/* $NetBSD: ahci.c,v 1.32 2022/10/23 06:29:01 skrll Exp $ */
/*-
* Copyright (c) 2007 Ruslan Ermilov and Vsevolod Lobko.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* 3. The names of the authors may not be used to endorse or promote
* products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
* OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2001 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Tetsuya Isaki.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* !! HIGHLY EXPERIMENTAL CODE !!
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ahci.c,v 1.32 2022/10/23 06:29:01 skrll Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/bus.h>
#include <machine/cpu.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usbroothub.h>
#include <mips/adm5120/include/adm5120reg.h>
#include <mips/adm5120/include/adm5120var.h>
#include <mips/adm5120/include/adm5120_obiovar.h>
#include <mips/adm5120/dev/ahcireg.h>
#include <mips/adm5120/dev/ahcivar.h>
static usbd_status ahci_open(struct usbd_pipe *);
static void ahci_softintr(void *);
static void ahci_poll(struct usbd_bus *);
static void ahci_poll_hub(void *);
static void ahci_poll_device(void *arg);
static struct usbd_xfer *
ahci_allocx(struct usbd_bus *, unsigned int);
static void ahci_freex(struct usbd_bus *, struct usbd_xfer *);
static void ahci_abortx(struct usbd_xfer *);
static void ahci_get_lock(struct usbd_bus *, kmutex_t **);
static int ahci_roothub_ctrl(struct usbd_bus *, usb_device_request_t *,
void *, int);
static usbd_status ahci_root_intr_transfer(struct usbd_xfer *);
static usbd_status ahci_root_intr_start(struct usbd_xfer *);
static void ahci_root_intr_abort(struct usbd_xfer *);
static void ahci_root_intr_close(struct usbd_pipe *);
static void ahci_root_intr_done(struct usbd_xfer *);
static usbd_status ahci_device_ctrl_transfer(struct usbd_xfer *);
static usbd_status ahci_device_ctrl_start(struct usbd_xfer *);
static void ahci_device_ctrl_abort(struct usbd_xfer *);
static void ahci_device_ctrl_close(struct usbd_pipe *);
static void ahci_device_ctrl_done(struct usbd_xfer *);
static usbd_status ahci_device_intr_transfer(struct usbd_xfer *);
static usbd_status ahci_device_intr_start(struct usbd_xfer *);
static void ahci_device_intr_abort(struct usbd_xfer *);
static void ahci_device_intr_close(struct usbd_pipe *);
static void ahci_device_intr_done(struct usbd_xfer *);
static usbd_status ahci_device_isoc_transfer(struct usbd_xfer *);
static usbd_status ahci_device_isoc_start(struct usbd_xfer *);
static void ahci_device_isoc_abort(struct usbd_xfer *);
static void ahci_device_isoc_close(struct usbd_pipe *);
static void ahci_device_isoc_done(struct usbd_xfer *);
static usbd_status ahci_device_bulk_transfer(struct usbd_xfer *);
static usbd_status ahci_device_bulk_start(struct usbd_xfer *);
static void ahci_device_bulk_abort(struct usbd_xfer *);
static void ahci_device_bulk_close(struct usbd_pipe *);
static void ahci_device_bulk_done(struct usbd_xfer *);
static int ahci_transaction(struct ahci_softc *,
struct usbd_pipe *, uint8_t, int, u_char *, uint8_t);
static void ahci_noop(struct usbd_pipe *);
static void ahci_device_clear_toggle(struct usbd_pipe *);
extern int usbdebug;
extern int uhubdebug;
extern int umassdebug;
int ahci_dummy;
#define AHCI_DEBUG
#ifdef AHCI_DEBUG
#define D_TRACE (0x0001) /* function trace */
#define D_MSG (0x0002) /* debug messages */
#define D_XFER (0x0004) /* transfer messages (noisy!) */
#define D_MEM (0x0008) /* memory allocation */
int ahci_debug = 0;
#define DPRINTF(z,x) if((ahci_debug&(z))!=0)printf x
void print_req(usb_device_request_t *);
void print_req_hub(usb_device_request_t *);
void print_dumpreg(struct ahci_softc *);
void print_xfer(struct usbd_xfer *);
#else
#define DPRINTF(z,x)
#endif
struct usbd_bus_methods ahci_bus_methods = {
.ubm_open = ahci_open,
.ubm_softint = ahci_softintr,
.ubm_dopoll = ahci_poll,
.ubm_allocx = ahci_allocx,
.ubm_freex = ahci_freex,
.ubm_abortx = ahci_abortx,
.ubm_getlock = ahci_get_lock,
.ubm_rhctrl = ahci_roothub_ctrl,
};
struct usbd_pipe_methods ahci_root_intr_methods = {
.upm_transfer = ahci_root_intr_transfer,
.upm_start = ahci_root_intr_start,
.upm_abort = ahci_root_intr_abort,
.upm_close = ahci_root_intr_close,
.upm_cleartoggle = ahci_noop,
.upm_done = ahci_root_intr_done,
};
struct usbd_pipe_methods ahci_device_ctrl_methods = {
.upm_transfer = ahci_device_ctrl_transfer,
.upm_start = ahci_device_ctrl_start,
.upm_abort = ahci_device_ctrl_abort,
.upm_close = ahci_device_ctrl_close,
.upm_cleartoggle = ahci_noop,
.upm_done = ahci_device_ctrl_done,
};
struct usbd_pipe_methods ahci_device_intr_methods = {
.upm_transfer = ahci_device_intr_transfer,
.upm_start = ahci_device_intr_start,
.upm_abort = ahci_device_intr_abort,
.upm_close = ahci_device_intr_close,
.upm_cleartoggle = ahci_device_clear_toggle,
.upm_done = ahci_device_intr_done,
};
struct usbd_pipe_methods ahci_device_isoc_methods = {
.upm_transfer = ahci_device_isoc_transfer,
.upm_start = ahci_device_isoc_start,
.upm_abort = ahci_device_isoc_abort,
.upm_close = ahci_device_isoc_close,
.upm_cleartoggle = ahci_noop,
.upm_done = ahci_device_isoc_done,
};
struct usbd_pipe_methods ahci_device_bulk_methods = {
.upm_transfer = ahci_device_bulk_transfer,
.upm_start = ahci_device_bulk_start,
.upm_abort = ahci_device_bulk_abort,
.upm_close = ahci_device_bulk_close,
.upm_cleartoggle = ahci_device_clear_toggle,
.upm_done = ahci_device_bulk_done,
};
struct ahci_pipe {
struct usbd_pipe pipe;
uint32_t toggle;
};
static int ahci_match(device_t, cfdata_t, void *);
static void ahci_attach(device_t, device_t, void *);
CFATTACH_DECL_NEW(ahci, sizeof(struct ahci_softc),
ahci_match, ahci_attach, NULL, NULL);
static int
ahci_match(device_t parent, struct cfdata *cf, void *aux)
{
struct obio_attach_args *aa = aux;
if (strcmp(aa->oba_name, cf->cf_name) == 0)
return 1;
return 0;
}
#define REG_READ(o) bus_space_read_4(sc->sc_st, sc->sc_ioh, (o))
#define REG_WRITE(o,v) bus_space_write_4(sc->sc_st, sc->sc_ioh, (o),(v))
/*
* Attach SL11H/SL811HS. Return 0 if success.
*/
void
ahci_attach(device_t parent, device_t self, void *aux)
{
struct obio_attach_args *aa = aux;
struct ahci_softc *sc = device_private(self);
printf("\n");
sc->sc_dmat = aa->oba_dt;
sc->sc_st = aa->oba_st;
/* Initialize sc */
sc->sc_bus.ub_revision = USBREV_1_1;
sc->sc_bus.ub_methods = &ahci_bus_methods;
sc->sc_bus.ub_pipesize = sizeof(struct ahci_pipe);
sc->sc_bus.ub_dmatag = sc->sc_dmat;
sc->sc_bus.ub_usedma = true;
/* Map the device. */
if (bus_space_map(sc->sc_st, aa->oba_addr,
512, 0, &sc->sc_ioh) != 0) {
aprint_error_dev(self, "unable to map device\n");
return;
}
/* Hook up the interrupt handler. */
sc->sc_ih = adm5120_intr_establish(aa->oba_irq, INTR_IRQ, ahci_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self,
"unable to register interrupt handler\n");
return;
}
SIMPLEQ_INIT(&sc->sc_free_xfers);
callout_init(&sc->sc_poll_handle, 0);
callout_setfunc(&sc->sc_poll_handle, ahci_poll_hub, sc);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED /* XXXNH */);
REG_WRITE(ADMHCD_REG_INTENABLE, 0); /* disable interrupts */
REG_WRITE(ADMHCD_REG_CONTROL, ADMHCD_SW_RESET); /* reset */
delay_ms(10);
while (REG_READ(ADMHCD_REG_CONTROL) & ADMHCD_SW_RESET)
delay_ms(1);
REG_WRITE(ADMHCD_REG_CONTROL, ADMHCD_HOST_EN);
REG_WRITE(ADMHCD_REG_HOSTHEAD, 0x00000000);
REG_WRITE(ADMHCD_REG_FMINTERVAL, 0x20002edf);
REG_WRITE(ADMHCD_REG_LSTHRESH, 0x628);
REG_WRITE(ADMHCD_REG_RHDESCR, ADMHCD_NPS | ADMHCD_LPSC);
REG_WRITE(ADMHCD_REG_HOSTCONTROL, ADMHCD_STATE_OP);
REG_WRITE(ADMHCD_REG_INTENABLE, 0); /* XXX: enable interrupts */
#ifdef USB_DEBUG
/* usbdebug = 0x7f;
uhubdebug = 0x7f;
umassdebug = 0xffffffff; */
#endif
/* Attach USB devices */
sc->sc_child = config_found(self, &sc->sc_bus, usbctlprint, CFARGS_NONE);
}
int
ahci_intr(void *arg)
{
#if 0
struct ahci_softc *sc = arg;
uint8_t r;
#ifdef AHCI_DEBUG
char bitbuf[256];
#endif
r = sl11read(sc, SL11_ISR);
sl11write(sc, SL11_ISR, SL11_ISR_DATA | SL11_ISR_SOFTIMER);
if ((r & SL11_ISR_RESET)) {
sc->sc_flags |= AHCDF_RESET;
sl11write(sc, SL11_ISR, SL11_ISR_RESET);
}
if ((r & SL11_ISR_INSERT)) {
sc->sc_flags |= AHCDF_INSERT;
sl11write(sc, SL11_ISR, SL11_ISR_INSERT);
}
#ifdef AHCI_DEBUG
snprintb(bitbuf, sizeof(bitbuf),
((sl11read(sc, SL11_CTRL) & SL11_CTRL_SUSPEND)
? "\20\x8""D+\7RESUME\6INSERT\5SOF\4res\3""BABBLE\2USBB\1USBA"
: "\20\x8""D+\7RESET\6INSERT\5SOF\4res\3""BABBLE\2USBB\1USBA"),
r);
DPRINTF(D_XFER, ("I=%s ", bitbuf));
#endif /* AHCI_DEBUG */
#endif
return 0;
}
usbd_status
ahci_open(struct usbd_pipe *pipe)
{
struct usbd_device *dev = pipe->up_dev;
struct ahci_pipe *apipe = (struct ahci_pipe *)pipe;
usb_endpoint_descriptor_t *ed = pipe->up_endpoint->ue_edesc;
uint8_t rhaddr = dev->ud_bus->ub_rhaddr;
DPRINTF(D_TRACE, ("ahci_open(addr=%d,ep=%d,scaddr=%d)",
dev->ud_addr, ed->bEndpointAddress, rhaddr));
apipe->toggle=0;
if (dev->ud_addr == rhaddr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
pipe->up_methods = &roothub_ctrl_methods;
break;
case UE_DIR_IN | USBROOTHUB_INTR_ENDPT:
pipe->up_methods = &ahci_root_intr_methods;
break;
default:
printf("open:endpointErr!\n");
return USBD_INVAL;
}
} else {
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
DPRINTF(D_MSG, ("control "));
pipe->up_methods = &ahci_device_ctrl_methods;
break;
case UE_INTERRUPT:
DPRINTF(D_MSG, ("interrupt "));
pipe->up_methods = &ahci_device_intr_methods;
break;
case UE_ISOCHRONOUS:
DPRINTF(D_MSG, ("isochronous "));
pipe->up_methods = &ahci_device_isoc_methods;
break;
case UE_BULK:
DPRINTF(D_MSG, ("bluk "));
pipe->up_methods = &ahci_device_bulk_methods;
break;
}
}
return USBD_NORMAL_COMPLETION;
}
void
ahci_softintr(void *arg)
{
DPRINTF(D_TRACE, ("%s()", __func__));
}
void
ahci_poll(struct usbd_bus *bus)
{
DPRINTF(D_TRACE, ("%s()", __func__));
}
#define AHCI_BUS2SC(bus) ((bus)->ub_hcpriv)
#define AHCI_PIPE2SC(pipe) AHCI_BUS2SC((pipe)->up_dev->ud_bus)
#define AHCI_XFER2SC(xfer) AHCI_BUS2SC((xfer)->ux_bus)
#define AHCI_APIPE2SC(ap) AHCI_BUS2SC((d)->pipe.up_dev->ud_bus)
/*
* Emulation of interrupt transfer for status change endpoint
* of root hub.
*/
void
ahci_poll_hub(void *arg)
{
struct ahci_softc *sc = arg;
struct usbd_xfer *xfer;
u_char *p;
static int p0_state=0;
static int p1_state=0;
mutex_enter(&sc->sc_lock);
/*
* If the intr xfer has completed or been synchronously
* aborted, we have nothing to do.
*/
xfer = sc->sc_intr_xfer;
if (xfer == NULL)
goto out;
KASSERT(xfer->ux_status == USBD_IN_PROGRESS);
/*
* If the intr xfer for which we were scheduled is done, and
* another intr xfer has been submitted, let that one be dealt
* with when the callout fires again.
*
* The call to callout_pending is racy, but the transition
* from pending to invoking happens atomically. The
* callout_ack ensures callout_invoking does not return true
* due to this invocation of the callout; the lock ensures the
* next invocation of the callout cannot callout_ack (unless it
* had already run to completion and nulled sc->sc_intr_xfer,
* in which case would have bailed out already).
*/
callout_ack(&sc->sc_poll_handle);
if (callout_pending(&sc->sc_poll_handle) ||
callout_invoking(&sc->sc_poll_handle))
goto out;
/* USB spec 11.13.3 (p.260) */
p = KERNADDR(&xfer->ux_dmabuf, 0);
p[0] = 0;
if ((REG_READ(ADMHCD_REG_PORTSTATUS0) & ADMHCD_CCS) != p0_state) {
p[0] = 2;
DPRINTF(D_TRACE, ("!"));
p0_state=(REG_READ(ADMHCD_REG_PORTSTATUS0) & ADMHCD_CCS);
};
if ((REG_READ(ADMHCD_REG_PORTSTATUS1) & ADMHCD_CCS) != p1_state) {
p[0] = 2;
DPRINTF(D_TRACE, ("@"));
p1_state=(REG_READ(ADMHCD_REG_PORTSTATUS1) & ADMHCD_CCS);
};
/* no change, return NAK and try again later */
if (p[0] == 0) {
callout_schedule(&sc->sc_poll_handle, sc->sc_interval);
goto out;
}
/*
* Interrupt completed, and the xfer has not been completed or
* synchronously aborted. Complete the xfer now.
*
* XXX Set ux_isdone if DIAGNOSTIC?
*/
xfer->ux_actlen = 1;
xfer->ux_status = USBD_NORMAL_COMPLETION;
usb_transfer_complete(xfer);
out: mutex_exit(&sc->sc_lock);
}
struct usbd_xfer *
ahci_allocx(struct usbd_bus *bus, unsigned int nframes)
{
struct ahci_softc *sc = AHCI_BUS2SC(bus);
struct usbd_xfer *xfer;
DPRINTF(D_MEM, ("SLallocx"));
xfer = SIMPLEQ_FIRST(&sc->sc_free_xfers);
if (xfer) {
SIMPLEQ_REMOVE_HEAD(&sc->sc_free_xfers, ux_next);
#ifdef DIAGNOSTIC
if (xfer->ux_state != XFER_FREE) {
printf("ahci_allocx: xfer=%p not free, 0x%08x\n",
xfer, xfer->ux_state);
}
#endif
} else {
xfer = kmem_alloc(sizeof(*xfer), KM_SLEEP);
}
memset(xfer, 0, sizeof(*xfer));
#ifdef DIAGNOSTIC
xfer->ux_state = XFER_BUSY;
#endif
return xfer;
}
void
ahci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
struct ahci_softc *sc = AHCI_BUS2SC(bus);
DPRINTF(D_MEM, ("SLfreex"));
#ifdef DIAGNOSTIC
if (xfer->ux_state != XFER_BUSY &&
xfer->ux_status != USBD_NOT_STARTED) {
printf("ahci_freex: xfer=%p not busy, 0x%08x\n",
xfer, xfer->ux_state);
return;
}
xfer->ux_state = XFER_FREE;
#endif
SIMPLEQ_INSERT_HEAD(&sc->sc_free_xfers, xfer, ux_next);
}
static void
ahci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
struct ahci_softc *sc = AHCI_BUS2SC(bus);
*lock = &sc->sc_lock;
}
void
ahci_noop(struct usbd_pipe *pipe)
{
DPRINTF(D_TRACE, ("%s()", __func__));
}
/*
* Data structures and routines to emulate the root hub.
*/
static int
ahci_roothub_ctrl(struct usbd_bus *bus, usb_device_request_t *req,
void *buf, int buflen)
{
struct ahci_softc *sc = AHCI_BUS2SC(bus);
uint16_t len, value, index;
usb_port_status_t ps;
int totlen = 0;
int status;
DPRINTF(D_TRACE, ("SLRCstart "));
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
#define C(x,y) ((x) | ((y) << 8))
switch (C(req->bRequest, req->bmRequestType)) {
case C(UR_GET_DESCRIPTOR, UT_READ_DEVICE):
switch (value) {
#define sd ((usb_string_descriptor_t *)buf)
case C(2, UDESC_STRING):
/* Product */
totlen = usb_makestrdesc(sd, len, "ADM5120 root hub");
break;
default:
printf("unknownGetDescriptor=%x", value);
/* FALLTHROUGH */
case C(0, UDESC_DEVICE):
case C(1, UDESC_STRING):
/* default from usbroothub */
return buflen;
}
break;
/*
* Hub specific requests
*/
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_DEVICE):
/* Clear Hub Feature, 11.16.2.1, not supported */
DPRINTF(D_MSG, ("ClearHubFeature not supported\n"));
break;
case C(UR_CLEAR_FEATURE, UT_WRITE_CLASS_OTHER):
#define WPS(x) REG_WRITE(ADMHCD_REG_PORTSTATUS0+(index-1)*4, (x))
/* Clear Port Feature, 11.16.2.2 */
if (index != 1 && index != 2 ) {
return -1;
}
switch (value) {
case UHF_PORT_POWER:
DPRINTF(D_MSG, ("POWER_OFF "));
WPS(ADMHCD_LSDA);
break;
case UHF_PORT_SUSPEND:
DPRINTF(D_MSG, ("SUSPEND "));
WPS(ADMHCD_POCI);
break;
case UHF_PORT_ENABLE:
DPRINTF(D_MSG, ("ENABLE "));
WPS(ADMHCD_CCS);
break;
case UHF_C_PORT_CONNECTION:
WPS(ADMHCD_CSC);
break;
case UHF_C_PORT_RESET:
WPS(ADMHCD_PRSC);
break;
case UHF_C_PORT_SUSPEND:
WPS(ADMHCD_PSSC);
break;
case UHF_C_PORT_ENABLE:
WPS(ADMHCD_PESC);
break;
case UHF_C_PORT_OVER_CURRENT:
WPS(ADMHCD_OCIC);
break;
default:
printf("ClrPortFeatERR:value=0x%x ", value);
return -1;
}
//DPRINTF(D_XFER, ("CH=%04x ", sc->sc_change));
#undef WPS
break;
case C(UR_GET_BUS_STATE, UT_READ_CLASS_OTHER):
/* Get Bus State, 11.16.2.3, not supported */
/* shall return a STALL... */
break;
case C(UR_GET_DESCRIPTOR, UT_READ_CLASS_DEVICE):
/* Get Hub Descriptor, 11.16.2.4 */
DPRINTF(D_MSG, ("UR_GET_DESCRIPTOR RCD"));
if ((value&0xff) != 0) {
return -1;
}
usb_hub_descriptor_t hubd;
totlen = uimin(buflen, sizeof(hubd));
memcpy(&hubd, buf, totlen);
hubd.bNbrPorts = 2;
USETW(hubd.wHubCharacteristics, 0);
hubd.bPwrOn2PwrGood = 0;
memcpy(buf, &hubd, totlen);
break;
case C(UR_GET_STATUS, UT_READ_CLASS_DEVICE):
/* Get Hub Status, 11.16.2.5 */
DPRINTF(D_MSG, ("UR_GET_STATUS RCD"));
if (len != 4) {
return -1;
}
memset(buf, 0, len);
totlen = len;
break;
case C(UR_GET_STATUS, UT_READ_CLASS_OTHER):
/* Get Port Status, 11.16.2.6 */
if ((index != 1 && index != 2) || len != 4) {
printf("index=%d,len=%d ", index, len);
return -1;
}
status = REG_READ(ADMHCD_REG_PORTSTATUS0+(index-1)*4);
DPRINTF(D_MSG, ("UR_GET_STATUS RCO=%x ", status));
//DPRINTF(D_XFER, ("ST=%04x,CH=%04x ", status, sc->sc_change));
USETW(ps.wPortStatus, status & (UPS_CURRENT_CONNECT_STATUS|UPS_PORT_ENABLED|UPS_SUSPEND|UPS_OVERCURRENT_INDICATOR|UPS_RESET|UPS_PORT_POWER|UPS_LOW_SPEED));
USETW(ps.wPortChange, (status>>16) & (UPS_C_CONNECT_STATUS|UPS_C_PORT_ENABLED|UPS_C_SUSPEND|UPS_C_OVERCURRENT_INDICATOR|UPS_C_PORT_RESET));
totlen = uimin(len, sizeof(ps));
memcpy(buf, &ps, totlen);
break;
case C(UR_SET_DESCRIPTOR, UT_WRITE_CLASS_DEVICE):
/* Set Hub Descriptor, 11.16.2.7, not supported */
/* STALL ? */
return -1;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_DEVICE):
/* Set Hub Feature, 11.16.2.8, not supported */
break;
case C(UR_SET_FEATURE, UT_WRITE_CLASS_OTHER):
#define WPS(x) REG_WRITE(ADMHCD_REG_PORTSTATUS0+(index-1)*4, (x))
/* Set Port Feature, 11.16.2.9 */
if ((index != 1) && (index !=2)) {
printf("index=%d ", index);
return -1;
}
switch (value) {
case UHF_PORT_RESET:
DPRINTF(D_MSG, ("PORT_RESET "));
WPS(ADMHCD_PRS);
break;
case UHF_PORT_POWER:
DPRINTF(D_MSG, ("PORT_POWER "));
WPS(ADMHCD_PPS);
break;
case UHF_PORT_ENABLE:
DPRINTF(D_MSG, ("PORT_ENABLE "));
WPS(ADMHCD_PES);
break;
default:
printf("SetPortFeatERR=0x%x ", value);
return -1;
}
#undef WPS
break;
default:
DPRINTF(D_MSG, ("ioerr(UR=%02x,UT=%02x) ",
req->bRequest, req->bmRequestType));
/* default from usbroothub */
return buflen;
}
return totlen;
}
static usbd_status
ahci_root_intr_transfer(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("SLRItransfer "));
/* Pipe isn't running, start first. */
return ahci_root_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
ahci_root_intr_start(struct usbd_xfer *xfer)
{
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
DPRINTF(D_TRACE, ("SLRIstart "));
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
KASSERT(sc->sc_intr_xfer == NULL);
sc->sc_interval = MS_TO_TICKS(xfer->ux_pipe->up_endpoint->ue_edesc->bInterval);
callout_schedule(&sc->sc_poll_handle, sc->sc_interval);
sc->sc_intr_xfer = xfer;
xfer->ux_status = USBD_IN_PROGRESS;
return USBD_IN_PROGRESS;
}
static void
ahci_root_intr_abort(struct usbd_xfer *xfer)
{
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
DPRINTF(D_TRACE, ("SLRIabort "));
KASSERT(mutex_owned(&sc->sc_lock));
KASSERT(xfer->ux_pipe->up_intrxfer == xfer);
/*
* Try to stop the callout before it starts. If we got in too
* late, too bad; but if the callout had yet to run and time
* out the xfer, cancel it ourselves.
*/
callout_stop(&sc->sc_poll_handle);
if (sc->sc_intr_xfer == NULL)
return;
KASSERT(sc->sc_intr_xfer == xfer);
xfer->ux_status = USBD_CANCELLED;
usb_transfer_complete(xfer);
}
static void
ahci_root_intr_close(struct usbd_pipe *pipe)
{
struct ahci_softc *sc __diagused = AHCI_PIPE2SC(pipe);
DPRINTF(D_TRACE, ("SLRIclose "));
KASSERT(mutex_owned(&sc->sc_lock));
/*
* The caller must arrange to have aborted the pipe already, so
* there can be no intr xfer in progress. The callout may
* still be pending from a prior intr xfer -- if it has already
* fired, it will see there is nothing to do, and do nothing.
*/
KASSERT(sc->sc_intr_xfer == NULL);
KASSERT(!callout_pending(&sc->sc_poll_handle));
}
static void
ahci_root_intr_done(struct usbd_xfer *xfer)
{
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
//DPRINTF(D_XFER, ("RIdn "));
KASSERT(mutex_owned(&sc->sc_lock));
/* Claim the xfer so it doesn't get completed again. */
KASSERT(sc->sc_intr_xfer == xfer);
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
sc->sc_intr_xfer = NULL;
}
static usbd_status
ahci_device_ctrl_transfer(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("C"));
return ahci_device_ctrl_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
ahci_device_ctrl_start(struct usbd_xfer *xfer)
{
usbd_status status = USBD_NORMAL_COMPLETION;
int s, err;
static struct admhcd_ed ep_v __attribute__((aligned(16))), *ep;
static struct admhcd_td td_v[4] __attribute__((aligned(16))), *td, *td1, *td2, *td3;
static usb_dma_t reqdma;
struct usbd_pipe *pipe = xfer->ux_pipe;
usb_device_request_t *req = &xfer->ux_request;
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
int len, isread;
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
#if 0
struct ahci_pipe *apipe = (struct ahci_pipe *)xfer->ux_pipe;
#endif
/* printf("ctrl_start>>>\n"); */
#ifdef DIAGNOSTIC
if (!(xfer->ux_rqflags & URQ_REQUEST)) {
/* XXX panic */
printf("ahci_device_ctrl_transfer: not a request\n");
return USBD_INVAL;
}
#endif
#define KSEG1ADDR(x) (0xa0000000 | (((uint32_t)x) & 0x1fffffff))
DPRINTF(D_TRACE, ("st "));
if (!ep) {
ep = (struct admhcd_ed *)KSEG1ADDR(&ep_v);
td = (struct admhcd_td *)KSEG1ADDR(&td_v[0]);
td1 = (struct admhcd_td *)KSEG1ADDR(&td_v[1]);
td2 = (struct admhcd_td *)KSEG1ADDR(&td_v[2]);
td3 = (struct admhcd_td *)KSEG1ADDR(&td_v[3]);
err = usb_allocmem(sc->sc_bus.ub_dmatag,
sizeof(usb_device_request_t),
0, USBMALLOC_COHERENT, &reqdma);
if (err)
return USBD_NOMEM;
/* printf("ep: %p\n",ep); */
};
ep->control = pipe->up_dev->ud_addr | \
((pipe->up_dev->ud_speed==USB_SPEED_FULL)?ADMHCD_ED_SPEED:0) | \
((UGETW(pipe->up_endpoint->ue_edesc->wMaxPacketSize))<<ADMHCD_ED_MAXSHIFT);
memcpy(KERNADDR(&reqdma, 0), req, sizeof(*req));
/* printf("status: %x\n",REG_READ(ADMHCD_REG_PORTSTATUS0));
printf("ep_control: %x\n",ep->control);
printf("speed: %x\n",pipe->up_dev->ud_speed);
printf("req: %p\n",req);
printf("dmabuf: %p\n",xfer->ux_dmabuf.block); */
isread = req->bmRequestType & UT_READ;
len = UGETW(req->wLength);
ep->next = ep;
td->buffer = DMAADDR(&reqdma,0) | 0xa0000000;
td->buflen=sizeof(*req);
td->control=ADMHCD_TD_SETUP | ADMHCD_TD_DATA0 | ADMHCD_TD_OWN;
if (len) {
td->next = td1;
td1->buffer = DMAADDR(&xfer->ux_dmabuf,0) | 0xa0000000;
td1->buflen = len;
td1->next = td2;
td1->control= (isread?ADMHCD_TD_IN:ADMHCD_TD_OUT) | ADMHCD_TD_DATA1 | ADMHCD_TD_R | ADMHCD_TD_OWN;
} else {
td1->control = 0;
td->next = td2;
};
td2->buffer = 0;
td2->buflen= 0;
td2->next = td3;
td2->control = (isread?ADMHCD_TD_OUT:ADMHCD_TD_IN) | ADMHCD_TD_DATA1 | ADMHCD_TD_OWN;
td3->buffer = 0;
td3->buflen= 0;
td3->next = 0;
td3->control = 0;
ep->head = td;
ep->tail = td3;
/*
printf("ep: %p\n",ep);
printf("ep->next: %p\n",ep->next);
printf("ep->head: %p\n",ep->head);
printf("ep->tail: %p\n",ep->tail);
printf("td: %p\n",td);
printf("td->next: %p\n",td->next);
printf("td->buffer: %x\n",td->buffer);
printf("td->buflen: %x\n",td->buflen);
printf("td1: %p\n",td1);
printf("td1->next: %p\n",td1->next);
printf("td2: %p\n",td2);
printf("td2->next: %p\n",td2->next);
printf("td3: %p\n",td3);
printf("td3->next: %p\n",td3->next);
*/
REG_WRITE(ADMHCD_REG_HOSTHEAD, (uint32_t)ep);
REG_WRITE(ADMHCD_REG_HOSTCONTROL, ADMHCD_STATE_OP | ADMHCD_DMA_EN);
/* printf("1: %x %x %x %x\n", ep->control, td->control, td1->control, td2->control); */
s=100;
while (s--) {
delay_ms(10);
/* printf("%x %x %x %x\n", ep->control, td->control, td1->control, td2->control);*/
status = USBD_TIMEOUT;
if (td->control & ADMHCD_TD_OWN) continue;
err = (td->control & ADMHCD_TD_ERRMASK)>>ADMHCD_TD_ERRSHIFT;
if (err) {
status = USBD_IOERROR;
break;
};
status = USBD_TIMEOUT;
if (td1->control & ADMHCD_TD_OWN) continue;
err = (td1->control & ADMHCD_TD_ERRMASK)>>ADMHCD_TD_ERRSHIFT;
if (err) {
status = USBD_IOERROR;
break;
};
status = USBD_TIMEOUT;
if (td2->control & ADMHCD_TD_OWN) continue;
err = (td2->control & ADMHCD_TD_ERRMASK)>>ADMHCD_TD_ERRSHIFT;
if (err) {
status = USBD_IOERROR;
};
status = USBD_NORMAL_COMPLETION;
break;
};
REG_WRITE(ADMHCD_REG_HOSTCONTROL, ADMHCD_STATE_OP);
xfer->ux_actlen = len;
xfer->ux_status = status;
/* printf("ctrl_start<<<\n"); */
usb_transfer_complete(xfer);
usb_freemem(&reqdma);
return USBD_NORMAL_COMPLETION;
}
static void
ahci_device_ctrl_abort(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("Cab "));
usbd_xfer_abort(xfer);
}
static void
ahci_device_ctrl_close(struct usbd_pipe *pipe)
{
DPRINTF(D_TRACE, ("Ccl "));
}
static void
ahci_device_ctrl_done(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("Cdn "));
}
static usbd_status
ahci_device_intr_transfer(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("INTRtrans "));
return ahci_device_intr_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
ahci_device_intr_start(struct usbd_xfer *xfer)
{
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
struct usbd_pipe *pipe = xfer->ux_pipe;
struct ahci_xfer *sx;
DPRINTF(D_TRACE, ("INTRstart "));
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
sx = kmem_intr_alloc(sizeof(*sx), KM_NOSLEEP);
if (sx == NULL)
goto reterr;
memset(sx, 0, sizeof(*sx));
sx->sx_xfer = xfer;
xfer->ux_hcpriv = sx;
/* initialize callout */
callout_init(&sx->sx_callout_t, 0);
callout_reset(&sx->sx_callout_t,
MS_TO_TICKS(pipe->up_endpoint->ue_edesc->bInterval),
ahci_poll_device, sx);
/* ACK */
return USBD_IN_PROGRESS;
reterr:
return USBD_IOERROR;
}
static void
ahci_poll_device(void *arg)
{
struct ahci_xfer *sx = (struct ahci_xfer *)arg;
struct usbd_xfer *xfer = sx->sx_xfer;
struct usbd_pipe *pipe = xfer->ux_pipe;
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
void *buf;
int pid;
int r;
DPRINTF(D_TRACE, ("pldev"));
callout_reset(&sx->sx_callout_t,
MS_TO_TICKS(pipe->up_endpoint->ue_edesc->bInterval),
ahci_poll_device, sx);
/* interrupt transfer */
pid = (UE_GET_DIR(pipe->up_endpoint->ue_edesc->bEndpointAddress) == UE_DIR_IN)
? ADMHCD_TD_IN : ADMHCD_TD_OUT;
buf = KERNADDR(&xfer->ux_dmabuf, 0);
r = ahci_transaction(sc, pipe, pid, xfer->ux_length, buf, 0/*toggle*/);
if (r < 0) {
DPRINTF(D_MSG, ("%s error", __func__));
return;
}
/* no change, return NAK */
if (r == 0)
return;
xfer->ux_status = USBD_NORMAL_COMPLETION;
mutex_enter(&sc->sc_lock);
usb_transfer_complete(xfer);
mutex_exit(&sc->sc_lock);
}
static void
ahci_device_intr_abort(struct usbd_xfer *xfer)
{
struct ahci_xfer *sx;
DPRINTF(D_TRACE, ("INTRabort "));
sx = xfer->ux_hcpriv;
if (sx) {
callout_stop(&sx->sx_callout_t);
kmem_intr_free(sx, sizeof(*sx));
xfer->ux_hcpriv = NULL;
} else {
printf("%s: sx == NULL!\n", __func__);
}
usbd_xfer_abort(xfer);
}
static void
ahci_device_intr_close(struct usbd_pipe *pipe)
{
DPRINTF(D_TRACE, ("INTRclose "));
}
static void
ahci_device_intr_done(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("INTRdone "));
}
static usbd_status
ahci_device_isoc_transfer(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("S"));
return USBD_NORMAL_COMPLETION;
}
static usbd_status
ahci_device_isoc_start(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("st "));
return USBD_NORMAL_COMPLETION;
}
static void
ahci_device_isoc_abort(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("Sab "));
}
static void
ahci_device_isoc_close(struct usbd_pipe *pipe)
{
DPRINTF(D_TRACE, ("Scl "));
}
static void
ahci_device_isoc_done(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("Sdn "));
}
static usbd_status
ahci_device_bulk_transfer(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("B"));
return ahci_device_bulk_start(SIMPLEQ_FIRST(&xfer->ux_pipe->up_queue));
}
static usbd_status
ahci_device_bulk_start(struct usbd_xfer *xfer)
{
#define NBULK_TDS 32
static volatile int level = 0;
usbd_status status = USBD_NORMAL_COMPLETION;
int s, err;
static struct admhcd_ed ep_v __attribute__((aligned(16))), *ep;
static struct admhcd_td td_v[NBULK_TDS] __attribute__((aligned(16))), *td[NBULK_TDS];
struct usbd_pipe *pipe = xfer->ux_pipe;
struct ahci_softc *sc = AHCI_XFER2SC(xfer);
int endpt, i, len, tlen, segs, offset, isread, toggle, short_ok;
struct ahci_pipe *apipe = (struct ahci_pipe *)xfer->ux_pipe;
#define KSEG1ADDR(x) (0xa0000000 | (((uint32_t)x) & 0x1fffffff))
DPRINTF(D_TRACE, ("st "));
KASSERT(sc->sc_bus.ub_usepolling || mutex_owned(&sc->sc_lock));
#ifdef DIAGNOSTIC
if (xfer->ux_rqflags & URQ_REQUEST) {
/* XXX panic */
printf("ohci_device_bulk_start: a request\n");
return USBD_INVAL;
}
#endif
level++;
/* printf("bulk_start>>>\n"); */
if (!ep) {
ep = (struct admhcd_ed *)KSEG1ADDR(&ep_v);
for (i=0; i<NBULK_TDS; i++) {
td[i] = (struct admhcd_td *)KSEG1ADDR(&td_v[i]);
};
/* printf("ep: %p\n",ep);*/
};
if (apipe->toggle == 0) {
toggle = ADMHCD_TD_DATA0;
} else {
toggle = apipe->toggle;
};
endpt = pipe->up_endpoint->ue_edesc->bEndpointAddress;
ep->control = pipe->up_dev->ud_addr | ((endpt & 0xf) << ADMHCD_ED_EPSHIFT)|\
((pipe->up_dev->ud_speed==USB_SPEED_FULL)?ADMHCD_ED_SPEED:0) | \
((UGETW(pipe->up_endpoint->ue_edesc->wMaxPacketSize))<<ADMHCD_ED_MAXSHIFT);
short_ok = xfer->ux_flags & USBD_SHORT_XFER_OK?ADMHCD_TD_R:0;
/* printf("level: %d\n",level);
printf("short_xfer: %x\n",short_ok);
printf("ep_control: %x\n",ep->control);
printf("speed: %x\n",pipe->up_dev->ud_speed);
printf("dmabuf: %p\n",xfer->ux_dmabuf.block); */
isread = UE_GET_DIR(endpt) == UE_DIR_IN;
len = xfer->ux_length;
ep->next = ep;
i = 0;
offset = 0;
while (len > 0 || i == 0) {
tlen = uimin(len,4096);
td[i]->buffer = DMAADDR(&xfer->ux_dmabuf, offset) | 0xa0000000;
td[i]->buflen = tlen;
td[i]->control = (isread ? ADMHCD_TD_IN : ADMHCD_TD_OUT) |
toggle | ADMHCD_TD_OWN | short_ok;
td[i]->len = tlen;
toggle = ADMHCD_TD_TOGGLE;
len -= tlen;
offset += tlen;
td[i]->next = td[i + 1];
i++;
};
td[i]->buffer = 0;
td[i]->buflen = 0;
td[i]->control = 0;
td[i]->next = 0;
ep->head = td[0];
ep->tail = td[i];
segs = i;
len = 0;
if (xfer->ux_length)
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_PREREAD : BUS_DMASYNC_PREWRITE);
/* printf("segs: %d\n",segs);
printf("ep: %p\n",ep);
printf("ep->control: %x\n",ep->control);
printf("ep->next: %p\n",ep->next);
printf("ep->head: %p\n",ep->head);
printf("ep->tail: %p\n",ep->tail);
for (i=0; i<segs; i++) {
printf("td[%d]: %p\n",i,td[i]);
printf("td[%d]->control: %x\n",i,td[i]->control);
printf("td[%d]->next: %p\n",i,td[i]->next);
printf("td[%d]->buffer: %x\n",i,td[i]->buffer);
printf("td[%d]->buflen: %x\n",i,td[i]->buflen);
}; */
REG_WRITE(ADMHCD_REG_HOSTHEAD, (uint32_t)ep);
REG_WRITE(ADMHCD_REG_HOSTCONTROL, ADMHCD_STATE_OP | ADMHCD_DMA_EN);
i = 0;
/* printf("1: %x %d %x %x\n", ep->control, i, td[i]->control, td[i]->buflen); */
s=100;
err = 0;
while (s--) {
/* printf("%x %d %x %x\n", ep->control, i, td[i]->control, td[i]->buflen); */
status = USBD_TIMEOUT;
if (td[i]->control & ADMHCD_TD_OWN) {
delay_ms(3);
continue;
};
len += td[i]->len - td[i]->buflen;
err = (td[i]->control & ADMHCD_TD_ERRMASK)>>ADMHCD_TD_ERRSHIFT;
if (err) {
status = USBD_IOERROR;
break;
};
i++;
if (i==segs) {
status = USBD_NORMAL_COMPLETION;
break;
};
};
REG_WRITE(ADMHCD_REG_HOSTCONTROL, ADMHCD_STATE_OP);
apipe->toggle = ((uint32_t)ep->head & 2)?ADMHCD_TD_DATA1:ADMHCD_TD_DATA0;
/* printf("bulk_transfer_done: status: %x, err: %x, len: %x, toggle: %x\n", status,err,len,apipe->toggle); */
if (short_ok && (err == 0x9 || err == 0xd)) {
/* printf("bulk_transfer_done: short_transfer fix\n"); */
status = USBD_NORMAL_COMPLETION;
};
xfer->ux_actlen = len;
xfer->ux_status = status;
level--;
/* printf("bulk_start<<<\n"); */
if (xfer->ux_length)
usb_syncmem(&xfer->ux_dmabuf, 0, xfer->ux_length,
isread ? BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
usb_transfer_complete(xfer);
return USBD_NORMAL_COMPLETION;
}
static void
ahci_device_bulk_abort(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("Bab "));
usbd_xfer_abort(xfer);
}
static void
ahci_device_bulk_close(struct usbd_pipe *pipe)
{
DPRINTF(D_TRACE, ("Bcl "));
}
static void
ahci_device_bulk_done(struct usbd_xfer *xfer)
{
DPRINTF(D_TRACE, ("Bdn "));
}
#define DATA0_RD (0x03)
#define DATA0_WR (0x07)
#define AHCI_TIMEOUT (5000)
/*
* Do a transaction.
* return 1 if ACK, 0 if NAK, -1 if error.
*/
static int
ahci_transaction(struct ahci_softc *sc, struct usbd_pipe *pipe,
uint8_t pid, int len, u_char *buf, uint8_t toggle)
{
return -1;
#if 0
#ifdef AHCI_DEBUG
char str[64];
int i;
#endif
int timeout;
int ls_via_hub = 0;
int pl;
uint8_t isr;
uint8_t result = 0;
uint8_t devaddr = pipe->up_dev->ud_addr;
uint8_t endpointaddr = pipe->up_endpoint->ue_edesc->bEndpointAddress;
uint8_t endpoint;
uint8_t cmd = DATA0_RD;
endpoint = UE_GET_ADDR(endpointaddr);
DPRINTF(D_XFER, ("\n(%x,%d%s%d,%d) ",
pid, len, (pid == SL11_PID_IN) ? "<-" : "->", devaddr, endpoint));
/* Set registers */
sl11write(sc, SL11_E0ADDR, 0x40);
sl11write(sc, SL11_E0LEN, len);
sl11write(sc, SL11_E0PID, (pid << 4) + endpoint);
sl11write(sc, SL11_E0DEV, devaddr);
/* Set buffer unless PID_IN */
if (pid != SL11_PID_IN) {
if (len > 0)
sl11write_region(sc, 0x40, buf, len);
cmd = DATA0_WR;
}
/* timing ? */
pl = (len >> 3) + 3;
/* Low speed device via HUB */
/* XXX does not work... */
if ((sc->sc_fullspeed) && pipe->up_dev->ud_speed == USB_SPEED_LOW) {
pl = len + 16;
cmd |= SL11_EPCTRL_PREAMBLE;
/*
* SL811HS/T rev 1.2 has a bug, when it got PID_IN
* from LowSpeed device via HUB.
*/
if (sc->sc_sltype == SLTYPE_SL811HS_R12 && pid == SL11_PID_IN) {
ls_via_hub = 1;
DPRINTF(D_MSG, ("LSvH "));
}
}
/* timing ? */
if (sl11read(sc, SL811_CSOF) <= (uint8_t)pl)
cmd |= SL11_EPCTRL_SOF;
/* Transfer */
sl11write(sc, SL11_ISR, 0xff);
sl11write(sc, SL11_E0CTRL, cmd | toggle);
/* Polling */
for (timeout = AHCI_TIMEOUT; timeout; timeout--) {
isr = sl11read(sc, SL11_ISR);
if ((isr & SL11_ISR_USBA))
break;
}
/* Check result status */
result = sl11read(sc, SL11_E0STAT);
if (!(result & SL11_EPSTAT_NAK) && ls_via_hub) {
/* Resend PID_IN within 20usec */
sl11write(sc, SL11_ISR, 0xff);
sl11write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
}
sl11write(sc, SL11_ISR, 0xff);
DPRINTF(D_XFER, ("t=%d i=%x ", AHCI_TIMEOUT - timeout, isr));
#if AHCI_DEBUG
snprintb(str, sizeof(str),
"\20\x8STALL\7NAK\6OV\5SETUP\4DATA1\3TIMEOUT\2ERR\1ACK", result);
DPRINTF(D_XFER, ("STAT=%s ", str));
#endif
if ((result & SL11_EPSTAT_ERROR))
return -1;
if ((result & SL11_EPSTAT_NAK))
return 0;
/* Read buffer if PID_IN */
if (pid == SL11_PID_IN && len > 0) {
sl11read_region(sc, buf, 0x40, len);
#if AHCI_DEBUG
for (i = 0; i < len; i++)
DPRINTF(D_XFER, ("%02X ", buf[i]));
#endif
}
return 1;
#endif
}
static void
ahci_abortx(struct usbd_xfer *xfer)
{
/*
* XXX This is totally busted; there's no way it can possibly
* work! All transfers are busy-waited, it seems, so there is
* no opportunity to abort.
*/
KASSERT(xfer->ux_status != USBD_IN_PROGRESS);
}
void
ahci_device_clear_toggle(struct usbd_pipe *pipe)
{
struct ahci_pipe *apipe = (struct ahci_pipe *)pipe;
apipe->toggle = 0;
}
#ifdef AHCI_DEBUG
void
print_req(usb_device_request_t *r)
{
const char *xmes[]={
"GETSTAT",
"CLRFEAT",
"res",
"SETFEAT",
"res",
"SETADDR",
"GETDESC",
"SETDESC",
"GETCONF",
"SETCONF",
"GETIN/F",
"SETIN/F",
"SYNC_FR"
};
int req, type, value, index, len;
req = r->bRequest;
type = r->bmRequestType;
value = UGETW(r->wValue);
index = UGETW(r->wIndex);
len = UGETW(r->wLength);
printf("%x,%s,v=%d,i=%d,l=%d ",
type, xmes[req], value, index, len);
}
void
print_req_hub(usb_device_request_t *r)
{
struct {
int req;
int type;
const char *str;
} conf[] = {
{ 1, 0x20, "ClrHubFeat" },
{ 1, 0x23, "ClrPortFeat" },
{ 2, 0xa3, "GetBusState" },
{ 6, 0xa0, "GetHubDesc" },
{ 0, 0xa0, "GetHubStat" },
{ 0, 0xa3, "GetPortStat" },
{ 7, 0x20, "SetHubDesc" },
{ 3, 0x20, "SetHubFeat" },
{ 3, 0x23, "SetPortFeat" },
{-1, 0, NULL},
};
int i;
int value, index, len;
value = UGETW(r->wValue);
index = UGETW(r->wIndex);
len = UGETW(r->wLength);
for (i = 0; ; i++) {
if (conf[i].req == -1 )
return print_req(r);
if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
printf("%s", conf[i].str);
break;
}
}
printf(",v=%d,i=%d,l=%d ", value, index, len);
}
void
print_dumpreg(struct ahci_softc *sc)
{
#if 0
printf("00=%02x,01=%02x,02=%02x,03=%02x,04=%02x,"
"08=%02x,09=%02x,0A=%02x,0B=%02x,0C=%02x,",
sl11read(sc, 0), sl11read(sc, 1),
sl11read(sc, 2), sl11read(sc, 3),
sl11read(sc, 4), sl11read(sc, 8),
sl11read(sc, 9), sl11read(sc, 10),
sl11read(sc, 11), sl11read(sc, 12)
);
printf("CR1=%02x,IER=%02x,0D=%02x,0E=%02x,0F=%02x ",
sl11read(sc, 5), sl11read(sc, 6),
sl11read(sc, 13), sl11read(sc, 14), sl11read(sc, 15)
);
#endif
}
void
print_xfer(struct usbd_xfer *xfer)
{
printf("xfer: length=%d, actlen=%d, flags=%x, timeout=%d,",
xfer->ux_length, xfer->ux_actlen, xfer->ux_flags, xfer->ux_timeout);
printf("request{ ");
print_req_hub(&xfer->ux_request);
printf("} ");
}
#endif /* AHCI_DEBUG */