txnext = TX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
           MACDMA_TX_ADDR(0)));
       sc->sc_txdirty = sc->sc_txnext;

       /* Set up the receive ring. */
       for (i = 0; i < AUMAC_NRXDESC; i++)
                       AUMAC_INIT_RXDESC(sc, i);
       sc->sc_rxptr = RX_ADDR_CB(bus_space_read_4(sc->sc_st, sc->sc_dma_sh,
           MACDMA_RX_ADDR(0)));

       /*
        * Power up the MAC.
        */
       aumac_powerup(sc);

       sc->sc_control |= CONTROL_DO | CONTROL_TE | CONTROL_RE;
#if _BYTE_ORDER == _BIG_ENDIAN
       sc->sc_control |= CONTROL_EM;
#endif

       /* Set the media. */
       if ((error = ether_mediachange(ifp)) != 0)
               goto out;

       /*
        * Set the receive filter.  This will actually start the transmit
        * and receive processes.
        */
       aumac_set_filter(sc);

       /* Start the one second clock. */
       callout_reset(&sc->sc_tick_ch, hz, aumac_tick, sc);

       /* ...all done! */
       ifp->if_flags |= IFF_RUNNING;

       au_intr_enable(sc->sc_irq);
out:
       if (error)
               printf("%s: interface not running\n", device_xname(sc->sc_dev));
       return error;
}

/*
* aumac_stop:          [ifnet interface function]
*
*      Stop transmission on the interface.
*/
static void
aumac_stop(struct ifnet *ifp, int disable)
{
       struct aumac_softc *sc = ifp->if_softc;

       /* Stop the one-second clock. */
       callout_stop(&sc->sc_tick_ch);

       /* Down the MII. */
       mii_down(&sc->sc_mii);

       /* Stop the transmit and receive processes. */
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL, 0);

       /* Power down/reset the MAC. */
       aumac_powerdown(sc);

       au_intr_disable(sc->sc_irq);

       /* Mark the interface as down and cancel the watchdog timer. */
       ifp->if_flags &= ~IFF_RUNNING;
       ifp->if_timer = 0;
}

/*
* aumac_powerdown:
*
*      Power down the MAC.
*/
static void
aumac_powerdown(struct aumac_softc *sc)
{

       /* Disable the MAC clocks, and place the device in reset. */
       // bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP);

       // delay(10000);
}

/*
* aumac_powerup:
*
*      Bring the device out of reset.
*/
static void
aumac_powerup(struct aumac_softc *sc)
{

       /* Enable clocks to the MAC. */
       bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0, MACEN_JP | MACEN_CE);

       /* Enable MAC, coherent transactions, pass only valid frames. */
       bus_space_write_4(sc->sc_st, sc->sc_macen_sh, 0,
           MACEN_E2 | MACEN_E1 | MACEN_E0 | MACEN_CE);

       delay(20000);
}

/*
* aumac_set_filter:
*
*      Set up the receive filter.
*/
static void
aumac_set_filter(struct aumac_softc *sc)
{
       struct ethercom *ec = &sc->sc_ethercom;
       struct ifnet *ifp = &sc->sc_ethercom.ec_if;
       struct ether_multi *enm;
       struct ether_multistep step;
       const uint8_t *enaddr = CLLADDR(ifp->if_sadl);
       uint32_t mchash[2], crc;

       sc->sc_control &= ~(CONTROL_PM | CONTROL_PR);

       /* Stop the receiver. */
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
           sc->sc_control & ~CONTROL_RE);

       if (ifp->if_flags & IFF_PROMISC) {
               sc->sc_control |= CONTROL_PR;
               goto allmulti;
       }

       /* Set the station address. */
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRHIGH,
           enaddr[4] | (enaddr[5] << 8));
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_ADDRLOW,
           enaddr[0] | (enaddr[1] << 8) | (enaddr[2] << 16) |
           (enaddr[3] << 24));

       sc->sc_control |= CONTROL_HP;

       mchash[0] = mchash[1] = 0;

       /*
        * Set up the multicast address filter by passing all multicast
        * addresses through a CRC generator, and then using the high
        * order 6 bits as an index into the 64-bit multicast hash table.
        * The high order bits select the word, while the rest of the bits
        * select the bit within the word.
        */
       ETHER_LOCK(ec);
       ETHER_FIRST_MULTI(step, ec, enm);
       while (enm != NULL) {
               if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
                       /*
                        * We must listen to a range of multicast addresses.
                        * For now, just accept all multicasts, rather than
                        * trying to set only those filter bits needed to match
                        * the range.  (At this time, the only use of address
                        * ranges is for IP multicast routing, for which the
                        * range is large enough to require all bits set.)
                        */
                       ETHER_UNLOCK(ec);
                       goto allmulti;
               }

               crc = ether_crc32_be(enm->enm_addrlo, ETHER_ADDR_LEN);

               /* Just want the 6 most significant bits. */
               crc >>= 26;

               /* Set the corresponding bit in the filter. */
               mchash[crc >> 5] |= 1U << (crc & 0x1f);

               ETHER_NEXT_MULTI(step, enm);
       }
       ETHER_UNLOCK(ec);

       ifp->if_flags &= ~IFF_ALLMULTI;

       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHHIGH,
           mchash[1]);
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_HASHLOW,
           mchash[0]);

       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
           sc->sc_control);
       return;

allmulti:
       sc->sc_control |= CONTROL_PM;
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
           sc->sc_control);
}

/*
* aumac_mii_wait:
*
*      Wait for the MII interface to not be busy.
*/
static int
aumac_mii_wait(struct aumac_softc *sc, const char *msg)
{
       int i;

       for (i = 0; i < 10000; i++) {
               if ((bus_space_read_4(sc->sc_st, sc->sc_mac_sh,
                    MAC_MIICTRL) & MIICTRL_MB) == 0)
                       return 0;
               delay(10);
       }

       printf("%s: MII failed to %s\n", device_xname(sc->sc_dev), msg);
       return ETIMEDOUT;
}

/*
* aumac_mii_readreg:   [mii interface function]
*
*      Read a PHY register on the MII.
*/
static int
aumac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
{
       struct aumac_softc *sc = device_private(self);
       int rv;

       if ((rv = aumac_mii_wait(sc, "become ready")) != 0)
               return rv;

       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
           MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg));

       if ((rv = aumac_mii_wait(sc, "complete")) != 0)
               return rv;

       *val = bus_space_read_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA)
           & MIIDATA_MASK;
       return 0;
}

/*
* aumac_mii_writereg:  [mii interface function]
*
*      Write a PHY register on the MII.
*/
static int
aumac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
{
       struct aumac_softc *sc = device_private(self);
       int rv;

       if ((rv = aumac_mii_wait(sc, "become ready")) != 0)
               return rv;

       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIIDATA, val);
       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_MIICTRL,
           MIICTRL_PHYADDR(phy) | MIICTRL_MIIREG(reg) | MIICTRL_MW);

       return aumac_mii_wait(sc, "complete");
}

/*
* aumac_mii_statchg:   [mii interface function]
*
*      Callback from MII layer when media changes.
*/
static void
aumac_mii_statchg(struct ifnet *ifp)
{
       struct aumac_softc *sc = ifp->if_softc;

       if ((sc->sc_mii.mii_media_active & IFM_FDX) != 0)
               sc->sc_control |= CONTROL_F;
       else
               sc->sc_control &= ~CONTROL_F;

       bus_space_write_4(sc->sc_st, sc->sc_mac_sh, MAC_CONTROL,
           sc->sc_control);
}