/*-
* Copyright (c) 2013 Phileas Fogg
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/proc.h>
#include <sys/mutex.h>
#include <sys/time.h>
#include <sys/reboot.h>
#include <sys/sysctl.h>
#include <sys/kthread.h>
#include <machine/autoconf.h>
#include <dev/ofw/openfirm.h>
#include <dev/i2c/i2cvar.h>
#include <dev/clock_subr.h>
#include <dev/sysmon/sysmonvar.h>
#include <dev/sysmon/sysmon_taskq.h>
#include <macppc/dev/obiovar.h>
#include <macppc/dev/smuvar.h>
#include <macppc/dev/fancontrolvar.h>
#include "opt_smu.h"
struct smu_softc;
struct smu_cmd {
u_char cmd;
u_char len;
u_char data[254];
};
struct smu_fan {
struct smu_softc* sc;
char location[32];
int reg;
int zone;
int rpm_ctl;
int min_rpm;
int max_rpm;
int default_rpm;
int wanted_rpm;
int current_rpm;
int fault;
time_t last_update;
};
struct smu_iicbus {
struct smu_softc* sc;
int reg;
struct i2c_controller i2c;
};
#define SMU_MAX_FANS 8
#define SMU_MAX_IICBUS 3
#define SMU_MAX_SME_SENSORS (SMU_MAX_FANS + 8)
#define SMU_ZONE_CPU 0
#define SMU_ZONE_CASE 1
#define SMU_ZONE_DRIVEBAY 2
#define SMU_ZONES 3
#define C_TO_uK(n) (n * 1000000 + 273150000)
struct smu_softc {
device_t sc_dev;
int sc_node;
struct sysctlnode *sc_sysctl_me;
kmutex_t sc_cmd_lock;
kmutex_t sc_msg_lock;
struct smu_cmd *sc_cmd;
paddr_t sc_cmd_paddr;
int sc_dbell_mbox;
int sc_dbell_gpio;
int sc_num_fans;
struct smu_fan sc_fans[SMU_MAX_FANS];
int sc_num_iicbus;
struct smu_iicbus sc_iicbus[SMU_MAX_IICBUS];
struct todr_chip_handle sc_todr;
struct sysmon_envsys *sc_sme;
envsys_data_t sc_sme_sensors[SMU_MAX_SME_SENSORS];
uint32_t cpu_m;
int32_t cpu_b;
fancontrol_zone_t sc_zones[SMU_ZONES];
lwp_t *sc_thread;
bool sc_dying;
};
#define SMU_CMD_FAN 0x4a
#define SMU_CMD_RTC 0x8e
#define SMU_CMD_I2C 0x9a
#define SMU_CMD_POWER 0xaa
#define SMU_CMD_ADC 0xd8
#define SMU_MISC 0xee
#define SMU_MISC_GET_DATA 0x02
#define SMU_MISC_LED_CTRL 0x04
#define SMU_CPUTEMP_CAL 0x18
#define SMU_CPUVOLT_CAL 0x21
#define SMU_SLOTPW_CAL 0x78
#define SMU_PARTITION 0x3e
#define SMU_PARTITION_LATEST 0x01
#define SMU_PARTITION_BASE 0x02
#define SMU_PARTITION_UPDATE 0x03
#ifdef SMU_DEBUG
#define DPRINTF printf
#else
#define DPRINTF while (0) printf
#endif
static int smu_match(device_t, struct cfdata *, void *);
static void smu_attach(device_t, device_t, void *);
static int smu_setup_doorbell(struct smu_softc *);
static void smu_setup_fans(struct smu_softc *);
static void smu_setup_iicbus(struct smu_softc *);
static void smu_setup_sme(struct smu_softc *);
static int smu_iicbus_print(void *, const char *);
static void smu_sme_refresh(struct sysmon_envsys *, envsys_data_t *);
static int smu_do_cmd(struct smu_softc *, struct smu_cmd *, int);
static int smu_dbell_gpio_intr(void *);
static int smu_todr_gettime_ymdhms(todr_chip_handle_t, struct clock_ymdhms *);
static int smu_todr_settime_ymdhms(todr_chip_handle_t, struct clock_ymdhms *);
static int smu_fan_update_rpm(struct smu_fan *);
static int smu_read_adc(struct smu_softc *, int);
static int smu_iicbus_exec(void *, i2c_op_t, i2c_addr_t, const void *,
size_t, void *, size_t, int);
static void smu_setup_zones(struct smu_softc *);
static void smu_adjust(void *);
static bool is_cpu_sensor(const envsys_data_t *);
static bool is_drive_sensor(const envsys_data_t *);
static bool is_slots_sensor(const envsys_data_t *);
static int smu_fan_get_rpm(void *, int);
static int smu_fan_set_rpm(void *, int, int);
int smu_get_datablock(int, uint8_t *, size_t);
CFATTACH_DECL_NEW(smu, sizeof(struct smu_softc),
smu_match, smu_attach, NULL, NULL);
static struct smu_softc *smu0 = NULL;
static int
smu_match(device_t parent, struct cfdata *cf, void *aux)
{
struct confargs *ca = aux;
if (strcmp(ca->ca_name, "smu") == 0)
return 5;
return 0;
}
static void
smu_attach(device_t parent, device_t self, void *aux)
{
struct confargs *ca = aux;
struct smu_softc *sc = device_private(self);
uint16_t data[4];
sc->sc_dev = self;
sc->sc_node = ca->ca_node;
if (smu0 == NULL)
smu0 = sc;
sysctl_createv(NULL, 0, NULL, (void *) &sc->sc_sysctl_me,
CTLFLAG_READWRITE,
CTLTYPE_NODE, device_xname(sc->sc_dev), NULL,
NULL, 0, NULL, 0,
CTL_MACHDEP, CTL_CREATE, CTL_EOL);
if (smu_setup_doorbell(sc) != 0) {
aprint_normal(": unable to set up doorbell\n");
return;
}
aprint_normal("\n");
smu_setup_fans(sc);
smu_setup_iicbus(sc);
sc->sc_todr.todr_gettime_ymdhms = smu_todr_gettime_ymdhms;
sc->sc_todr.todr_settime_ymdhms = smu_todr_settime_ymdhms;
sc->sc_todr.cookie = sc;
todr_attach(&sc->sc_todr);
/* calibration data */
memset(data, 0, 8);
smu_get_datablock(SMU_CPUTEMP_CAL, (void *)data, 8);
DPRINTF("data %04x %04x %04x %04x\n", data[0], data[1], data[2], data[3]);
sc->cpu_m = data[2];
sc->cpu_b = (int16_t)data[3];
smu_setup_sme(sc);
smu_setup_zones(sc);
}
static int
smu_setup_doorbell(struct smu_softc *sc)
{
int node, parent, reg[4], gpio_base, irq;
mutex_init(&sc->sc_cmd_lock, MUTEX_DEFAULT, IPL_NONE);
sc->sc_cmd = malloc(4096, M_DEVBUF, M_WAITOK);
sc->sc_cmd_paddr = vtophys((vaddr_t) sc->sc_cmd);
DPRINTF("%s: cmd vaddr 0x%x paddr 0x%x\n",
__func__, (unsigned int) sc->sc_cmd,
(unsigned int) sc->sc_cmd_paddr);
if (OF_getprop(sc->sc_node, "platform-doorbell-buff",
&node, sizeof(node)) <= 0)
return -1;
if (OF_getprop(node, "platform-do-doorbell-buff",
reg, sizeof(reg)) < sizeof(reg))
return -1;
sc->sc_dbell_mbox = reg[3];
if (OF_getprop(sc->sc_node, "platform-doorbell-ack",
&node, sizeof(node)) <= 0)
return -1;
parent = OF_parent(node);
if (parent == 0)
return -1;
if (OF_getprop(parent, "reg", &gpio_base, sizeof(gpio_base)) <= 0)
return -1;
if (OF_getprop(node, "reg", reg, sizeof(reg)) <= 0)
return -1;
if (OF_getprop(node, "interrupts", &irq, sizeof(irq)) <= 0)
return -1;
sc->sc_dbell_gpio = gpio_base + reg[0];
aprint_normal(" mbox 0x%x gpio 0x%x irq %d",
sc->sc_dbell_mbox, sc->sc_dbell_gpio, irq);
intr_establish_xname(irq, IST_EDGE_FALLING, IPL_TTY,
smu_dbell_gpio_intr, sc, device_xname(sc->sc_dev));
return 0;
}
static void
smu_setup_fans(struct smu_softc *sc)
{
struct smu_fan *fan;
char type[32];
int node, i;
const char *fans[] = { "fans", "rpm-fans", 0 };
int n = 0;
while (fans[n][0] != 0) {
node = of_getnode_byname(sc->sc_node, fans[n]);
for (node = OF_child(node);
(node != 0) && (sc->sc_num_fans < SMU_MAX_FANS);
node = OF_peer(node)) {
fan = &sc->sc_fans[sc->sc_num_fans];
fan->sc = sc;
memset(fan->location, 0, sizeof(fan->location));
OF_getprop(node, "location", fan->location,
sizeof(fan->location));
if (OF_getprop(node, "reg", &fan->reg,
sizeof(fan->reg)) <= 0)
continue;
if (OF_getprop(node, "zone", &fan->zone ,
sizeof(fan->zone)) <= 0)
continue;
memset(type, 0, sizeof(type));
OF_getprop(node, "device_type", type, sizeof(type));
if (strcmp(type, "fan-rpm-control") == 0)
fan->rpm_ctl = 1;
else
fan->rpm_ctl = 0;
if (OF_getprop(node, "min-value", &fan->min_rpm,
sizeof(fan->min_rpm)) <= 0)
fan->min_rpm = 0;
if (OF_getprop(node, "max-value", &fan->max_rpm,
sizeof(fan->max_rpm)) <= 0)
fan->max_rpm = 0xffff;
if (OF_getprop(node, "unmanage-value", &fan->default_rpm,
sizeof(fan->default_rpm)) <= 0)
fan->default_rpm = fan->max_rpm;
DPRINTF("fan: location %s reg %x zone %d rpm_ctl %d "
"min_rpm %d max_rpm %d default_rpm %d\n",
fan->location, fan->reg, fan->zone, fan->rpm_ctl,
fan->min_rpm, fan->max_rpm, fan->default_rpm);
fan->wanted_rpm = fan->default_rpm;
fan->fault = 0;
sc->sc_num_fans++;
}
n++;
}
for (i = 0; i < sc->sc_num_fans; i++) {
fan = &sc->sc_fans[i];
smu_fan_set_rpm(sc, i, fan->default_rpm);
smu_fan_update_rpm(fan);
}
}
static void
smu_setup_iicbus(struct smu_softc *sc)
{
struct smu_iicbus *iicbus;
struct i2c_controller *i2c;
struct smu_iicbus_confargs ca;
int node;
char name[32];
devhandle_t selfh = device_handle(sc->sc_dev);
node = of_getnode_byname(sc->sc_node, "smu-i2c-control");
if (node == 0) node = sc->sc_node;
for (node = OF_child(node);
(node != 0) && (sc->sc_num_iicbus < SMU_MAX_IICBUS);
node = OF_peer(node)) {
memset(name, 0, sizeof(name));
OF_getprop(node, "name", name, sizeof(name));
if ((strcmp(name, "i2c-bus") != 0) &&
(strcmp(name, "i2c") != 0))
continue;
iicbus = &sc->sc_iicbus[sc->sc_num_iicbus];
iicbus->sc = sc;
i2c = &iicbus->i2c;
if (OF_getprop(node, "reg", &iicbus->reg, sizeof(iicbus->reg)) <= 0)
continue;
DPRINTF("iicbus: reg %x\n", iicbus->reg);
iic_tag_init(i2c);
i2c->ic_cookie = iicbus;
i2c->ic_exec = smu_iicbus_exec;
ca.ca_name = name;
ca.ca_node = node;
ca.ca_tag = i2c;
config_found(sc->sc_dev, &ca, smu_iicbus_print,
CFARGS(.devhandle = devhandle_from_of(selfh, node)));
sc->sc_num_iicbus++;
}
}
static void
smu_setup_sme(struct smu_softc *sc)
{
struct smu_fan *fan;
envsys_data_t *sme_sensor;
int i, sensors, child, reg;
char loc[32], type[32];
sc->sc_sme = sysmon_envsys_create();
for (i = 0; i < sc->sc_num_fans; i++) {
sme_sensor = &sc->sc_sme_sensors[i];
fan = &sc->sc_fans[i];
sme_sensor->units = ENVSYS_SFANRPM;
sme_sensor->state = ENVSYS_SINVALID;
snprintf(sme_sensor->desc, sizeof(sme_sensor->desc),
"%s", fan->location);
if (sysmon_envsys_sensor_attach(sc->sc_sme, sme_sensor)) {
sysmon_envsys_destroy(sc->sc_sme);
return;
}
}
sensors = OF_finddevice("/smu/sensors");
child = OF_child(sensors);
while (child != 0) {
sme_sensor = &sc->sc_sme_sensors[i];
if (OF_getprop(child, "location", loc, 32) == 0) goto next;
if (OF_getprop(child, "device_type", type, 32) == 0) goto next;
if (OF_getprop(child, "reg", ®, 4) == 0) goto next;
if (strcmp(type, "temp-sensor") == 0) {
sme_sensor->units = ENVSYS_STEMP;
sme_sensor->state = ENVSYS_SINVALID;
strncpy(sme_sensor->desc, loc, sizeof(sme_sensor->desc));
sme_sensor->private = reg;
sysmon_envsys_sensor_attach(sc->sc_sme, sme_sensor);
i++;
printf("%s: %s@%x\n", loc, type, reg);
}
next:
child = OF_peer(child);
}
sc->sc_sme->sme_name = device_xname(sc->sc_dev);
sc->sc_sme->sme_cookie = sc;
sc->sc_sme->sme_refresh = smu_sme_refresh;
if (sysmon_envsys_register(sc->sc_sme)) {
aprint_error_dev(sc->sc_dev,
"unable to register with sysmon\n");
sysmon_envsys_destroy(sc->sc_sme);
}
}
static int
smu_iicbus_print(void *aux, const char *smu)
{
struct smu_iicbus_confargs *ca = aux;
if (smu)
aprint_normal("%s at %s", ca->ca_name, smu);
return UNCONF;
}
static void
smu_sme_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
{
struct smu_softc *sc = sme->sme_cookie;
int which = edata->sensor;
int ret;
edata->state = ENVSYS_SINVALID;
if (which < sc->sc_num_fans) {
ret = smu_fan_get_rpm(sc, which);
if (ret != -1) {
sc->sc_fans[which].current_rpm = ret;
edata->value_cur = ret;
edata->state = ENVSYS_SVALID;
}
} else if (edata->private > 0) {
/* this works only for the CPU diode */
int64_t r = smu_read_adc(sc, edata->private);
if (r != -1) {
r = r * sc->cpu_m;
r >>= 3;
r += (int64_t)sc->cpu_b << 9;
r <<= 1;
r *= 15625;
r /= 1024;
edata->value_cur = r + 273150000;
edata->state = ENVSYS_SVALID;
}
}
}
static int
smu_do_cmd(struct smu_softc *sc, struct smu_cmd *cmd, int timo)
{
int gpio, ret, bail;
u_char ack;
mutex_enter(&sc->sc_cmd_lock);
DPRINTF("%s: cmd %02x len %02x\n", __func__, cmd->cmd, cmd->len);
DPRINTF("%s: data %02x %02x %02x %02x %02x %02x %02x %02x\n", __func__,
cmd->data[0], cmd->data[1], cmd->data[2], cmd->data[3],
cmd->data[4], cmd->data[5], cmd->data[6], cmd->data[7]);
sc->sc_cmd->cmd = cmd->cmd;
sc->sc_cmd->len = cmd->len;
memcpy(sc->sc_cmd->data, cmd->data, cmd->len);
__asm volatile ("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
obio_write_4(sc->sc_dbell_mbox, sc->sc_cmd_paddr);
obio_write_1(sc->sc_dbell_gpio, 0x04);
bail = 0;
gpio = obio_read_1(sc->sc_dbell_gpio);
while (((gpio & 0x07) != 0x07) && (bail < timo)) {
ret = tsleep(sc->sc_cmd, PWAIT, "smu_cmd", mstohz(10));
if (ret != 0) {
bail++;
}
gpio = obio_read_1(sc->sc_dbell_gpio);
}
if ((gpio & 0x07) != 0x07) {
mutex_exit(&sc->sc_cmd_lock);
return EWOULDBLOCK;
}
__asm volatile ("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
ack = (~cmd->cmd) & 0xff;
if (sc->sc_cmd->cmd != ack) {
DPRINTF("%s: invalid ack, got %x expected %x\n",
__func__, sc->sc_cmd->cmd, ack);
mutex_exit(&sc->sc_cmd_lock);
return EIO;
}
cmd->cmd = sc->sc_cmd->cmd;
cmd->len = sc->sc_cmd->len;
memcpy(cmd->data, sc->sc_cmd->data, sc->sc_cmd->len);
mutex_exit(&sc->sc_cmd_lock);
return 0;
}
static int
smu_dbell_gpio_intr(void *arg)
{
struct smu_softc *sc = arg;
DPRINTF("%s\n", __func__);
wakeup(sc->sc_cmd);
return 1;
}
void
smu_poweroff(void)
{
struct smu_cmd cmd;
if (smu0 == NULL)
return;
cmd.cmd = SMU_CMD_POWER;
strcpy(cmd.data, "SHUTDOWN");
cmd.len = strlen(cmd.data) + 1;
smu_do_cmd(smu0, &cmd, 800);
for (;;);
}
void
smu_restart(void)
{
struct smu_cmd cmd;
if (smu0 == NULL)
return;
cmd.cmd = SMU_CMD_POWER;
strcpy(cmd.data, "RESTART");
cmd.len = strlen(cmd.data) + 1;
smu_do_cmd(smu0, &cmd, 800);
for (;;);
}
static int
smu_todr_gettime_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
{
struct smu_softc *sc = tch->cookie;
struct smu_cmd cmd;
int ret;
cmd.cmd = SMU_CMD_RTC;
cmd.len = 1;
cmd.data[0] = 0x81;
ret = smu_do_cmd(sc, &cmd, 800);
if (ret != 0)
return ret;
dt->dt_sec = bcdtobin(cmd.data[0]);
dt->dt_min = bcdtobin(cmd.data[1]);
dt->dt_hour = bcdtobin(cmd.data[2]);
dt->dt_wday = bcdtobin(cmd.data[3]);
dt->dt_day = bcdtobin(cmd.data[4]);
dt->dt_mon = bcdtobin(cmd.data[5]);
dt->dt_year = bcdtobin(cmd.data[6]) + 2000;
return 0;
}
static int
smu_todr_settime_ymdhms(todr_chip_handle_t tch, struct clock_ymdhms *dt)
{
struct smu_softc *sc = tch->cookie;
struct smu_cmd cmd;
cmd.cmd = SMU_CMD_RTC;
cmd.len = 8;
cmd.data[0] = 0x80;
cmd.data[1] = bintobcd(dt->dt_sec);
cmd.data[2] = bintobcd(dt->dt_min);
cmd.data[3] = bintobcd(dt->dt_hour);
cmd.data[4] = bintobcd(dt->dt_wday);
cmd.data[5] = bintobcd(dt->dt_day);
cmd.data[6] = bintobcd(dt->dt_mon);
cmd.data[7] = bintobcd(dt->dt_year - 2000);
return smu_do_cmd(sc, &cmd, 800);
}
static int
smu_fan_update_rpm(struct smu_fan *fan)
{
struct smu_softc *sc = fan->sc;
struct smu_cmd cmd;
int ret, diff;
cmd.cmd = SMU_CMD_FAN;
cmd.len = 2;
cmd.data[0] = 0x31;
cmd.data[1] = fan->reg;
ret = smu_do_cmd(sc, &cmd, 800);
if (ret == 0) {
fan->last_update = time_uptime;
fan->current_rpm = (cmd.data[0] << 8) | cmd.data[1];
} else {
cmd.cmd = SMU_CMD_FAN;
cmd.len = 1;
cmd.data[0] = 0x01;
ret = smu_do_cmd(sc, &cmd, 800);
if (ret == 0) {
fan->last_update = time_uptime;
fan->current_rpm = (cmd.data[1 + fan->reg * 2] << 8) |
cmd.data[2 + fan->reg * 2];
}
}
diff = abs(fan->current_rpm - fan->wanted_rpm);
if (diff > fan->max_rpm >> 3) {
fan->fault++;
} else fan->fault = 0;
return ret;
}
static int
smu_fan_get_rpm(void *cookie, int which)
{
struct smu_softc *sc = cookie;
struct smu_fan *fan = &sc->sc_fans[which];
int ret;
ret = 0;
if (time_uptime - fan->last_update > 1) {
ret = smu_fan_update_rpm(fan);
if (ret != 0)
return -1;
}
return fan->current_rpm;
}
static int
smu_fan_set_rpm(void *cookie, int which, int rpm)
{
struct smu_softc *sc = cookie;
struct smu_fan *fan = &sc->sc_fans[which];
struct smu_cmd cmd;
int ret;
DPRINTF("%s: fan %s rpm %d\n", __func__, fan->location, rpm);
rpm = uimax(fan->min_rpm, rpm);
rpm = uimin(fan->max_rpm, rpm);
fan->wanted_rpm = rpm;
cmd.cmd = SMU_CMD_FAN;
cmd.len = 4;
cmd.data[0] = 0x30;
cmd.data[1] = fan->reg;
cmd.data[2] = (rpm >> 8) & 0xff;
cmd.data[3] = rpm & 0xff;
ret = smu_do_cmd(sc, &cmd, 800);
if (ret != 0) {
cmd.cmd = SMU_CMD_FAN;
cmd.len = 14;
cmd.data[0] = fan->rpm_ctl ? 0x00 : 0x10;
cmd.data[1] = 1 << fan->reg;
cmd.data[2] = cmd.data[2 + fan->reg * 2] = (rpm >> 8) & 0xff;
cmd.data[3] = cmd.data[3 + fan->reg * 2] = rpm & 0xff;
ret = smu_do_cmd(sc, &cmd, 800);
}
return ret;
}
static int
smu_read_adc(struct smu_softc *sc, int id)
{
struct smu_cmd cmd;
int ret;
cmd.cmd = SMU_CMD_ADC;
cmd.len = 1;
cmd.data[0] = id;
ret = smu_do_cmd(sc, &cmd, 800);
if (ret == 0) {
return cmd.data[0] << 8 | cmd.data[1];
}
return -1;
}
static int
smu_iicbus_exec(void *cookie, i2c_op_t op, i2c_addr_t addr, const void *send,
size_t send_len, void *recv, size_t recv_len, int flags)
{
struct smu_iicbus *iicbus = cookie;
struct smu_softc *sc = iicbus->sc;
struct smu_cmd cmd;
int retries, ret;
DPRINTF("%s: op %x addr %x send_len %d recv_len %d\n",
__func__, op, addr, send_len, recv_len);
cmd.cmd = SMU_CMD_I2C;
cmd.len = 9 + recv_len;
cmd.data[0] = iicbus->reg;
cmd.data[1] = I2C_OP_READ_P(op) ? 0x02 : 0x00;
cmd.data[2] = addr << 1;
cmd.data[3] = send_len;
memcpy(&cmd.data[4], send, send_len);
cmd.data[7] = addr << 1;
if (I2C_OP_READ_P(op))
cmd.data[7] |= 0x01;
cmd.data[8] = recv_len;
memcpy(&cmd.data[9], recv, recv_len);
ret = smu_do_cmd(sc, &cmd, 800);
if (ret != 0)
return (ret);
for (retries = 0; retries < 10; retries++) {
cmd.cmd = SMU_CMD_I2C;
cmd.len = 1;
cmd.data[0] = 0x00;
memset(&cmd.data[1], 0xff, recv_len);
ret = smu_do_cmd(sc, &cmd, 800);
DPRINTF("%s: cmd data[0] %x\n", __func__, cmd.data[0]);
if (ret == 0 && (cmd.data[0] & 0x80) == 0)
break;
DELAY(10000);
}
if (cmd.data[0] & 0x80)
return EIO;
if (I2C_OP_READ_P(op))
memcpy(recv, &cmd.data[1], recv_len);
return 0;
}
SYSCTL_SETUP(smu_sysctl_setup, "SMU sysctl subtree setup")
{
sysctl_createv(NULL, 0, NULL, NULL,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
}
static void
smu_setup_zones(struct smu_softc *sc)
{
struct smu_fan *f;
fancontrol_zone_t *z;
int i;
/* init zones */
sc->sc_zones[SMU_ZONE_CPU].name = "CPUs";
sc->sc_zones[SMU_ZONE_CPU].filter = is_cpu_sensor;
sc->sc_zones[SMU_ZONE_CPU].cookie = sc;
sc->sc_zones[SMU_ZONE_CPU].get_rpm = smu_fan_get_rpm;
sc->sc_zones[SMU_ZONE_CPU].set_rpm = smu_fan_set_rpm;
sc->sc_zones[SMU_ZONE_CPU].Tmin = 45;
sc->sc_zones[SMU_ZONE_CPU].Tmax = 80;
sc->sc_zones[SMU_ZONE_CPU].nfans = 0;
sc->sc_zones[SMU_ZONE_CASE].name = "Slots";
sc->sc_zones[SMU_ZONE_CASE].filter = is_slots_sensor;
sc->sc_zones[SMU_ZONE_CASE].cookie = sc;
sc->sc_zones[SMU_ZONE_CASE].Tmin = 50;
sc->sc_zones[SMU_ZONE_CASE].Tmax = 75;
sc->sc_zones[SMU_ZONE_CASE].nfans = 0;
sc->sc_zones[SMU_ZONE_CASE].get_rpm = smu_fan_get_rpm;
sc->sc_zones[SMU_ZONE_CASE].set_rpm = smu_fan_set_rpm;
sc->sc_zones[SMU_ZONE_DRIVEBAY].name = "Drivebays";
sc->sc_zones[SMU_ZONE_DRIVEBAY].filter = is_drive_sensor;
sc->sc_zones[SMU_ZONE_DRIVEBAY].cookie = sc;
sc->sc_zones[SMU_ZONE_DRIVEBAY].get_rpm = smu_fan_get_rpm;
sc->sc_zones[SMU_ZONE_DRIVEBAY].set_rpm = smu_fan_set_rpm;
sc->sc_zones[SMU_ZONE_DRIVEBAY].Tmin = 30;
sc->sc_zones[SMU_ZONE_DRIVEBAY].Tmax = 50;
sc->sc_zones[SMU_ZONE_DRIVEBAY].nfans = 0;
/* find CPU fans */
z = &sc->sc_zones[SMU_ZONE_CPU];
for (i = 0; i < SMU_MAX_FANS; i++) {
f = &sc->sc_fans[i];
if ((strstr(f->location, "CPU") != NULL) ||
(strstr(f->location, "System") != NULL)) {
z->fans[z->nfans].num = i;
z->fans[z->nfans].min_rpm = f->min_rpm;
z->fans[z->nfans].max_rpm = f->max_rpm;
z->fans[z->nfans].name = f->location;
z->nfans++;
}
}
aprint_normal_dev(sc->sc_dev,
"using %d fans for CPU zone\n", z->nfans);
z = &sc->sc_zones[SMU_ZONE_DRIVEBAY];
for (i = 0; i < SMU_MAX_FANS; i++) {
f = &sc->sc_fans[i];
if ((strstr(f->location, "DRIVE") != NULL) ||
(strstr(f->location, "Drive") != NULL)) {
z->fans[z->nfans].num = i;
z->fans[z->nfans].min_rpm = f->min_rpm;
z->fans[z->nfans].max_rpm = f->max_rpm;
z->fans[z->nfans].name = f->location;
z->nfans++;
}
}
aprint_normal_dev(sc->sc_dev,
"using %d fans for drive bay zone\n", z->nfans);
z = &sc->sc_zones[SMU_ZONE_CASE];
for (i = 0; i < SMU_MAX_FANS; i++) {
f = &sc->sc_fans[i];
if ((strstr(f->location, "BACKSIDE") != NULL) ||
(strstr(f->location, "SLOTS") != NULL)) {
z->fans[z->nfans].num = i;
z->fans[z->nfans].min_rpm = f->min_rpm;
z->fans[z->nfans].max_rpm = f->max_rpm;
z->fans[z->nfans].name = f->location;
z->nfans++;
}
}
aprint_normal_dev(sc->sc_dev,
"using %d fans for expansion slots zone\n", z->nfans);
/* setup sysctls for our zones etc. */
for (i = 0; i < SMU_ZONES; i++) {
fancontrol_init_zone(&sc->sc_zones[i], sc->sc_sysctl_me);
}
sc->sc_dying = false;
kthread_create(PRI_NONE, 0, curcpu(), smu_adjust, sc, &sc->sc_thread,
"fan control");
}
static void
smu_adjust(void *cookie)
{
struct smu_softc *sc = cookie;
int i;
while (!sc->sc_dying) {
for (i = 0; i < SMU_ZONES; i++)
if (sc->sc_zones[i].nfans > 0)
fancontrol_adjust_zone(&sc->sc_zones[i]);
kpause("fanctrl", true, mstohz(2000), NULL);
}
kthread_exit(0);
}
static bool is_cpu_sensor(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "CPU") != NULL)
return TRUE;
return false;
}
static bool is_drive_sensor(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "DRIVE") != NULL)
return TRUE;
if (strstr(edata->desc, "drive") != NULL)
return TRUE;
return false;
}
static bool is_slots_sensor(const envsys_data_t *edata)
{
if (edata->units != ENVSYS_STEMP)
return false;
if (strstr(edata->desc, "BACKSIDE") != NULL)
return TRUE;
if (strstr(edata->desc, "INLET") != NULL)
return TRUE;
if (strstr(edata->desc, "DIODE") != NULL)
return TRUE;
if (strstr(edata->desc, "TUNNEL") != NULL)
return TRUE;
return false;
}
int
smu_get_datablock(int id, uint8_t *buf, size_t len)
{
struct smu_cmd cmd;
cmd.cmd = SMU_PARTITION;
cmd.len = 2;
cmd.data[0] = SMU_PARTITION_LATEST;
cmd.data[1] = id;
smu_do_cmd(smu0, &cmd, 100);
cmd.data[4] = cmd.data[0];
cmd.data[5] = cmd.data[1];
cmd.cmd = SMU_MISC;
cmd.len = 7;
cmd.data[0] = SMU_MISC_GET_DATA;
cmd.data[1] = 4;
cmd.data[2] = 0;
cmd.data[3] = 0;
cmd.data[6] = len;
smu_do_cmd(smu0, &cmd, 100);
memcpy(buf, cmd.data, len);
return 0;
}